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We study the transient flow of a Newtonian fluid in rectangular microchannels taking into account boundary slip. An exact solu-
tion is derived by using the separation of variables in space and Fourier series expansion in time. It is found that, for different forms
of driving pressure field, the effect of boundary slip on the flow behavior is qualitatively different. If the pressure gradient is constant,
the flow rate is almost linearly proportional to the slip parameter ℓwhen ℓ is large; if the pressure gradient is in awaveform, as the slip
parameter ℓ increases, the amplitude of the flow rate increases until approaching a constant value when ℓ becomes sufficiently large.

1. Introduction

In recent years, many researchers worldwide focus on the
study of behavior of materials at micro- and nanoscales [1, 2],
leading to the development of many biological and engineer-
ing systems and devices. Most of these systems and devices
involve fluid flow in microchannels, called microflows [1,
3–7]. Typical examples include drug delivery systems [8],
fuel cell devices, energy conversion, and biological sensing
devices [9]. As the functional characteristics of these systems
depend on the behavior of fluid flow in the systems, the study
of microflows is important and has attracted more and more
attention from the engineering and science communities in
order to derive a better understanding of the mechanism of
microflows and consequently better design and control of the
devices and systems [1, 6, 10].

The field equations governing the flow of Newtonian
fluids are the continuity equation and theNavier-Stokes equa-
tions. These equations are subject to a set of boundary con-
ditions.The no-slip boundary condition is used traditionally;
namely, the tangential fluid velocity relative to the solid is zero
on the fluid-solid interface [11]. However, recent molecular
dynamic simulations and experiments in micrometer scale
have shown that the fluid flow in microsystems is granular

and slip may occur on the fluid-solid interface [10, 12–17].
Hence, for the study of microflow, it is important to take
into account the boundary slip of fluids on the fluid-solid
interfaces.

Over the last few decades, intensive research has been
carried out to study various problems of fluid flow with the
no-slip assumption or a slip boundary condition [1, 5, 17–33].
For flows under the no-slip assumption, exact solutions to
many problems have been obtained and are available in the
literature [11, 34–37]. But for slip flow very few exact solutions
are available in the literature. Exact solutions for the fluid
flow in circular microtubes and circular microannuals with
boundary slip have been derived and discussed in the papers
[17, 25, 28].

For microchannels with rectangular cross-section, a no-
slip solution has been obtained [38–43]. For the slip case
steady state solution has also been obtained [15, 35, 44–48].
However, so far no exact solution has been derived for the
transient flow of fluids through rectangular channel under
pulsatile pressure. As many microsystems and devices have
microchannels of rectangular cross-section, it is important to
derive exact analytical solutions for the behavior of transient
flow through rectangular microchannels with slip boundary.
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Figure 1: Rectangular microchannel.

Based on the current development in the field, in this
paper, we study the time-dependent flow of incompressible
Newtonian fluids through a rectangular microchannel taking
into account boundary slip.The rest of the paper is organized
as follows. In Section 2, we give the underlying initial bound-
ary value problem for the transient slip flow. In Section 3,
we derive the exact solution for the velocity field. In Section 4,
an analysis is conducted to study the effect of the slip length
on the flow behavior. Finally, a conclusion is presented in
Section 5.

2. Governing Boundary Value Problem

Consider the unsteady flow of an incompressible Newtonian
fluid in a rectangular channel of cross-section dimension
𝑎 × 𝑏 with the 𝑧-axes being in the axial direction as shown in
Figure 1. The field equations governing the flow include the
Navier-Stokes equations and the continuity equation. As the
flow is symmetric about the 𝑥𝑧-plane and the 𝑦𝑧-plane and is
fully developed, there is no cross-sectional flow and thus the
velocity components in the 𝑥 and 𝑦 directions vanish; that is,
V⃗ = (V

𝑥
, V
𝑦
, V
𝑧
) = (0, 0, 𝑢).

Hence, from the continuity equation

𝜕V
𝑥

𝜕𝑥
+

𝜕V
𝑦

𝜕𝑦
+
𝜕V
𝑧

𝜕𝑧
= 0 (1)

and the Navier-Stokes equation

𝜌(
𝜕V
𝑧

𝜕𝑡
+ V
𝑥

𝜕V
𝑧

𝜕𝑥
+ V
𝑦

𝜕V
𝑧

𝜕𝑦
+ V
𝑧

𝜕V
𝑧

𝜕𝑧
)

= −
𝜕𝑝

𝜕𝑧
+ 𝜇(

𝜕
2V
𝑧

𝜕𝑥2
+
𝜕
2V
𝑧

𝜕𝑦2
+
𝜕
2V
𝑧

𝜕𝑧2
) + 𝜌𝑔

𝑧
,

(2)

the axial velocity, 𝑢, is governed by the following equation:

𝜇

𝜌
(
𝜕
2

𝑢

𝜕𝑥2
+
𝜕
2

𝑢

𝜕𝑦2
) −
𝜕𝑢

𝜕𝑡
=
1

𝜌

𝜕𝑝

𝜕𝑧
. (3)

As a large class of functions may be expressed by Fourier
series, we consider, in this work, the flow of a fluid driven
by the pressure gradient 𝜕𝑝/𝜕𝑧 that may be expressed in the
form of Fourier series given by

𝜕𝑝

𝜕𝑧
= 𝑎
0
+

∞

∑

𝑛=1

[𝑎
𝑛
cos (𝑛𝜔𝑡) + 𝑏

𝑛
sin (𝑛𝜔𝑡)] . (4)

