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Biclique cryptanalysis is an attack which reduces the computational complexity by finding a biclique which is a kind of bipartite
graph.We show a single-key full-round attack of the Crypton-256 andmCrypton-128 by using biclique cryptanalysis. In this paper,
4-round bicliques are constructed for Crypton-256 and mCrypton-128. And these bicliques are used to recover master key for the
full rounds of Crypton-256 andmCrypton-128 with the computational complexities of 2253.78 and 2126.5, respectively.This is the first
known single-key full-round attack on the Crypton-256. And our result on the mCrypton-128 has superiority over known result of
biclique cryptanalysis on the mCrypton-128 which constructs 3-round bicliques in terms of computational time complexity.

1. Introduction

The block cipher Crypton is one of candidates for the
Advanced Encryption Standard (AES) in 1998 [1]. The cipher
has been revised to Crypton V1.0 in FSE’99 [2]. Crypton is a
12-round and 128-bit block cipher that supports key sizes up
to 256 bits. A miniversion of Crypton, mCrypton, is a 64-bit
block cipher with three key size versions (64 bits, 96 bits, and
128 bits) [3]. mCrypton is a 64-bit lightweight block cipher
designed to be used in low-cost and resource-constrained
applications. Both of them have been designed based on the
block cipher square [4]. The cipher has been designed to be
resistant to differential and linear cryptanalysis. Therefore it
has been assumed that the above two ciphers also have the
property of resisting those attacks.

However, a related-key impossible differential attack on 9
rounds of Crypton-256 has been shown by Wei et al. in 2011
[5]. FormCrypton, a related-key rectangle attack on 8 rounds
of mCrypton-128 has been shown by Park in 2009 [6]. In
2011, Mala et al. showed a related-key impossible differential
attack on 9 rounds of mCrypton-96 and mCrypton-128 [7].
The summary of attacks on Crypton-256 and mCrypton-128
is described in Tables 1 and 2, respectively.

In ASIACRYPT 2011, Bogdanov et al. introduce a biclique
cryptanalysis, which is a meet-in-the-middle attack with a
biclique and the attack is efficient compared to brute force key

search. They show two techniques of constructing bicliques
for AES in [8]. One is from independent related-key differ-
entials, which is called independent biclique and the other is
from interleaving related-key differentials.

The biclique attack by using independent related-key dif-
ferentials consists of two parts. The first part constructs an
independent-biclique and the second is called matching with
precomputations. In Section 2, we describe an overview of
the steps of biclique cryptanalysis. The detailed technique to
recover the 256-bit master key with computational complex-
ity in 2253.78 is presented in Section 4. And in Section 5, the
128-bit key is recovered with computational complexity in
2126.5.

2. Biclique Cryptanalysis

In the biclique cryptanalysis, the biclique, which is a kind of a
bipartite graph improve the computational efficiency of com-
putation. First we will briefly describe biclique. The block
cipher is considered as the composition of two subciphers: 𝑒 =
𝑓∘𝑔. Consider the subcipher𝑓maps an internal state 𝑆 to the
ciphertext 𝐶 : 𝑓

𝐾
(𝑆) = 𝐶, where 𝐾 is a secret key of 𝑒. The

subcipher 𝑓 maps 2𝑑 internal states {𝑆
0
, . . . , 𝑆

𝑑

2−1
} to 2

𝑑
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Table 1: Summary of the attacks of Crypton-256.

Rounds Attack Complexities References
Data Time

6 Square 232 256 [9]
6 Imp. Diff. 291 2124 [10]
8 Stochastic 2112 2112 [11]
8 Trunc. Diff. 2126 2126.2 [12]
9 Rel. Imp. Diff. 2105 2243 [5]
12 Biclique 2100 2253.78 This paper
Rel.: related key, Imp.: impossible, Diff.: differential, Trunc.: truncated.

Table 2: Summary of the attacks of mCrypton-128.

