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Templatematching is an approach for signal pattern recognition, often used for biomedical signals including electroencephalogram
(EEG). Since EEG is often severely contaminated by various physiological or pathological artifacts, identification and rejection
of these artifacts with improved template matching algorithms would enhance the overall quality of EEG signals. In this paper,
we propose a novel approach to improve the accuracy of conventional template matching methods by adopting the dynamic
positional warping (DPW) technique, developed recently for handwriting pattern analysis. To validate the feasibility and superiority
of the proposed method, eye-blink artifacts in the EEG signals were detected, and the results were then compared to those
from conventional methods. DPW was found to outperform the conventional methods in terms of artifact detection accuracy,
demonstrating the power of DPW in identifying specific one-dimensional data patterns.

1. Introduction

Template matching has been one of the most popular
approaches in pattern recognition over the past few decades
[1–4].This technique is designed tomatch parts of a signal (or
image) to a predefined template signal (or image) in order to
quantify similarity of shapes among test and template signals.
Thanks to its applicability in detecting various kinds of pat-
terns, successful applications in a variety of different research
fields have been reported. Such fields include eye-region
detection [5, 6], human authentication [7], stock change
categorization [8], handwriting recognition [9], signature
verification [10], and electroencephalogram (EEG) artifact
detection [11–13].

Pattern-detection studies on EEG signals have been con-
ducted for the purpose of identifying pathologically driven
EEG patterns or EEG artifacts [11, 12, 14–16]. However, there
is still a need for better identification of eye-blink andmotion
artifacts, so that they can be rejected nearly perfectly in
hopes of obtainingmore reliable EEG analyses results. Precise
automatic identification of artifacts is of great necessity in
applications requiring online EEG processing or long-term

EEG monitoring. Aside from the need for better artifact
detection, there is also a need for better detection of abnormal
EEG patterns associated with various brain disorders in order
to achieve improved diagnostic decisions or better lesion
localization [17, 18].

Dynamic timewarping (DTW), a technique for enhanced
template matching, has been widely studied in speech recog-
nition [19, 20] and is gradually being applied in other ways,
such as shape-boundary matching [21], facial recognition
[22], signature verification [23], and EEG pattern detection
[12]. DTW is a method that has been applied to achieve
more accurate quantification of differences between template
and test-signal subpatterns, through optimal matching of
corresponding points. Instead of assuming uniform distri-
butions among corresponding points between template and
test subpatterns, DTWfinds the best corresponding points by
warping the template pattern at the time axis. Recent studies
have shown higher accuracies for template matching with
DTW than for conventional template matchingmethods that
assume uniform distributions among corresponding points
[24–26].
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Dynamic positional warping (DPW) is a modification of
DTW that was developed to improve accuracy in distance
quantification [27]. It was originally developed for the accu-
rate matching of contour data with two-dimensional shapes
and frequently used for signature verification. By allowing for
the signal to be warped on the ordinate axis in addition to the
time axis, DPW can more accurately identify corresponding
points than can conventional DTW.

The main goal of this study was to investigate whether
DPW could be extended to one-dimensional pattern recog-
nition problems. To approach this aim, we applied DPW for
the detection of eye-blink artifact patterns in frontal EEGdata
acquired from 24 healthy subjects. The detection accuracy
of DPW was then compared to those of the conventional
template matching methods.

2. Materials and Methods

2.1. Experimental Data and Preprocessing. In this study, eye-
blink artifacts in continuous EEG signals were selected as the
target patterns to be detected.The reason for this is that, while
eye-blink artifacts were regarded as representative artifacts
contaminating EEG signals, it was difficult to accurately iden-
tify them due to high variability among events or individuals.
EEG data were recorded from 24 healthy participants using
a multichannel EEG recording system (ActiveTwo AD-box,
BioSemi, The Netherlands) at a sampling rate of 2,048Hz,
while the participants performed spot-the-difference puzzles
for 25 seconds. Two slightly different images were presented
on the left and right halves of a display, and the participants
were asked to find the differences between two images for 15
seconds.The taskwas repeated five times for each participant.
A particular frontal channel Fp2 in the international 10–20
system was used for the eye-blink artifact detection. To
verify eye-blink detection accuracy, it was necessary to use
a ground-truth dataset indicating the presence of an eye-
blink artifact. For this aim, time ranges of eye-blink artifacts
were marked by two experienced researchers based on visual
inspection of EEG data.