To define the problem completely, we supplement the field
equation by the boundary condition. To take into account the

boundary slip, the so-called Navier-slip boundary condition
is used. On the fluid-solid interface 𝑥 = ±𝑎 and 𝑦 = ±𝑏, the
axial fluid velocity, relative to the solid surface, is assumed
to be proportional to the shear stress on the interface. Let
n = (𝑛

1
, 𝑛
2
, 𝑛
3
) be the unit normal vector of the surface 𝑆

of the fluid, and let t = (𝑡
1
, 𝑡
2
, 𝑡
3
) be the positive tangential

direction. Also let the fluid velocity on the wall direction be
V
𝑡
, and let the velocity of the solid in the tangential direction

of the surface be V
𝑠𝑡
.Then, as shown in our previouswork [17],

the Navier-slip boundary condition can be expressed by

(V
𝑡
− V
𝑠𝑡
) 𝑡
𝑖
= −

ℓ (𝜎
𝑖𝑗
𝑛
𝑗
𝑡
𝑖
)

𝜇
, (5)

where the negative sign indicates that the surface traction
force which acted on the fluid by the solid is opposite to
the tangential velocity of fluid relative to the solid. For our
problems in the (𝑥, 𝑦, 𝑧) coordinate system, k = (0, 0, 𝑢)
and k

𝑠
= (0, 0, 0). On the surface 𝑥 = 𝑎, t = (0, 0, 1) and

n = (1, 0, 0), and so (V
𝑖
− V
𝑠
)𝑡
𝑖
= V
𝑖
𝑡
𝑖
= 𝑢 and 𝜎

𝑖𝑗
𝑛
𝑗
𝑡
𝑖
=

𝜎
𝑥𝑧
= 𝜇(𝜕𝑢/𝜕𝑥) and consequently (5), on the surface 𝑥 = 𝑎,

becomes

𝑢 (𝑎, 𝑦, 𝑡) + ℓ
𝜕𝑢

𝜕𝑥
(𝑎, 𝑦, 𝑡) = 0. (6)

On the surface 𝑥 = −𝑎, we have t = (0, 0, 1) and n = (−1, 0, 0),
and hence (V

𝑖
− V
𝑠𝑖
)𝑡
𝑖
= V
𝑖
𝑡
𝑖
= 𝑢 and 𝜎

𝑖𝑗
𝑛
𝑗
𝑡
𝑖
= −𝜎

𝑥𝑧
=

−𝜇(𝜕𝑢/𝜕𝑥) and consequently (5), on the surface 𝑥 = −𝑎,
becomes

𝑢 (−𝑎, 𝑦, 𝑡) − ℓ
𝜕𝑢

𝜕𝑥
(−𝑎, 𝑦, 𝑡) = 0. (7)

Similarly, the boundary condition on the surface 𝑦 = ±𝑏 is

𝑢 (𝑥, ±𝑏, 𝑡) ± ℓ
𝜕𝑢

𝜕𝑥
(𝑥, ±𝑏, 𝑡) = 0. (8)

We will remark here that, for ℓ = 0, the slip boundary con-
ditions (6)–(8) reduce to the no-slip condition; on the other
extreme, where ℓ → ∞, (6)–(8) become the surface traction
conditions for perfectly smooth surfaces; that is, 𝜎

𝑥𝑧
(±𝑎,

𝑦, 𝑡) = 𝜎
𝑦𝑧
(𝑥, ±𝑏, 𝑡) = 0.

3. Exact Solutions for Transient
Velocity and Stress Fields

To solve the partial differential equation (3), complex num-
bers are used to express the Fourier series for the pressure
gradient; namely,

𝜕𝑝

𝜕𝑧
=

∞

∑

𝑛=0

(𝑎
𝑛
cos (𝑛𝜔𝑡) + 𝑏

𝑛
sin (𝑛𝜔𝑡)) = Re(

∞

∑

𝑛=0

𝑐
𝑛
𝑒
𝑖𝑛𝜔𝑡

) ,

(9)

where 𝑐
𝑛
= 𝑎
𝑛
− 𝑏
𝑛
𝑖 and 𝑒𝑖𝑛𝜔𝑡 = cos(𝑛𝜔𝑡) + 𝑖 sin(𝑛𝜔𝑡).
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From the symmetry of the problem and the linearity of
(3), we get 𝑢 = ∑∞

𝑛=0
Re(𝑢
𝑛
), where 𝑢

𝑛
is defined by

𝜇
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𝑛

𝜕𝑥2
+
𝜕
2

𝑢
𝑛
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=
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𝑛

𝜌
𝑒
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,

𝜕𝑢
𝑛

𝜕𝑥
(0, 𝑦) = 0,

𝜕𝑢
𝑛

𝜕𝑦
(𝑥, 0) = 0,

𝑢
𝑛
(𝑎, 𝑦, 𝑡) + ℓ

𝜕𝑢
𝑛

𝜕𝑥
(𝑎, 𝑦, 𝑡) = 0,

𝑢
𝑛
(𝑥, 𝑏, 𝑡) + ℓ

𝜕𝑢
𝑛

𝜕𝑦
(𝑥, 𝑏, 𝑡) = 0.