Rounds Attack Complexities References
Data Time

8 Rel. Rec. 246 246 [6]
9 Rel. Imp. Diff. 259.7 266.7 [7]
12 Biclique 248 2126.56 [13]
12 Biclique 252 2126.5 This paper
Rel.: related key, Imp.: impossible, Diff.: differential, Rec.: rectangle.

ciphertexts {𝐶
0
, . . . , 𝐶

𝑑

2−1
} with 2

2𝑑 keys {𝐾
⟨𝑖,𝑗⟩

}, which are
components of the following 2𝑑 × 2𝑑 matrix:

[𝐾
⟨𝑖,𝑗⟩

] =
[

[

[

𝐾
⟨0,0⟩

𝐾
⟨0,1⟩

⋅ ⋅ ⋅ 𝐾
⟨0,2
𝑑
−1⟩

...
𝐾
⟨2
𝑑
−1,0⟩

𝐾
⟨2
𝑑
−1,1⟩

⋅ ⋅ ⋅ 𝐾
⟨2
𝑑
−1,2
𝑑
−1⟩

]

]

]

. (1)

This 3-tuple {(𝐶
𝑖
, 𝑆
𝑗
, 𝐾
⟨𝑖,𝑗⟩

)} is called a d-dimensional biclique,
if

𝐶
𝑖
= 𝑓
𝐾⟨𝑖,𝑗⟩

(𝑆
𝑗
) ∀𝑖, 𝑗 ∈ {0, . . . , 2

𝑑
− 1} . (2)

In other words, as illustrated in Figure 1, a biclique is a com-
plete bipartite graphwith {𝑆

𝑗
} and {𝐶

𝑖
} as the two parts of ver-

tices connected to 22𝑑 edges, where each edge has degree 2𝑑.
Now we introduce the biclique cryptanalysis.

2.1. Attack Procedure. The biclique attack procedure consists
of the following phases.

Key Partitioning. The key space is partitioned into 2
𝑘−2𝑑

groups of 22𝑑 keys each, where 𝑘 is the bit length of the secret
key. Each key in the set is indexed as an element of a 2𝑑 × 2𝑑
matrix: [𝐾

⟨𝑖,𝑗⟩
].

Biclique Constructing. For each group of keys, build a struc-
ture of 2𝑑 ciphertexts {𝐶

0
, . . . , 𝐶

2
𝑑
−1
}, 2𝑑 intermediate states

C0 C1

S0 S1 S2𝑑−1

C2𝑑−1· · ·

· · ·

K⟨0,0⟩

K⟨2𝑑−1,2𝑑−1⟩

Figure 1: 𝑑-dimensional biclique.

{𝑆
0
, . . . , 𝑆

2
𝑑
−1
}, and [𝐾

⟨𝑖,𝑗⟩
] such that for all 𝑖, 𝑗 ∈ {0, 1, . . . , 2𝑑−

1} the relation (2) is satisfied.

Data Collecting. An adversary obtains the plaintexts {𝑃
𝑖
} from

the ciphertexts {𝐶
𝑖
} through the decryption oracle.

Key Testing. The secret key, which is an adversary try to
recover, maps the plaintext 𝑃

𝑖
to the intermediate state 𝑆

𝑗
.

From this fact, an adversary checks the following equation:

∃𝑖, 𝑗 : 𝑃
𝑖

𝐾⟨𝑖,𝑗⟩

→
𝑔
𝑆
𝑗
, (3)

which proposes a key candidate. Note that 𝑃
𝑖

𝐾⟨𝑖,𝑗⟩

→
𝑔
𝑆
𝑗
implies

that each 𝑃
𝑖
is encrypted to 𝑆

𝑗
with key [𝐾

⟨𝑖,𝑗⟩
] (i.e., 𝑆

𝑗
=

𝑔
𝐾⟨𝑖,𝑗⟩

(𝑃
𝑖
)). If there is no right key satisfying (3) in the selected

key group, then another key group is chosen and repeats the
above process.

2.2. Biclique Construction by Independent Related-Key Differ-
entials. In biclique cryptanalysis, there are two methods to
construct a biclique. One is using independent related-key
differentials and the other is using interleaving related-key
differential trails. In this paper, we focus on the first of two
methods, to construct biclique as described in [8].

Suppose that a secret key 𝐾
⟨0,0⟩

maps an intermediate
state 𝑆

0
to a ciphertext𝐶

0
.Thenwe consider the following two

types of 2𝑑 related-key differentials with respect to 𝑆
0

𝐾⟨0,0⟩

→

𝑓

𝐶
0
.