Before the primary analyses, EEG data were high-pass
filtered with a 0.1 Hz cutoff frequency, downsampled to a
64Hz sampling rate in order to reduce the computation
cost, and median-filtered with a five-point width in order
to smooth the data. The width of the median filter was
determined empirically.

2.2. Procedure for Template Matching. In order to evaluate
and compare different distance metrics, a typical template
matching protocol was implemented. The template matching
protocol was designed to be as simple as possible so as
to exclude any potential influence from any confounding
factors. Figure 1 illustrates the schematic diagramof our study
protocol.

The core parts of this process include distance calculation
between templates and test patterns (denoted by Step 1 in
Figure 1) and an overall similarity decision based on a pre-
determined threshold (denoted by Step 3 in Figure 1). Both
of these steps are common among studies using template
matching approaches [11, 12, 28]. In the current study, test

patterns were extracted from the continuous test EEG data
using a fixed-size sliding window, and the distances between
the template and test EEG signalswere evaluated at every time
point (the number of slidingwindowswas denoted by𝑁).The
size of the sliding windowwas set to be the same as the length
of the template as this was an assumption indispensable for
applying linear template matching such as correlation and
root-mean-square error. The decision step was only applied
for the local minima of the distance array, and equal widths
were assumed for the detected pattern and template. When
ranges of adjacent detected patterns overlapped with one
another, the detected pattern rangesweremerged into a single
range in order to avoid duplicate detection.

Template signals were randomly selected by a computer
as in [4], so as to eliminate any possible bias toward the
use of a specific method. When used by experts, manual
template selection has the potential for achievement of
higher performance outcomes [11, 12] compared to random
selection; however, manual selection processes are highly
dependent on experts’ subjective decisions and can lead to
biased results.

Approaches for better use of training data involve con-
struction of a single template by averaging patterns in a
single cluster or selection of best-fit templates for each cluster.
Unfortunately, however, thesemethods do not generally show
high performance when template widths and shapes have
large variances. In this study, we adopted a normalization
method [29], considering large variances of template widths
and shapes due to random selection of templates. There
are two advantages for normalization approach compared
to the conventional approaches: (1) effects of improper
template selection can be minimized by distance-averaging;
(2) variations in template width and shape do not need to
be considered. Normalized distance (denoted by𝐷𝑗) between
the 𝑗th test pattern and templates can be calculated by

𝐷𝑗 =

(∑
𝑛
𝑖=1 𝑑𝑖𝑗)

𝑛 ⋅ 𝜎
, (1)

where 𝑑𝑖𝑗 is distance between the 𝑖th template and the 𝑗th test
pattern, 𝑛 is the number of templates, and𝜎 is a normalization
factor, given as

𝜎 =

(∑
𝑛
𝑖=1∑
𝑛
𝑗=𝑖+1 𝑑𝑖𝑗)

{𝑛 ⋅ (𝑛 − 1) /2}
. (2)

The test pattern 𝑇𝑗 is accepted if 𝐷𝑗 is a local minimum
and if this local minimum is lower than a predefined
threshold.This overall process was repeated 20 times in order
to achieve an unbiased comparison.

2.3. Traditional Distance Metrics. Because it is generally
assumed that target-pattern shapes are unchanging, Eucli-
dean distance and correlation-coefficients have been most
commonly used for template matching applications [4, 30].
Three traditional distance metrics are investigated in this
study, which are root-mean-square error (RMSE) based
on Euclidean distances (with linear matching), correlation
coefficient, and Kurtosis. Kurtosis was considered in this
study because it is widely used in biomedical data analysis
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Figure 1: Schematic diagram of our study protocol for 𝑛 = 5 templates. After selecting templates from the ground-truth dataset, the average
distance among the templates is calculated for normalization (during the “Training” phase). During the “Testing” phase, distances between
templates and test patterns within test-signal sliding windows are calculated.