(10)

Through some mathematical analysis, we get that, for 𝑛 ≥ 1,
the boundary value problem (10) has solution of the form

𝑢
𝑛
= 𝑓
𝑛
(𝑥, 𝑦) 𝑒

𝑖𝑛𝜔𝑡

, (11)

where 𝑓
𝑛
is determined by

𝑓
𝑛
= 𝑈
𝑛
(𝑥, 𝑦) + 𝑉

𝑛
(𝑥, 𝑦) −

𝑐
𝑛

𝑖𝑛𝜔𝜌
, (12)

with 𝑈
𝑛
(𝑥, 𝑦) and 𝑉

𝑛
(𝑥, 𝑦) being governed, respectively, by

the following boundary value problems:

BVP1:
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− 𝑖
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𝜇
𝑈
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𝑛
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𝜕𝑈
𝑛

𝜕𝑦
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𝑈
𝑛
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𝑛

𝜕𝑥
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𝑐
𝑛
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,

𝑈
𝑛
(𝑥, 𝑏) + ℓ

𝜕𝑈
𝑛

𝜕𝑦
(𝑥, 𝑏) = 0,

BVP2:

{{{{{{{{{{{{{

{{{{{{{{{{{{{
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𝜕
2

𝑉
𝑛

𝜕𝑥2
+
𝜕
2

𝑉
𝑛

𝜕𝑦2
− 𝑖
𝑛𝜔𝜌

𝜇
𝑉
𝑛
= 0,

𝜕𝑉
𝑛

𝜕𝑥
(0, 𝑦) = 0,

𝜕𝑉
𝑛

𝜕𝑦
(𝑥, 0) = 0,

𝑉
𝑛
(𝑎, 𝑦) + ℓ

𝜕𝑉
𝑛

𝜕𝑥
(𝑎, 𝑦) = 0,

𝑉
𝑛
(𝑥, 𝑏) + ℓ

𝜕𝑉
𝑛

𝜕𝑦
(𝑥, 𝑏) =

𝑐
𝑛

𝑖𝑛𝜔𝜌
.

(13)

Thus, the remaining work for finding 𝑓
𝑛
and consequently 𝑢

𝑛

and then 𝑢 is to solve the two BVPs: BVP1 and BVP2.We first
solve BVP1 by the separation of variables. From the PDE and
the homogeneous boundary conditions of BVP1, we obtain

𝑈
𝑛
=

∞

∑

𝑚=1

𝐴
𝑛𝑚

cosh (𝛾
𝑛𝑚
𝑥) cos (𝜐

𝑚
𝑦) , (14)

where 𝜐
𝑚
(𝑚 = 1, 2, . . .) are the roots of the nonlinear equa-

tion

cot (𝑏𝜐) = ℓ𝜐, (15)

𝜆
𝑚
= 𝜐
2

𝑚
, Φ
𝑚
= cos(√𝜆

𝑚
𝑦) , 𝑚 = 1, 2, 3, . . . (16)
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Figure 2: Infinite number of solutions of the two functions 𝑦 = ℓ𝜐
and 𝑦 = cot(𝑏𝜐).

are respectively eigenvalues and eigenfunctions of BVP1 and

𝛾
𝑛𝑚
= √𝜐
2

𝑚
+ 𝑖
𝑛𝜌𝜔

𝜇
. (17)

The eigenvalues𝜆
𝑚
are the solution of the followingnonlinear

equation:

cot (√𝜆𝑏) = ℓ√𝜆, (18)

which has infinite number of solutions as shown by the
intersection of the graphs 𝑦 = ℓ𝜐 and 𝑦 = cot(𝑏𝜐) where 𝜐 =
√𝜆 in Figure 2.

It can also be proved that the eigenfunctions Φ
𝑚
(𝑚 =

1, 2, . . .) are orthogonal and thus the coefficients 𝐴
𝑛𝑚

can be
determined from the nonhomogeneous boundary condition
of BVP1 by

𝐴
𝑛𝑚

= −𝑖
4𝑐
𝑛
sin (𝑏𝜐

𝑚
)

𝑛𝜌𝜔 [2𝑏𝜐
𝑚
+ sin (2𝑏𝜐

𝑚
)] [cosh (𝑎𝛾

𝑛𝑚
) + ℓ𝛾

𝑛𝑚
sinh (𝑎𝛾

𝑛𝑚
)]
.

(19)

Similarly, the solution 𝑉
𝑛
of the BVP2 is

𝑉
𝑛
=

∞

∑

𝑚=1

𝐵
𝑛𝑚

cosh (𝛾
𝑛𝑚
𝑦) cos (𝜐

𝑚
𝑥) , (20)
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where 𝜐
𝑚
(𝑚 = 1, 2, . . .) are the roots of the nonlinear

equation

cot (𝑎𝜐) = ℓ𝜐, (21)

𝛾
𝑛𝑚
= √𝜐
2

𝑚
+ 𝑖
𝑛𝜌𝜔

𝜇
, (22)

𝐵
𝑛𝑚

= −𝑖
4𝑐
𝑛
sin (𝑎𝜐

𝑚
)

𝑛𝜌𝜔 [2𝑎𝜐
𝑚
+ sin (2𝑎𝜐

𝑚
)] [cosh (𝑏𝛾

𝑚
+ ℓ𝛾
𝑚𝑛

sinh (𝑏𝛾
𝑛𝑚
))]
.

(23)

Substituting (14) and (20) into (12) yields the solution

𝑢
𝑛
(𝑥, 𝑦, 𝑡)

= 𝑒
𝑖𝑛𝜔𝑡

{𝑖
𝑐
𝑛

𝑛𝜌𝜔

+

∞

∑

𝑚=1

[𝐴
𝑛𝑚

cosh (𝛾
𝑛𝑚
𝑥) cos (𝜐

𝑚
𝑦)

+ 𝐵
𝑛𝑚

cosh (𝛾
𝑛𝑚
𝑦) cos (𝜐

𝑚
𝑥)] } ,

𝑛 = 1, 2, . . . .