Δ
𝑖
-Differentials. This is a related-key differential trail where

the input difference is 0 and the output difference is Δ
𝑖
under

a key difference Δ𝐾
𝑖
:

0

Δ
𝐾

𝑖

→

𝑓

Δ
𝑖

with Δ𝐾
0
= 0, Δ

0
= 0. (4)
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∇j-Differentials. This is a related-key differential trail where
the input difference is ∇

𝑗
and the output difference is 0 under

a key difference ∇𝐾
𝑗
:

∇
𝑗

∇
𝐾

𝑗

→

𝑓

0 with ∇𝐾
0
= 0, ∇

0
= 0. (5)

The 3-tuple (𝑆
0
, 𝐶
0
, 𝐾
⟨0,0⟩

) conforms to both sets of differen-
tials at the same time. If the two key differential trails, Δ

𝑖
-

differentials and ∇
𝑗
-differentials, do not share active nonlin-

ear components, then the tuple also conforms to 22𝑑 com-
bined (Δ

𝑖
, ∇
𝑗
)-differentials:

∇
𝑗

Δ
𝐾

𝑖
⊕∇
𝐾

𝑗

→

𝑓

Δ
𝑖

for 𝑖, 𝑗 ∈ {0, . . . , 2𝑑 − 1} . (6)

This combined (Δ
𝑖
, ∇
𝑗
)-differentials is derived from property

of 𝑆-box switch [14] and sandwich attack [15]. By using the
combined differentials, an adversary reduces the computa-
tional complexity.The construction of a biclique requires less
than 2 ⋅ 2𝑑 computations of 𝑓.

2.3. Matching with Precomputations. The technique of mat-
ching with precomputations is an efficient method to check
(3) in biclique cryptanalysis procedure. Let V be some selected
bytes of an internal state between {𝑃

𝑖
} and {𝑆

𝑗
}. The flow of

matching with precomputation procedure is as the following.
First, an adversary computes and stores in memory the fol-
lowing for all 𝑖, 𝑗:

∀𝑖 = 0, 1, . . . , 2
𝑑
− 1, 𝑃

𝑖

𝐾⟨𝑖,0⟩

→

→

V
𝑖
,

∀𝑗 = 0, 1, . . . , 2
𝑑
− 1,

←V
𝑗

𝐾⟨0,𝑗⟩

→ 𝑆
𝑗
.

(7)

Then for particular 𝑖 and 𝑗, which is not in storedmemory, the
adversary checks thematching at V by recomputing only those
parts of the cipher which differ from the stored one.

3. Description the Crypton and mCrypton

In this section, we describe Crypton and mCrypton, briefly.

3.1. Description of Crypton. Crypton is a 128-bit block cipher
supports key sizes up to 256 bits. The standard number of
rounds is 12. Let us represent the 128-bit block 𝐴 as a 4 × 4
matrix of bytes:

𝐴 = (

𝑎
0,3

𝑎
0,2

𝑎
0,1

𝑎
0,0

𝑎
1,3

𝑎
1,2

𝑎
1,1

𝑎
1,0

𝑎
2,3

𝑎
2,2

𝑎
2,1

𝑎
2,0

𝑎
3,3

𝑎
3,2

𝑎
3,1

𝑎
3,0

). (8)

Crypton uses component functions, 𝛾, 𝜋, 𝜏, and 𝜎.

Nonlinear Substitution 𝛾. 𝛾
𝑜
and 𝛾

𝑒
are bytewise nonlinear

substitutions which are applied to odd rounds and even
rounds, respectively.

Bit Permutation 𝜋. 𝜋
𝑜
and 𝜋

𝑒
are linear transformations for

odd rounds and even rounds, respectively. The two bit

permutations mix each byte column of 4 × 4 byte array using
four masking bytes𝑚

𝑖
.

We denote “⋅” and “⊕” bitwise logical operations for AND
and XOR, respectively. 𝜋

𝑜
is given as follows:

𝐵
𝑖,𝑗
= ⊕
3

𝑘=0
(𝐴
𝑘,𝑗
⋅ 𝑚
(𝑖+𝑗+𝑘) mod 4) , (9)

and 𝜋
𝑒
is given as shown below:

𝐵
𝑖,𝑗
= ⊕
3

𝑘=0
(𝐴
𝑘,𝑗
⋅ 𝑚
(𝑖+𝑗+𝑘+2) mod 4) . (10)

Byte Transposition 𝜏. 𝜏 is a byte transposition; it simplymoves
the byte at (𝑖, 𝑗) position to (𝑗, 𝑖) position; that is, 𝐵 = 𝜏(𝐴) ⇔
𝑏
𝑖,𝑗
= 𝑎
𝑗,𝑖
.

Key Addition 𝜎. 𝜎
𝐾
is a bitwise key XORwith key𝐾. Let𝐾

𝑖
be

the 𝑖th encryption round key derived from a user key𝐾 using
the key schedule.