[31, 32]. Between two signals 𝐴 and 𝐵, with 𝐿𝐴 and 𝐿𝐵 as
the respective signal lengths, distances for each metric are
defined as follows.

Root-mean-square error:

𝑑rmse = √
1

𝐿
⋅

𝐿

∑

𝑘=1

{𝐴 (𝑘) − 𝐵 (𝑘)}
2
. (3)

Correlation:

𝑑corr =
∑
𝐿
𝑘=1 {𝐴 (𝑘) − 𝐴} ⋅ {𝐵 (𝑘) − 𝐵}

√∑
𝐿
𝑘=1 {𝐴 (𝑘) − 𝐴}

2
⋅ √∑
𝐿
𝑘=1 {𝐵 (𝑘) − 𝐵}

2

. (4)

Kurtosis:

𝑑ku =



∑
𝐿𝐴
𝑘=1

{𝐴 (𝑘) − 𝐴}
4

𝐿𝐴 ⋅ 𝜎𝐴
4

−

∑
𝐿𝐵
𝑘=1

{𝐵 (𝑘) − 𝐵}
4

𝐿𝐵 ⋅ 𝜎𝐵
4



, (5)

where 𝐴(𝑘) and 𝐵(𝑘) denote 𝑘th data in signals 𝐴 and 𝐵,
respectively. Note that RMSE and correlation are calculable
only for identical signal lengths. Thus, a common variable 𝐿

was used to represent the signal length in (3) and (4).

2.4. Dynamic Time Warping. In spite of various modifica-
tions of DTW in previous decades, original kernel models
for calculating distance are still being widely used in many
applications. In this study, we adopted a common implemen-
tation of DTW [19] and empirically determined parameters
for slope constraints.The DTWdistance between two signals
is defined as

𝑑dtw = 𝜏 (𝐿𝐴, 𝐿𝐵) , (6)

where 𝐿𝐴 and 𝐿𝐵 are respective template and test pattern
lengths, and 𝜏(𝑖, 𝑗) is the distance between two subsignals
{𝐴(𝑘) | 1 ≤ 𝑘 ≤ 𝑖} and {𝐵(𝑘) | 1 ≤ 𝑘 ≤ 𝑗}, defined as

𝜏 (𝑖, 𝑗) =
{𝐴 (𝑖) − 𝐴 (1)} − {𝐵 (𝑗) − 𝐵 (1)}



+min
𝑐

{𝜏 (𝑖 − 𝐶𝐴 (𝑐) , 𝑗 − 𝐶𝐵 (𝑐))} ,

(7)

where 𝜏(1, 1) = 0, and 𝐶𝐴(𝑐) and 𝐶𝐵(𝑐) are 𝑐th slope con-
straints on pattern axes, which limit the number of skipping
(jumping) data points. 𝐶𝐴𝐵(𝑐) denotes the 𝑐th pair of the
slope constraints on template and test pattern axes and can
be written as

𝐶𝐴𝐵 = {(1,𝑚) , (𝑚, 1) | 1 ≤ 𝑚 ≤ 𝑀} , (8)

where𝑀 is the maximum branch length of slope constraints.
Note that the values at the starting points of the two patterns
are adjusted to be overlapped.
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Figure 2: Schematic illustrations for elucidating dynamic time warping and positional warping for one-dimensional data matching: (a) two
signals 𝛼 (solid line) and 𝛽 (dashed line) are compared and considered a pair of corresponding points. (b) Time warping in DTW: a is warped
to a by time shifting. (c) Positional and time warping in DPW: a is warped to a to be overlapped onto b.

2.5. Dynamic Positional Warping (DPW). DPW was orig-
inally proposed for accurate quantification of differences
between two-dimensional data such as an object’s contour
or handwritten characters, by searching similar subsequences
recursively [27]. When employed for one-dimensional data,
the DPW distance between time series signals 𝐴 and 𝐵 can
be written as follows:

𝑑dtw = 𝜏 (𝐿𝐴, 𝐿𝐵) , (9)

𝜏 (𝑖, 𝑗) =

{𝐴 (𝑖) − 𝐴 (𝑖prev)} − {𝐵 (𝑗) − 𝐵 (𝑗prev)}


+ 𝜔 (𝑖, 𝑗) ,

(10)