(24)

For 𝑛 = 0, proceeding as for finding 𝑢
𝑛
(𝑥, 𝑦, 𝑡), we obtain

𝑢
0
(𝑥, 𝑦, 𝑡)

=
𝑐
0

4𝜇
(𝑥
2

+ 𝑦
2

)

+

∞

∑

𝑚=1

[𝐴
0𝑚

cosh (𝛾
0𝑚
𝑥) cos (𝜐

𝑚
𝑦)

+ 𝐵
0𝑚

cosh (𝛾
0𝑚
𝑦) cos (𝜐

𝑚
𝑥)] ,

(25)

where 𝛾
0𝑚

and 𝛾
0𝑚

are as defined in (17) and (22) with 𝑛 = 0;
that is, 𝛾

0𝑚
= 𝜐
𝑚
and 𝛾
0𝑚
= 𝜐
𝑚
; 𝐴
0𝑚

and 𝐵
0𝑚

are as follows:

𝐴
0𝑚
= (−𝑐

0
[ (𝑎
2

+ 2𝑎ℓ) sin (𝑏𝜐
𝑚
) + 𝑏
2 sin (𝑏𝜐

𝑚
)

+
2

𝜐
𝑚

(𝑏 cos (𝑏𝜐
𝑚
) −

sin (𝑏𝜐
𝑚
)

𝜐
𝑚

)]

× (𝜇 [2𝑏𝜐
𝑚
+ sin (2𝑏𝜐

𝑚
)]

× [cosh (𝑎𝜐
𝑚
) + ℓ𝜐

𝑚
sinh (𝑎𝜐

𝑚
)])
−1

) ,

(26)

𝐵
0𝑚
= (−𝑐

0
[ (𝑏
2

+ 2𝑏ℓ) sin (𝑎𝜐
𝑚
) + 𝑎
2 sin (𝑎𝜐

𝑚
)

+
2

𝜐
𝑚

(𝑎 cos (𝑎𝜐
𝑚
) −

sin (𝑎𝜐
𝑚
)

𝜐
𝑚

)]

× (𝜇 [2𝑎𝜐
𝑚
+ sin (2𝑎𝜐

𝑚
)]

× [cosh (𝑏𝜐
𝑚
) + ℓ𝜐

𝑚
sinh (𝑏𝜐

𝑚
)])
−1

) .

(27)

Hence collecting all solutions of the subproblems, we have

𝑢 (𝑥, 𝑦, 𝑡)

=
𝑎
0

4𝜇
(𝑥
2

+ 𝑦
2

) +

∞

∑

𝑛=1

−𝑎
𝑛
sin (𝑛𝜔𝑡) + 𝑏

𝑛
cos (𝑛𝜔𝑡)

𝑛𝜔𝜌

+

∞

∑

𝑛=0

Re{𝑒𝑖𝑛𝜔𝑡

×

∞

∑

𝑚=1

[𝐴
𝑚𝑛

cosh (𝛾
𝑛𝑚
𝑥) cos (𝜐

𝑚
𝑦)

+ 𝐵
𝑛𝑚

cosh (𝛾
𝑛𝑚
𝑦) cos (𝜐

𝑚
𝑥)] } ,

(28)

where 𝜐
𝑚
and 𝜐

𝑚
are determined, respectively, by (15) and

(21), 𝛾
𝑛𝑚

and 𝛾
𝑛𝑚

are defined by (17) and (22), respectively,
𝐴
0𝑚

and 𝐵
𝑛𝑚

are defined by (26) and (27), and 𝐴
𝑛𝑚

and
𝐵
𝑛𝑚
(𝑛,𝑚 ≥ 1) are defined by (19) and (23), respectively.
Nowwe determine the exact solutions of the flow rate and

the stresses in the fluid. From the velocity solution (28), we
obtain the flow rate as follows:

𝑄 (𝑡) = 4∫

𝑏

0

∫

𝑎

0

𝑢 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 =

∞

∑

𝑛=0

𝑄
𝑛
, (29)

where 𝑄
0
and 𝑄

𝑛
(𝑛 ̸= 0) denote, respectively, the flow rate

corresponding to the constant component and the nth har-
monic component of the pressure gradient and

𝑄
0
=
𝑎
0

3𝜇
[𝑎
3

𝑏 + 𝑎𝑏
3

]

+ 4Re
∞

∑

𝑚=1

{
𝐴
0𝑚

𝛾
0𝑚
𝜐
𝑚

sinh (𝑎𝛾
0𝑚
) sin (𝑏𝜐

𝑚
)

+
𝐵
0𝑚

𝛾
0𝑚
𝜐
𝑚

sinh (𝑏𝛾
0𝑚
) sin (𝑎𝜐

𝑚
)} ,

(30)
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𝑄
𝑛
=
4𝑎𝑏 [−𝑎

𝑛
sin (𝑛𝜔𝑡) + 𝑏

𝑛
cos (𝑛𝜔𝑡)]

𝑛𝜔𝜌

+ 4Re{𝑒𝑖𝑛𝜔𝑡

×

∞

∑

𝑚=1

[
𝐴
𝑛𝑚

𝛾
𝑛𝑚
𝜐
𝑚

sinh (𝑎𝛾
𝑛𝑚
) sin (𝑏𝜐

𝑚
)

+
𝐵
𝑛𝑚

𝛾
𝑛𝑚
𝜐
𝑚

sinh (𝑏𝛾
𝑛𝑚
) sin (𝑎𝜐

𝑚
)]} .