The block cipher Crypton can be described as 𝜙
𝑒
∘ 𝜌
𝑒
𝐾
12
∘

𝜌
𝑜
𝐾
11
∘ ⋅ ⋅ ⋅ ∘ 𝜌

𝑒
𝐾
2
∘ 𝜌
𝑜
𝐾
1
∘ 𝜎𝐾
0
, where odd round function

𝜌
𝑜
𝐾 and even round function 𝜌

𝑒
𝐾 are defined by 𝜌

𝑜
𝐾 = 𝜎

𝐾
∘

𝜏 ∘ 𝜋
𝑜
∘ 𝛾
𝑜
and 𝜌
𝑒
𝐾 = 𝜎

𝐾
∘ 𝜏 ∘ 𝜋

𝑒
∘ 𝛾
𝑒
. Linear transformation

𝜙
𝑒
= 𝜏 ∘ 𝜋

𝑒
∘ 𝜏 is used after the last round.

3.2. Description of mCrypton. mCrypton is a 12-round and
64-bit block cipher with three key size options (64 bits, 96
bits, and 128 bits). Since mCrypton is based on Crypton, the
main concepts of description are very similar to ones of Cryp-
ton. The round function of mCrypton also consists of four
steps as follows.

Nonlinear Substitution 𝛾. It consists of nibblewise substitu-
tions on a 4 × 4 array using four 4-bit 𝑆-boxes, 𝑆

𝑖
, (0 ≤ 𝑖 ≤ 3).

Bit Permutation 𝜋. It mixes each column 4 × 4 array 𝐴 using
column permutation 𝜋

𝑖
for each column 𝑖 (0 ≤ 𝑖 ≤ 3):

𝜋 (𝐴) = (𝜋
0
(𝐴
𝑐 [
0]) 𝜋1

(𝐴
𝑐 [
1]) 𝜋2

(𝐴
𝑐 [
2]) 𝜋3

(𝐴
𝑐 [
3])) ,

(11)

where 𝐴
𝑐
[𝑖] are the 𝑖th column of 𝐴.

Each 𝜋
𝑖
is defined by

𝑏 = 𝜋
𝑖
(𝑎) ⇐⇒ 𝑏

𝑗
−

3

⊕

𝑘=0

(𝑚
𝑖+𝑗+𝑘 mod 4 ⋅ 𝑎𝑘) , (12)

where a column 𝑎 = (𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
)
𝑡 and a column 𝑏 = (𝑏

0
, 𝑏
1
,

𝑏
2
, 𝑏
3
)
𝑡.

Byte Transposition 𝜏. Itmoves the nibble at the (𝑖, 𝑗)th position
to the (𝑗, 𝑖)th position; that is, 𝐵 = 𝜏(𝐴) ⇔ 𝑏

𝑗𝑖
= 𝑎
𝑖𝑗
. So

𝜏
−1
= 𝜏.

Key Addition 𝜎. 𝐵 = 𝜎
𝐾
(𝐴) is defined by 𝐵

𝑟
[𝑖] = 𝐴

𝑟
[𝑖] ⊕

𝐾[𝑖] (0 ≤ 𝑖 ≤ 3), where 𝐾 = (𝐾[0], 𝐾[1], 𝐾[2], 𝐾[3]) is a
round key.

Like Crypton, mCrypton also can be described as

𝐸
𝐾
= 𝜙 ∘ 𝜌

𝐾12
∘ 𝜌
𝐾11

∘ ⋅ ⋅ ⋅ ∘ 𝜌
𝐾2
∘ 𝜌
𝐾1
∘ 𝜎
𝐾0
, (13)

where 𝜙 = 𝜏 ∘ 𝜋 ∘ 𝜏.
In this paper, we focus on the 128-bit key version of the

mCrypton that is composed of 12 rounds.
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Table 3: Indices of expanded keys 𝐸
𝑒
[𝑖] of Crypton-256 associated

with each round.

Round i

0 0, 1, 2, 3

1 4, 5, 6, 7

2 1, 2, 3, 0

3 7, 4, 5, 6

4 2, 3, 0, 1

5 6, 7, 4, 5

6 3, 0, 1, 2

7 5, 6, 7, 4

8 0, 1, 2, 3

9 4∗, 5∗, 6∗, 7∗

10 1∗, 2∗, 3∗, 0∗

11 7, 4, 5, 6

12 2, 3, 0, 1
Note: the ∗ represents key space.

4. Biclique Cryptanalysis of Crypton-256

In this section, we describe a biclique attack with dimension 8
(𝑑 = 8) on the full 12-round Crypton-256. We recover secret
key by constructing biclique using independent related-key
differentials.