𝑖prev = 𝑖 − 𝐶𝐴 (𝑐min (𝑖, 𝑗)) , (11)

𝑗prev = 𝑗 − 𝐶𝐵 (𝑐min (𝑖, 𝑗)) , (12)

𝑐min (𝑖, 𝑗) = arg min
𝑐

{𝜑 (𝑖 − 𝐶𝐴 (𝑐) , 𝑗 − 𝐶𝐵 (𝑐))} , (13)

𝜔 (𝑖, 𝑗) = min
𝑐

{𝜑 (𝑖 − 𝐶𝐴 (𝑐) , 𝑗 − 𝐶𝐵 (𝑐))} , (14)

where most notations are the same as those used in the
original DTW equations ((6) and (7)). In these equations,
𝑖prev and 𝑗prev represent preceding corresponding points that
minimize 𝜏(𝑖, 𝑗). As shown in (9) and (10), the forms of
the equations are the same as those of conventional DTW

equations, except with regard to distance calculation between
two points. Note that 𝐴(𝑖prev) and 𝐵(𝑗prev) are substituted for
𝐴(1) and 𝐵(1), respectively, in (10).

Figure 2 compares the mechanisms of DPW and DTW
in one-dimensional data-matching applications. When two
signals are compared and points a and b are matched as a
corresponding pair (Figure 2(a)), DTW shifts a subsequence
that begins with a on the time axis such that the shifted point
is moved to the same time index as the subsequence starting
with b (Figure 2(b)). This process, denoted as time warping,
allows for distance calculation between points c and d by
placing them closely on time axis. In the case of DPW, upon
matching a and b, the subsequence starting from a is warped
so that a is overlapped onto b. Please note this subsequence
warping costs the distance (on the axis of ordinate) between
the two points a and b, while the warping cost on the time
axis is free (refer to [27] for more detailed description on the
original DPWmethod).

3. Results and Discussion

Receiver operating characteristic (ROC) curves were used to
compare pattern-detection performances among the various
template matching approaches introduced in Section 2. To
evaluate ROC curves, recall rates were evaluated with respect
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Figure 3: ROC curves of five different methods.

to fixed precision rates for each iteration of each participant.
Then, for each precision rate, recall rates were averaged across
all the iterations and participants. Figure 3 showsROCcurves
illustrating detection accuracies for five different methods.
DPW showed the highest accuracy among all methods
investigated, with an accuracy of 82% for equal precision
and recall rates. DPW accuracy was 10% higher than that
for conventional DTW (where accuracy rating was 72%) and
even higher than those for conventional distance metrics
(RMSE: 49%, correlation: 34%, and Kurtosis: 11%). These
results demonstrate that positional warping, as has been used
for two-dimensional pattern recognition problems, might
be also effective in one-dimensional pattern recognition
problems.

The extremely low accuracies of RMSE and correlation
may be surprising, considering that both distance metrics
are so commonly used for template matching applications.
The poor performances found for both metrics are thought
to partly originate from high target-pattern shape variations.
It is also possible that these poor performances were the
result of the chosen task being more difficult than typical
tasks. Since the templates in the current task were selected
randomly from ground-truth datasets, there may have been
many templates with irregular shapes. Despite these difficult
conditions, the proposed DPW approach showed much
higher detection accuracy than the DTW approach, suggest-
ing that DPW might be used as a new and powerful method
for extracting specific signal patterns for EEG applications.

Table 1 summarizes the best detection accuracies among
20 iterations, evaluated for each participant. Accuracy was
calculated as the percentage of precision or recall for equal
precision and recall values in ROC curves. When ROC
curveswere evaluated for each participant and best accuracies
were selected among the 20 iteration results, the conven-
tional methods based on correlation coefficients or RMSEs
yielded better accuracies than the results shown in Figure 3.

Nevertheless, DPW still outperformed the other metrics,
ranking the highest for 22 of 24 participants. The averaged
detection accuracy for DPW (96.10%) was 3.62% higher than
that for DTW (92.38%).