(31)

The stress tensor in the fluid can then be determined by the
constitutive equation

𝜎 = −𝑝I + 2𝜇d, (32)

where I is an identity matrix and the deformation rate d
depends on the velocity by

d = 1
2
(∇V + (∇V)𝑇) . (33)

As k = (0, 0, 𝑢(𝑥, 𝑦, 𝑡)), we get

𝑑 =
1

2

[
[
[
[
[
[
[

[

0 0
𝜕𝑢

𝜕𝑥

0 0
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
0

]
]
]
]
]
]
]

]

. (34)

From (28) and (32)–(34), we obtain 𝑑
𝑥𝑥
= 𝑑
𝑦𝑦
= 𝑑
𝑧𝑧
= 𝑑
𝑥𝑦
=

0 and

𝑑
𝑥𝑧

=
𝑎
0

2𝜇
𝑥

+
1

2

∞

∑

𝑛=0

Re{𝑒𝑖𝑛𝜔𝑡

×

∞

∑

𝑚=1

[𝐴
𝑛𝑚
𝛾
𝑛𝑚

sinh (𝛾
𝑛𝑚
𝑥) cos (𝜐

𝑚
𝑦)

− 𝐵
𝑛𝑚
𝜐
𝑚
cosh (𝛾

𝑛𝑚
𝑦) sin (𝜐

𝑚
𝑥)] } ,

(35)

𝑑
𝑦𝑧

=
𝑎
0

2𝜇
𝑦

+
1

2

∞

∑

𝑛=0

Re{𝑒𝑖𝑛𝜔𝑡

×

∞

∑

𝑚=1

[−𝐴
𝑛𝑚
𝜐
𝑚
cosh (𝛾

𝑛𝑚
𝑥) sin (𝜐

𝑚
𝑦)

+ 𝐵
𝑛𝑚
𝛾
𝑛𝑚

sinh (𝛾
𝑛𝑚
𝑦) cos (𝜐

𝑚
𝑥)] } .

(36)

Thus, from the constitutive equation (32), we get

𝜎
𝑥𝑥
= 𝜎
𝑦𝑦
= 𝜎
𝑧𝑧
= −𝑝 = 𝑝

0
(𝑡) + 𝑞 (𝑡) 𝑧,

𝜎
𝑥𝑦
= 0, 𝜎

𝑥𝑧
= 2𝜇𝑑

𝑥𝑧
, 𝜎

𝑦𝑧
= 2𝜇𝑑

𝑦𝑧
,

(37)

where 𝑞(𝑡) denotes the pressure gradient 𝜕𝑝/𝜕𝑧 while 𝑝
0
(𝑡)

is arbitrary and may be chosen to meet certain pressure
condition.

4. Investigation of the Effect of Boundary Slip
on the Flow Behavior

Based on the exact solutions obtained, we investigate the
flow behaviour and the influence of the slip length in this
section. As a general pressure field can be expressed by
a Fourier series in the form of (4), from the principle
of superposition, the exact solution of the problem is the
superposition of the solutions corresponding to the constant
pressure gradient plus the solutions corresponding to the
sine or cosine waveform pressure gradients. In this work,
without loss of generality, we consider flow problems under
two different cases of driving pressure fields including the
case with a constant pressure gradient and the case with a sine
waveformpressure gradient. For simplicity, we introduce four
dimensionless variables as follows:

𝜀 =
𝑏

𝑎
, 𝑥

∗

=
𝑥

𝑎
, 𝑦

∗

=
𝑦

𝑏
, 𝑡

∗

=
𝜔𝑡

2𝜋
. (38)

Case 1 (𝜕𝑝/𝜕𝑧 = 𝑎
0
). For this case, 𝑐

0
= 𝑎
0
and 𝑐
𝑛
= 0 for

𝑛 ≥ 1.The constant pressure gradientmeans that the pressure
gradient does not depend on time. From (28), (30), (35), and
(36), we get the following normalized velocity, flow rate, and
shear stresses:

𝑢
∗

(𝑥
∗

, 𝑦
∗

)

=
4𝜇

𝑎
0
𝑎2
𝑢 = 𝑥

∗2

+ (𝜀𝑦
∗

)
2

+
4𝜇

𝑎
0
𝑎2

Re
∞

∑

𝑚=1

[𝐴
0𝑚

cosh (𝑎𝜐
𝑚
𝑥
∗

) cos (𝑏𝜐
𝑚
𝑦
∗

)

+ 𝐵
0𝑚

cosh (𝑏𝜐
𝑚
𝑦
∗

) cos (𝑎𝜐
𝑚
𝑥
∗

)] ,

(39)
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𝑄
∗

0

=
3𝜇

𝑎
0
𝜀𝑎4
𝑄
0
= 1 + 𝜀

2

+
12𝜇

𝑎
0
𝜀𝑎4

Re
∞

∑

𝑚=1

[
𝐴
0𝑚

𝜐2
𝑚

sinh (𝑎𝜐
𝑚
) sin (𝑏𝜐

𝑚
)

+
𝐵
0𝑚

𝜐
2

𝑚

sinh (𝑏𝜐
𝑚
) sin (𝑎𝜐

𝑚
)] ,

(40)

𝜎
∗

𝑥𝑧

=
1

𝑎
0
𝑎
𝜎
𝑥𝑧
= 𝑥
∗

+
𝜇

𝑎
0
𝑎
Re
∞

∑

𝑚=1

[𝐴
0𝑚
𝜐
𝑚
sinh (𝜐

𝑚
𝑎𝑥
∗

) cos (𝑏𝜐
𝑚
𝑦
∗

)