4.1. Key Partitioning and Constructing Biclique for 4 Rounds.
We describe how to partition key groups of Crypton-256 in
this section. Key schedule of Crypton-256 expands master
key, and then all of the round keys are uniquely determined
by expanded keys. Therefore, if an expanded key 𝐸

𝑒
[𝑖] is

recovered, the mater key 𝐾[𝑖] (0 ≤ 𝑖 ≤ 7) is derived. Indices
of 32-bit expanded keys 𝐸

𝑒
[𝑖] used for generating round keys

in each round are listed in Table 3.
The base keys 𝐾

⟨0,0⟩
are all 2240 32-byte values with two

bytes fixed to 0 (𝐾
𝑒
[38] and 𝐾

𝑒
[42], which is derived from

𝐸
𝑒
[6] and 𝐸

𝑒
[3], resp.), but the remaining 30 bytes changes

over all values:

0

0

Ke[38] = (Ee[6]
≪b4 )≪24

Ke[42] = (Ee[3]
≪b2 )≪8

⊕ 0x7784368e

⊕ 0xb317c51c

We Find second byte of 𝐸
𝑒
[0] and 𝐸

𝑒
[3] and fourth byte of

𝐸
𝑒
[6] and 𝐸

𝑒
[7] give construction of biclique. Therefore the

set of keys {𝐾
⟨𝑖,𝑗⟩

} which is considering combined (Δ
𝑖
, ∇
𝑗
)-

differentials with respect to the base key𝐾
⟨0,0⟩

, is determined
by all possible 𝑖 and 𝑗 in the following positions:

j

j

i

i

Now, we explain how to construct biclique for 4 rounds
of Crypton-256 with dimension 8 (𝑑 = 8). Let 𝑓 be the
subcipher from Round 9 to final round of Crypton-256. Let
the key𝐾

⟨0,0⟩
maps an intermediate state 𝑆

0
to a ciphertext𝐶

0
,

𝐶
0
= 𝑓
𝐾⟨0,0⟩

(𝑆
0
). Consider previously explained two related-

key differentials.

Δ
𝑖
-Differentials.TheΔ

𝑖
-differentials are derived from the dif-

ferenceΔ𝐾
𝑖
where the difference of the expanded key is 𝑖 in the

following positions:

i

i9 and 10) =(RoundK
Δi

∇
𝑗
-Differentials. The ∇

𝑗
-differentials are derived from the dif-

ference ∇𝐾
𝑗
where the difference of the expanded key is 𝑗 in

the following positions:

j

j

∇K
j (round 9 and 10) =

Both Δ
𝑖
-differentials and ∇

𝑗
-differentials are depicted in

Figure 2. Since those two differentials do not share active 𝑆-
boxes, one can easily obtain the following differentials with
respect to the (𝑃

0
, 𝑆
0
, 𝐾
⟨0,0⟩

):

∀𝑖, 𝑗, 𝑆
0
⊕ ∇
𝑗

𝐾⟨0,0⟩⊕Δ
𝐾

𝑖
⊕∇
𝐾

𝑗

→

𝑓

𝑃
0
⊕ Δ
𝑖
. (14)

Hence we can confirm a construction of biclique with dimen-
sion 8.
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Output 
transformation

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

9R

10R

11R

12R

Subcipher of 
Crypton-256

Sj

C0

S0S0

Ci C0

-differentials -differentialsΔjΔi

Figure 2: 4-round biclique of Crypton-256.

4.2. Key Recovery for the Crypton-256. We describe the key
recovery procedure using constructed 4-round biclique for
the full Crypton-256. For further explanation, let 𝑔 be a
composition of 𝑔

1
and 𝑔

2
, 𝑔 = 𝑔

2
∘ 𝑔
1
. Then Crypton-256,

𝐸, is the composition of the subciphers as follows:

𝐸 : 𝑃 →
𝑔1

𝑉 →
𝑔2

𝑆 →

𝑓

𝐶, (15)

where 𝑔
1
is the subcipher from Round 0 to 4, and 𝑔

2
is the

subcipher from Round 5 to 8 of Crypton-256. Assume that
the plaintext 𝑃

𝑖
corresponding to each ciphertext 𝐶

𝑖
in a con-

structed 4-round biclique is obtained by a decryption oracle.