In addition, the influence of the number of templates on
detection accuracy was investigated. The detection accuracy
was evaluated by increasing the number of templates and then
averaging across all iterations and participants (Table 2). The
results show a weak influence of the number of templates on
detection accuracy. Except for correlation, accuracy did not
change significantly as the number of templates increased.
Instead, the standard deviations ofDTWandDPWdecreased
significantly, demonstrating the possibility for more stable
pattern detection by the use of sufficient numbers of tem-
plates in DTW and DPW.

4. Conclusion

In this paper, we investigated whether DPW, originally devel-
oped for two-dimensional pattern recognition, could be suc-
cessfully employed for one-dimensional pattern recognition.
To validate our alternative hypothesis that DPW is effective
for one-dimensional data analysis, DPW was applied to the
problem of EEG eye-blink artifact detection. DPW outper-
formed conventional template matching methods including
DTW, demonstrating that this positional warping method,
which warps signals on both ordinate and abscissa axes, is
also effective in one-dimensional pattern recognition. This
study suggests the possibility of applying DPW tomany other
types of signal patterns and applications.We are also planning
to combine DPW with other methodologies in our future
studies.
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Table 1: Best accuracies (%) evaluated for each participant among results from 20 iterations. Best accuracy values for each participant are in
bold font.

Subject ID Correlation RMSE Kurtosis DTW DPW
1 86.96 61.32 22.86 94.97 98.55
2 84.25 90.67 39.46 97.60 98.28
3 49.19 60.83 15.98 77.42 85.27
4 69.02 84.38 15.77 93.65 95.41
5 49.28 73.69 18.45 83.50 92.39
6 26.67 84.44 13.33 90.00 91.55
7 80.72 92.80 30.95 94.64 98.66
8 88.19 92.86 48.00 98.01 100.00
9 62.96 98.77 31.34 98.77 99.38
10 71.83 71.33 17.94 93.57 95.11
11 40.00 86.67 20.71 91.55 100.00
12 61.32 91.74 13.24 93.28 99.26
13 57.48 41.88 15.10 79.21 96.56
14 60.83 78.89 30.19 91.43 97.14
15 63.89 76.07 15.01 94.36 98.65
16 80.63 94.18 34.05 96.84 98.95
17 60.87 54.01 22.79 84.28 80.82
18 40.30 86.38 24.00 97.37 98.72
19 65.01 72.08 18.37 89.81 94.95
20 17.59 76.67 17.69 93.33 94.94
21 79.20 91.67 22.13 92.51 97.94
22 63.11 41.63 25.10 91.88 96.70
23 65.55 90.23 23.08 100.00 98.08
24 40.99 97.53 20.71 99.17 99.17
Average 61.08 78.78 23.18 92.38 96.10

Table 2: Artifact detection accuracies (%) with respect to the number of templates, for equal precision and recall.

Number of templates Correlation RMSE Kurtosis DTW DPW
1 49.54 ± 22.45 61.65 ± 28.42 9.65 ± 5.63 77.58 ± 22.44 83.94 ± 23.52

2 34.37 ± 27.54 62.55 ± 25.51 11.74 ± 11.01 68.29 ± 29.59 78.23 ± 30.35

3 28.42 ± 25.93 61.60 ± 25.08 10.20 ± 7.21 76.38 ± 20.47 86.06 ± 17.06

4 27.31 ± 24.58 60.42 ± 25.52 9.88 ± 7.49 75.51 ± 20.07 85.79 ± 16.36

5 23.84 ± 22.28 59.77 ± 24.72 10.77 ± 8.15 74.64 ± 19.79 85.92 ± 16.24

6 24.89 ± 21.47 58.90 ± 25.72 10.47 ± 8.35 77.49 ± 17.44 86.63 ± 15.41

7 25.76 ± 22.91 58.44 ± 25.09 10.37 ± 8.14 76.09 ± 17.64 86.42 ± 15.74

8 25.35 ± 22.23 58.59 ± 25.25 10.85 ± 8.74 76.80 ± 17.32 86.87 ± 14.60

9 24.56 ± 20.88 59.65 ± 24.45 11.08 ± 8.90 77.92 ± 15.12 87.13 ± 14.16

10 24.17 ± 19.33 59.49 ± 25.37 10.69 ± 9.17 78.68 ± 15.35 86.54 ± 15.25
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