− 𝐵
0𝑚
𝜐
𝑚
cosh (𝑏𝜐

𝑚
𝑦
∗

) sin (𝑎𝜐
𝑚
𝑥
∗

)] ,

(41)
𝜎
∗

𝑦𝑧

=
1

𝑎
0
𝑎
𝜎
𝑦𝑧
= 𝜀𝑦
∗

+
𝜇

𝑎
0
𝑎
Re
∞

∑

𝑚=1

[−𝐴
0𝑚
𝜐
𝑚
cosh (𝜐

𝑚
𝑎𝑥
∗

) sin (𝑏𝜐
𝑚
𝑦
∗

)

+ 𝐵
0𝑚
𝜐
𝑚
sinh (𝑏𝜐

𝑚
𝑦
∗

) cos (𝑎𝜐
𝑚
𝑥
∗

)] .

(42)

As the pressure gradient does not depend on time, the nor-
malized velocity and flow rate as well as stresses are influ-
enced by the slip length ℓ only, which is implicitly contained
in 𝜐
𝑚
and 𝜐
𝑚
.

Case 2 (𝜕𝑝/𝜕𝑧 = 𝑏
1
sin(𝜔𝑡)). For this case, the pressure

gradient is sinusoidal with amplitude 𝑏
1
, and 𝑎

0
= 0, 𝑐
1
= −𝑏
1
𝑖,

𝑐
𝑛
= 0 for ∀𝑛 ≥ 2. From (27), we have

𝑢
∗

(𝑥
∗

, 𝑦
∗

)

=
𝜌𝜔

𝑏
1

𝑢 = cos (2𝜋𝑡∗)

+
𝜌𝜔

𝑏
1

Re
∞

∑

𝑚=1

𝑒
𝑖2𝜋𝑡
∗

[𝐴
1𝑚

cosh (𝑎𝛾
1𝑚
𝑥
∗

) cos (𝑏𝜐
𝑚
𝑦
∗

)

+ 𝐵
1𝑚

cosh (𝑏𝛾
1𝑚
𝑦
∗

) cos (𝑎𝜐
𝑚
𝑥
∗

)] .

(43)

Let

𝛾
1𝑚
= [𝜐
2

𝑚
+ 𝑖
𝜌𝜔

𝜇
]

1/2

:= 𝛼
1𝑚
+ 𝑖𝛽
1𝑚
, (44)

where

𝛼
1𝑚
= [𝜐
4

𝑚
+ (
𝜌𝜔

𝜇
)

2

]

1/4

cos(
𝜃
𝑚

2
) ,

𝛽
1𝑚
= [𝜐
4

𝑚
+ (
𝜌𝜔

𝜇
)

2

]

1/4

sin(
𝜃
𝑚

2
) ,

𝜃
𝑚
= arctan(

𝜌𝜔

𝜇𝜐2
𝑚

) .

(45)

Then

cosh (𝑎𝛾
1𝑚
) = cosh (𝑎𝛼

1𝑚
) cos (𝑎𝛽

1𝑚
)

+ 𝑖 sinh (𝑎𝛼
1𝑚
) sin (𝑎𝛽

1𝑚
) ,

sinh (𝑎𝛾
1𝑚
) = sinh (𝑎𝛼

1𝑚
) cos (𝑎𝛽

1𝑚
)

+ 𝑖 cosh (𝑎𝛼
1𝑚
) sin (𝑎𝛽

1𝑚
) .

(46)

Using (19) and (23), through a lengthy derivation, we obtain

𝑢
∗

= cos (2𝜋𝑡∗) +
∞

∑

𝑚=1

[𝑑
3𝑚

cos (2𝜋𝑡∗) − 𝑑
4𝑚

sin (2𝜋𝑡∗)] ,

(47)

where

𝑑
1𝑚
= cosh (𝑎𝛼

1𝑚
) cos (𝑎𝛽

1𝑚
)

+ ℓ𝛼
1𝑚

sinh (𝑎𝛼
1𝑚
) cos (𝑎𝛽

1𝑚
)

− ℓ𝛽
1𝑚

cosh (𝑎𝛼
1𝑚
) sin (𝑎𝛽

1𝑚
) ,

𝑑
2𝑚
= sinh (𝑎𝛼

1𝑚
) sin (𝑎𝛽

1𝑚
)

+ ℓ𝛼
1𝑚

cosh (𝑎𝛼
1𝑚
) sin (𝑎𝛽

1𝑚
)

+ ℓ𝛽
1𝑚

sinh (𝑎𝛼
1𝑚
) cos (𝑎𝛽

1𝑚
) ,

𝑑
3𝑚
= 𝐴
∗

1𝑚
cos (𝑏𝜐

𝑚
𝑦
∗

)

× [𝑑
1𝑚

cosh (𝑎𝛼
1𝑚
𝑥
∗

) cos (𝑎𝛽
1𝑚
𝑥
∗

)

+ 𝑑
2𝑚

sinh (𝑎𝛼
1𝑚
𝑥
∗

) sin (𝑎𝛽
1𝑚
𝑥
∗

)]

+ 𝐵
∗

1𝑚
cos (𝑎𝜐

𝑚
𝑥
∗

)

× [𝑑
1𝑚

cosh (𝑏𝛼
1𝑚
𝑦
∗

) cos (𝑏𝛽
1𝑚
𝑦
∗

)

+ 𝑑
2𝑚

sinh (𝑏𝛼
1𝑚
𝑦
∗

) sin (𝑏𝛽
1𝑚
𝑦
∗

)] ,

𝑑
4𝑚
= 𝐴
∗

1𝑚
cos (𝑏𝜐

𝑚
𝑦
∗

)