The adversary finds a candidate key in the following key
testing step by computing the only 1 byte of intermediate
variable V:

𝑃
𝑖

𝐾⟨𝑖,𝑗⟩

→
𝑔1

→

V ?= ←V
𝐾⟨𝑖,𝑗⟩

←
𝑔2

𝑆
𝑗
. (16)

One can perform key recovery procedure by the following
steps, precomputation and recomputations.

Precomputation. This step is a preparation phase for an effi-
cient meet-in-the-middle attack. As in Section 2.3, one com-
putes and stores (7) with 2𝑑 encryptions and 2𝑑 decryptions.
In Crypton-256, we consider an intermediate matching vari-
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able byte V in the output of Round 4 as the byte in the
following position:

v

In precomputation step, first we consider forward direction,
from an initial round to Round 4. For all 𝑖 = 0, . . . , 28 − 1, the
adversary computes V of the output in Round 4 from 𝑃

𝑖
with

𝐾
⟨𝑖,0⟩

. And one stores it as
→

V with the intermediate states
and subkeys in memory. On the other hand, in backward
direction, let us consider subcipher of Crypton-256 from
Round 5 to 8. For all 𝑗 = 0, . . . , 28 − 1, one computes V from
𝑆
𝑗
with 𝐾

⟨0,𝑗⟩
and stores it as←V with the intermediate states

and subkeys in memory. And then we check (16) for every 𝑖,
𝑗 by recomputing those variables which differ from the bytes
stored in memory, considering forward and backward direc-
tions.

Backward Recomputation. In this step, we explain how to

recompute difference between ←V
𝐾⟨𝑖,𝑗⟩

← 𝑆
𝑗
and stored one,

←V
𝑗

𝐾⟨0,𝑗⟩

← 𝑆
𝑗
. This difference is influenced by the key difference

between𝐾
⟨𝑖,𝑗⟩

and𝐾
⟨0,𝑗⟩

. By key schedule of Crypton-256, the
difference in the subkey of Round 8 is two bytes of 16 bytes.
The bytes to be recomputed, which include 29 𝑆-boxes, are
illustrated in Figure 3.

Forward Recomputation. Recomputing difference, between

𝑃
𝑖

𝐾⟨𝑖,𝑗⟩

→

→

V and stored one, 𝑃
𝑖

𝐾⟨𝑖,0⟩

→

→

V
𝑖
, is influenced by the

key difference between 𝐾
⟨𝑖,𝑗⟩

and 𝐾
⟨𝑖,0⟩

. By the key schedule,
the difference in the subkey of Round 8 is two bytes of 16 bytes.
The bytes to be recomputed, which include 10 𝑆-boxes, are
depicted in Figure 4.

By these recomputations of two directions, the adversary
would make sure whether corresponding key 𝐾

⟨𝑖,𝑗⟩
satisfies

(16). If it satisfies (16), the adversary should check matching
the whole bytes at output of Round 4 (input of Round 5) for
𝐾
⟨𝑖,𝑗⟩

, 𝑃
𝑖
, and 𝑆

𝑗
. If the adversary cannot find the right key,

then one should choose another key group and repeat the
above procedures.

4.3. Complexities. Let𝐶biclique be the complexity of construct-
ing a biclique. In our cryptanalysis, it is at most 2𝑑+1(= 29) 8-
round computations, where 𝑛 = 256 and 𝑑 = 8. Let 𝐶precomp
be the complexity of the precomputation for the matching in
(16). And 𝐶recomp is the complexity of the recomputation of
the byte V. Approximately 2.438 byte substitution operations
(39 𝑆-boxes) are required in recomputation. 𝐶falsepos is the
complexity caused by false positives, which have to be
matched on other byte positions. Since thematching in (16) is
performed on a single byte, 𝐶falsepos is less than 2

2𝑑−8
(= 2
8
)

Table 4: Each round keys of mCrypton-128 from Round 9 to 12.

Round Round keys

9

(𝑈[6] << 11) ⊕ 𝑆(𝑈[5] << 11)

(𝑈[7] << 11) ⊕ 𝑆(𝑈[5] << 11)

(𝑈[0] << 11) ⊕ 𝑆(𝑈[5] << 11)

(𝑈[1] << 11) ⊕ 𝑆(𝑈[5] << 11)

10

(𝑈[3] << 11) ⊕ 𝑆(𝑈[2] << 11)

(𝑈[4] << 19) ⊕ 𝑆(𝑈[2] << 11)

(𝑈[5] << 14) ⊕ 𝑆(𝑈[2] << 11)

(𝑈[6] << 11) ⊕ 𝑆(𝑈[2] << 11)

11

(𝑈[0] << 14) ⊕ 𝑆(𝑈[7] << 11)

(𝑈[1] << 19) ⊕ 𝑆(𝑈[7] << 11)

(𝑈[2] << 14) ⊕ 𝑆(𝑈[7] << 11)

(𝑈[3] << 11) ⊕ 𝑆(𝑈[7] << 11)

12

(𝑈[5] << 14) ⊕ 𝑆(𝑈[4] << 19)

(𝑈[6] << 19) ⊕ 𝑆(𝑈[4] << 19)

(𝑈[7] << 14) ⊕ 𝑆(𝑈[4] << 19)

(𝑈[0] << 14) ⊕ 𝑆(𝑈[4] << 19)

computations. Therefore, the total complexity of the biclique
cryptanalysis on the full Cryption-256 is as follows:

𝐶Total = 2
(𝑛−2𝑑)

[𝐶biclique + 𝐶precomp + 𝐶recomp + 𝐶falsepos] ,

(17)

where𝐶biclique: 2
(8+1)

×(4/12) ≤ 2
8,𝐶precomp: 2

8
×(8/12) ≤ 2

8,
𝐶recomp: 2

(2⋅8)
×(2.438/12) ≤ 2

13.701, and𝐶falsepos: 2
(2⋅8−8)

= 2
8.

Consequentially, the total complexity is

𝐶Total : 2
240

× (2
8
+ 2
8
+ 2
13.7

+ 2
8
) = 2
253.78

. (18)

Although theΔ
𝑖
-differential affects all bytes of the ciphertext,

only two bytes have 8-bit difference and the remaining bytes
have only 6-bit difference. So, 28-bit ciphertext has no differ-
ence. As a result, the data complexity does not exceed 2100.

5. Biclique Cryptanalysis of mCrypton-128

In this section, we describe a biclique cryptanalysis with dim-
ension 8 (𝑑 = 8) on the full mCrypton-128. We recover secret
key by constructing a 4-round biclique using independent
related-key differentials.

5.1. Key Partitioning and Constructing Biclique for 4 Rounds.
By the key schedule of mCrypton-128 in Table 4, all of the
round keys are uniquely determined by the master key 𝑈[𝑖].
We find that some bits of 𝑈[3], 𝑈[4], 𝑈[1], and 𝑈[2] give
construction of a biclique. The base keys 𝐾

⟨0,0⟩
are all 2112 32
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BS, BP BT BS, BP BT BS, BP BT BS, BP BT

5R 6R 7R 8R

Bytes to be recomputed

Sj

←
�

Figure 3: Recomputation in the backward direction of Crypton-256.

BS, BP BT BS, BP BT BS, BP BT BS, BP BT

1R 2R 3R 4R0R

Bytes to be recomputed

→
�

Pi

Figure 4: Recomputation in the forward direction of Crypton-256.

nibbles at Round 11 and 12 with 16 bits fixed to 0, in the
following positions:

0
0
0

3-bit

1-bit

0

K11
e [3]

K11
e [2]

K11
e [1]

K11
e [0]

K12
e [0]

K12
e [1]

K12
e [2]

K12
e [3]

And the set of keys {𝐾
⟨𝑖,𝑗⟩

}, which is considering combined
(Δ
𝑖
, ∇
𝑗
)-differentials with respect to the base key 𝐾

⟨0,0⟩
, is

determined by all possible 𝑖 = 𝑖
1
‖𝑖
2
and 𝑗 = 𝑗

1
‖𝑗
2
in the

following positions:

3-bit

1-bit

j1

j2
i1
i2

Now, we explain how to construct a biclique for 4 rounds of
mCrypton-128. Consider the following two related-key differ-
entials. Let 𝑓 be the subcipher from Round 9 to final round
of mCrypton-128. Let the key 𝐾

⟨0,0⟩
maps an intermediate

state 𝑆
0
to a ciphertext 𝐶

0
, 𝐶
0
= 𝑓
𝐾⟨0,0⟩

(𝑆
0
). Consider the two

related-key differentials.

Δ
𝑖
-Differentials. The Δ

𝑖
-differentials are derived from the

following difference Δ𝐾
𝑖
:

i1
i2

11 and 12) =K(RoundΔi

∇
𝑗
-Differentials. The ∇

𝑗
-differentials are derived from the fol-

lowing difference ∇𝐾
𝑗
:

3-bit

1-bit

j1

j2

11 and 12) =K
j (RoundΔ

Δ
𝑖
-differentials and ∇

𝑗
-differentials are depicted in Figure 5.