× [𝑑
1𝑚

sinh (𝑎𝛼
1𝑚
𝑥
∗

) sin (𝑎𝛽
1𝑚
𝑥
∗

)

− 𝑑
2𝑚

cosh (𝑎𝛼
1𝑚
𝑥
∗

) cos (𝑎𝛽
1𝑚
𝑥
∗

)]

+ 𝐵
∗

1𝑚
cos (𝑎𝜐

𝑚
𝑥
∗

)

× [𝑑
1𝑚

sinh (𝑏𝛼
1𝑚
𝑦
∗

) sin (𝑏𝛽
1𝑚
𝑦
∗

)

− 𝑑
2𝑚

cosh (𝑏𝛼
1𝑚
𝑦
∗

) cos (𝑏𝛽
1𝑚
𝑦
∗

)] ,

𝐴
∗

1𝑚
= −

4 sin (𝑏𝜐
𝑚
)

[2𝑏𝜐
𝑚
+ sin (2𝑏𝜐

𝑚
)] (𝑑
2

1𝑚
+ 𝑑
2

2𝑚
)
,

𝐴
1𝑚
=
𝑏
1

𝜌𝜔
𝐴
∗

1𝑚
(𝑑
1𝑚
− 𝑑
2𝑚
𝑖) ,

𝐵
∗

1𝑚
= −

4 sin (𝑎𝜐
𝑚
)

[2𝑎𝜐
𝑚
+ sin (2𝑎𝜐

𝑚
)] (𝑑
2

1𝑚
+ 𝑑
2

2𝑚
)

,

𝐵
1𝑚
=
𝑏
1

𝜌𝜔
𝐵
∗

1𝑚
(𝑑
1𝑚
− 𝑑
2𝑚
𝑖) .

(48)
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Figure 3: Axial velocity profile on the cross-section of the channel with the area of 1.0 × 10−6m2 and ratio 𝜀 of 3/4 for constant pressure
gradient under various values of slip lengths ℓ: (a) ℓ = 0.001; (b) ℓ = 0.002; (c) ℓ = 0.003; (d) ℓ = 0.004.

For convenience in discussion, transform (47) into the fol-
lowing form:

𝑢
∗

= 𝑢
∗

𝑚
cos (2𝜋𝑡∗ + 𝜃

𝑢
) , (49)

where 𝑢∗
𝑚
and 𝜃

𝑢
denote the amplitude and phase angles of

the normalized velocity defined, respectively, by

𝑢
∗

𝑚
= [(1 +

∞

∑

𝑚=1

𝑑
3𝑚
)

2

+ (

∞

∑

𝑚=1

𝑑
4𝑚
)

2

]

1/2

,

𝜃
𝑢
= arctan(

∑
∞

𝑚=1
𝑑
4𝑚

1 + ∑
∞

𝑚=1
𝑑
3𝑚

) .

(50)

The flow rate is

𝑄
1
=
4𝑎𝑏𝑏
1
cos (2𝜋𝑡∗)
𝜌𝜔

+ 4

∞

∑

𝑚=1

Re(𝑒𝑖2𝜋𝑡
∗

× (
𝐴
1𝑚

𝛾
1𝑚
]
𝑚

sinh (𝑎𝛾
1𝑚
) sin (𝑏]

𝑚
)

+
𝐵
1𝑚

𝛾
1𝑚
]
𝑚

sinh (𝑏𝛾
1𝑚
) sin (𝑎]

𝑚
))) .

(51)
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Figure 4: 2D velocity profile along the 𝑥-axis and 𝑦-axis on the cross-section of the channel with the area of 1.0 × 10−6m2 and ratio 𝜀 of 3/4
for constant pressure gradient under different slip lengths ℓ values.
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0
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for a constant gradient pressure.
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Figure 6: Axial velocity profile on the cross-section of the channel with the area of 1.0 × 10−6m2 and ratio 𝑏/𝑎 = 1 under the frequency
𝜔 = 𝛼/𝜌𝑎

2 with 𝛼 = 0.005 and slip length of 0.001 for various instants of time.
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Using real arithmetic, through lengthy calculation, we obtain
the normalized flow rate

𝑄
∗

1
=
𝜌𝜔

𝑏
1
(4𝑎𝑏)

𝑄
1
= cos (2𝜋𝑡∗)

+
1

𝑎𝑏

∞

∑

𝑚=1

[𝑑
5𝑚

cos (2𝜋𝑡∗) − 𝑑
6𝑚

sin (2𝜋𝑡∗)]

= [1 +
1

𝑎𝑏

∞

∑

𝑚=1

𝑑
5𝑚
] cos (2𝜋𝑡∗)

− [
1

𝑎𝑏

∞

∑

𝑚=1

𝑑
6𝑚
] sin (2𝜋𝑡∗) = 𝑄∗

𝑚
cos (2𝜋𝑡∗ + 𝜃) ,

(52)

where

𝑄
∗

𝑚
= ((1 +

1

𝑎𝑏

∞

∑

𝑚=1

𝑑
5𝑚
)

2

+ (
1

𝑎𝑏

∞

∑

𝑚=1

𝑑
6𝑚
)

2

)

1/2

,

𝜃 = arctan(
((1/𝑎𝑏)∑

∞

𝑚=1
𝑑
6𝑚
)

(1 + (1/𝑎𝑏)∑
∞

𝑚=1
𝑑
5𝑚
)
) .