We construct a 4-round biclique with dimension 8.

5.2. Key Recovery for the mCrypton-128. Let us explain the
key recovery procedure using the 4-round biclique for the full
round of mCrypton-128. The adversary finds the right key in



8 Journal of Applied Mathematics

12R

11R

10R

9R

Output 
transformation

Subcipher of  
mCrypton-128

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BS
BP

BT

BT
BP
BT

BS
BP

BT

Sj

C0

S0S0

Ci C0

-differentials -differentialsΔjΔi

Figure 5: 4-round biclique of mCrypton-128.

the following key testing step by checking the only 1 nibble of
intermediate variable V in (16).

Precomputation. As explained in Section 4.2 for Crypton-
256, inmCrypton-128, we consider an intermediatematching
variable V in the output of Round 4 as the byte in the following
position:

v

In this step, we first consider forward direction, from initial
round to Round 4 of mCrypton-128. For all 𝑖 = 0, . . . , 28 − 1,
the adversary computes V of the output of Round 4, from 𝑃

𝑖

and𝐾
⟨𝑖,0⟩

. And one stores it as
→

V with the intermediate states
and subkeys in memory. On the other hand, in backward
direction, we consider Rounds from 5 to 8. For all 𝑗 =

0, . . . , 2
8
−1, one computes V from 𝑆

𝑗
and𝐾

⟨0,𝑗⟩
and stores it as

←V with the intermediate states and subkeys in memory.Then
we check (16) for every 𝑖, 𝑗 by recomputing those variables
which differ from the variables stored inmemory considering
forward and backward direction.

Backward Recomputation. In backward direction, we look at

how the computation ←V
𝐾⟨𝑖,𝑗⟩

← 𝑆
𝑗
differs from stored one,
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Figure 6: Recomputation in the backward direction of mCrypton-128.

BS, BP BT BS, BP BT BS, BP BT BS, BP BT

1R 2R 3R 4R0R

Nibbles to be recomputed
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�

Pi

Figure 7: Recomputation in the forward direction of mCrypton-128.

←V
𝑗

𝐾⟨0,𝑗⟩

← 𝑆
𝑗
. The area to be recomputed, which includes 25

𝑆-boxes, is illustrated in Figure 6.

Forward Recomputation. Let us figure out how the computa-

tion𝑃
𝑖

𝐾⟨𝑖,𝑗⟩

→

→

V differs from stored one,𝑃
𝑖

𝐾⟨𝑖,0⟩

→

→

V
𝑖
.The area

to be recomputed, which includes 30 𝑆-boxes, is depicted in
Figure 7.

By those recomputations of two directions, the adversary
would make sure whether corresponding key 𝐾

⟨𝑖,𝑗⟩
satisfies

(16). If it is satisfied (16), the candidate key is right key with
high probability. Otherwise, the adversary should choose
another key group and repeat the above procedures again.

5.3. Complexities. We construct a biclique for 4 rounds of
mCrypton-128 where the dimension is 8.The Δ

𝑖
-differentials

are based on the difference in 4-bits of 𝑈[3] and 𝑈[4],
and ∇j-differentials are based on the difference in 4 bits of
𝑈[1] and 𝑈[2]. Approximately 3.4375 nonlinear substitution
operations (55 𝑆-boxes) are required in recomputation:

𝐶biclique: 2
(8+1)

× (4/12) ≤ 2
8,

𝐶precomp: 2
8
× (8/12) ≤ 2

8,

𝐶recomp: 2
(2⋅8)

× (3.4375/12) ≤ 2
14.2,

𝐶falsepos: 2
(2⋅8−4)

= 2
12.

Consequentially, the total complexity is

𝐶Total : 2
112

× (2
8
+ 2
8
+ 2
14.2

+ 2
12
) = 2
126.5

. (19)

In ciphertext, four nibbles have 4-bit difference and the
remaining 12 nibbles have only 3-bit difference. Also 12 bits
of ciphertext have zero difference. Hence the data complexity
does not exceed 252.

6. Conclusions

We use bicliques to recover master key for the full rounds of
Crypton-256 and mCrypton-128 with the computation com-
plexity of 2253.78 and 2126.5, respectively.This is the first single-
key full-round attack for the Crypton-256. And our result on
the mCrypton-128 with 4-round bicliques is better than the
known biclique cryptanalysis result with 3-round bicliques in
terms of computational time complexity.
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