(53)

In this study, we analyze the flow pattern through the
rectangular microchannel having the same size of the cross-
sectional area of 1.0 × 10−6m2 for 𝜌 = 1060 kg/m3, 𝜇 =
10
−3 Pa⋅s, 𝑎

0
= 1, 𝑐
0
= 1, and 𝑏

1
= 1.

For Case 1, as the pressure gradient is constant, the
normalized velocity and flow rate as well as shear stress vary
with the slip length and the geometry of the cross-section,
namely, the ratio 𝜀 = 𝑏/𝑎 of the cross-sectional area. The
influences of the slip length and the ratio 𝜀 on the flow behav-
ior are demonstrated by analyzing the solutions graphically.
Figures 3 and 4 show, respectively, the three-dimensional and
two-dimensional velocity profiles on a cross-section of the
channel obtained from (39) for four different values of the slip
length, ℓ = 0.001, 0.002, 0.003, 0.004.The results indicate that
the axial velocity increases significantly when the slip length
increases. Figure 5 shows the effects of the slip length and
ratio 𝜀 on the flow rate 𝑄∗

0
. It is found that the flow rate is

linear in slip length. For the same size of the cross-sectional
area with the variation of the ratio 𝜀, the flow rate increases
significantly as the ratio increases.

For Case 2, as the pressure gradient depends on time, the
normalized velocity and flow rate as well as shear stress vary
with time and the slip length.We investigate the axial velocity
𝑢
∗ on a cross-section of the channel having the ratio 𝜀 of 1 and

the slip length of 0.001 under the frequency 𝜔 = 𝛼/𝜌𝑎2 with
𝛼 = 0.005 at various instants of time. Figures 6 and 7 show the
transient velocity 𝑢∗ obtained from (43) for the slip length ℓ =
0.001. For 𝑡∗ = 0, the axial velocity has similar profile with
𝑡
∗

= 1, as 𝑒𝑖2𝜋𝑡
∗

= 1 is constant on the velocity equation (43)
so that the curves coincide. The influences of the slip length,
the frequency 𝜔, and the ratio 𝜀 of the cross-section of the
channel on the flow behavior are illustrated by analyzing the
solutions graphically. Figure 8 shows the transient flow rate
𝑄
∗

1
on a cross-section of the channel for four different values

of the slip length, ℓ = 0.001, 0.002, 0.003, 0.004. Figure 9
presents the influence of ℓ on the amplitude 𝑄∗

𝑚
of the flow

rate for various frequencies 𝜔 = 𝛼/𝜌𝑎2 with four different 𝛼

t
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t
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Figure 7: Axial velocity along the 𝑥-axis and 𝑦-axis on the cross-
section of the channel with the area of 1.0 × 10−6m2 and ratio 𝑏/𝑎 =
1 under the frequency 𝜔 = 𝛼/𝜌𝑎2 with 𝛼 = 0.005 and slip length of
0.001 at various instants of time.

values: 𝛼 = 0.0001, 0.0005, 0.001, 0.005. The result indicates
that the dependence of 𝑄∗

𝑚
on ℓ is different for different 𝜔.

At high frequency (high 𝛼), the amplitude of the flow rate
increases initially as ℓ increases but it then tends to a constant
value once the slip length becomes sufficiently large. Figure 10
shows the influence of the ratio 𝜀 under the same cross-
sectional area size on the flow rate for different slip lengths ℓ.
It is noted that as the ratio 𝜀 increases the flow rate increases
but tends to a constant value as 𝜀 becomes sufficiently large.
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Figure 8: Influence of slip length on the flow rate 𝑄∗
1
on the cross-

section of the channel with the area of 1.0 × 10−6m2 and ratio 𝑏/𝑎 of
1 under the frequency 𝜔 = 𝛼/𝜌𝑎2 with 𝛼 = 0.005 at various instants
of time.
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Figure 9: Influence of slip length on the amplitude of the flow rate
𝑄
∗

𝑚
on the cross-section of the channel with the area of 1.0×10−6m2

and ratio 𝑏/𝑎 of 1 under different frequencies 𝜔 = 𝛼/𝜌𝑎2 with
different 𝛼.

5. Conclusions

In this paper, we derive an exact solution for the unsteady
flow of an incompressible Newtonian fluid in a rectangular
microchannel with a Navier-slip boundary. From the explicit

Q
∗ m
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Figure 10: Influence of ratio 𝜀 of 𝑏/𝑎 and slip length ℓ on the
amplitude of the flow rate on the cross-section of the channel with
constant area of 1.0 × 10−6m2 under the frequency 𝜔 = 𝛼/𝜌𝑎2 with
𝛼 = 0.005.

analytical solutions of the velocity and flow rate, we investi-
gate the effect of the slip length ℓ and the geometry of the
cross-section on the flow of the fluid through the channel.
The investigation shows the following.

(1) For the flow through rectangular microchannels with
constant pressure gradient, the axial velocity increases
faster in the center of the cross-section than in other
areas as the slip length increases, while for the flows,
due to the waveform pressure gradient, the velocity
changes significantly as the slip length increases.

(2) For flow driven by a constant pressure gradient, the
flow rate is linear with respect to the slip length and
the ratio (𝜀 = 𝑏/𝑎), and, for different values of 𝜀
with constant (𝑎 × 𝑏), the flow rate increases when 𝜀
increases and also when the slip length increases.

(3) The amplitudes of flow rate initially increase signifi-
cantly as slip length ℓ increases but tend to a constant
value when ℓ becomes sufficiently large for various 𝛼
values.This profile is similar to the case shown in [39].
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