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We discuss the rate of convergence of the Lupas 𝑞-analogues of the Bernstein operators 𝑅
𝑛,𝑞
(𝑓; 𝑥) which were given by Lupas in

1987. We obtain the estimates for the rate of convergence of 𝑅
𝑛,𝑞
(𝑓) by the modulus of continuity of 𝑓, and show that the estimates

are sharp in the sense of order for Lipschitz continuous functions.

1. Introduction

In 1912, Bernstein (see [1]) defined the Bernstein polynomials.
Later, it was found that the Bernstein polynomials possess
many remarkable properties, which made them an area of
intensive research. Due to the development of 𝑞-calculus,
generalizations of Bernstein polynomials connected with 𝑞-
calculus have emerged. The first person to make progress
in this direction was Lupas, who introduced a 𝑞-analogue
of the Bernstein operator 𝑅

𝑛,𝑞
(𝑓; 𝑥) and investigated its

approximating and shape-preserving properties in 1987 (see
[2]). If 𝑞 = 1, then {𝑅

𝑛,1
(𝑓; 𝑥)} are the classical Bernstein

polynomials. For 𝑞 ̸= 1, the operators 𝑅
𝑛,𝑞
(𝑓; 𝑥) are rational

functions rather than polynomials. Other generalizations
of the Bernstein polynomials, for example, the 𝑞-Bernstein
polynomials (see [3]), the two-parametric generalization
of 𝑞-Bernstein polynomials (see [4]), and the 𝑞-Bernstein-
Durrmeyer operator (see [5]), had also been considered
in recent years. Among these generalizations, 𝑞-Bernstein
polynomials proposed byPhillips attracted themost attention
and were studied widely by a number of authors (see [3,
6–15]). The Lupas 𝑞-analogues of the Bernstein operators
{𝑅
𝑛,𝑞
(𝑓; 𝑥)} are less known; see [2, 16–21]. However, they have

an advantage of generating positive linear operators for all
𝑞 > 0, whereas 𝑞-Bernstein polynomials generate positive
linear operators only if 𝑞 ∈ (0, 1).

In this paper, we will study the rate of convergence of the
Lupas 𝑞-analogues of the Bernstein operators {𝑅

𝑛,𝑞
(𝑓; 𝑥)}. We

will obtain the estimates for the rate of convergence of𝑅
𝑛,𝑞
(𝑓)

by themodulus of continuity of𝑓, and show that the estimates
are sharp in the sense of order for Lipschitz continuous
functions. Our results demonstrate that the estimates for the
rate of convergence of {𝑅

𝑛,𝑞
(𝑓; 𝑥)} are essentially different

from those for the classical Bernstein polynomials; however,
they are very similar to those for the 𝑞-Bernstein polynomials
in the case 𝑞 ∈ (0, 1).

Throughout the paper, we always assume that 𝑓 is a
continuous real function on [0, 1], 𝑞 > 0, 𝑞 ̸= 1. Denote by
𝐶[0, 1] (or 𝐶𝑛[0, 1], 1 ≤ 𝑛 ≤ ∞) the space of all continuous
(correspondingly, 𝑛 times continuously differentiable) real-
valued functions on [0, 1] equipped with the uniform norm
‖ ⋅ ‖. The expression 𝐴(𝑛) ≍ 𝐵(𝑛) means that 𝐴(𝑛) ≪ 𝐵(𝑛)

and 𝐴(𝑛) ≫ 𝐵(𝑛), and 𝐴(𝑛) ≪ 𝐵(𝑛)means that there exists a
positive constant 𝑐 independent of 𝑛 such that 𝐴(𝑛) ≤ 𝑐𝐵(𝑛).

To formulate our results, we need the following defini-
tions.

Let 𝑞 > 0. For each nonnegative integer 𝑘, the 𝑞-integer
[𝑘] and the 𝑞-factorial [𝑘]! are defined by

[𝑘] := [𝑘]
𝑞
:=

{{

{{

{

(1 − 𝑞
𝑘

)

(1 − 𝑞)
, 𝑞 ̸= 1

𝑘, 𝑞 = 1,
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[𝑘]! := {
[𝑘] [𝑘 − 1] ⋅ ⋅ ⋅ [1] , 𝑘 ≥ 1

1, 𝑘 = 0.

(1)

For integers 0 ≤ 𝑘 ≤ 𝑛, the 𝑞-binomial coefficient is defined
by

[
𝑛

𝑘
] :=

[𝑛]!

[𝑘]! [𝑛 − 𝑘]!
. (2)

In [2], Lupas proposed the 𝑞-analogue of the Bernstein
operator 𝑅

𝑛,𝑞
(𝑓; 𝑥): for each positive integer 𝑛, and 𝑓 ∈

𝐶[0, 1],

𝑅
𝑛,𝑞

(𝑓, 𝑥) :=

{{

{{

{

𝑛

∑

𝑘=0

𝑓(
[𝑘]

[𝑛]
) 𝑟
𝑛,𝑘

(𝑞, 𝑥) , 0 ≤ 𝑥 < 1

𝑓 (1) , 𝑥 = 1,

(3)

where

𝑟
𝑛,𝑘

(𝑞; 𝑥) := [
𝑛

𝑘
]

𝑞
𝑘(𝑘−1)/2

𝑥
𝑘

(1 − 𝑥)
𝑛−𝑘

(1 − 𝑥 + 𝑞𝑥) ⋅ ⋅ ⋅ (1 − 𝑥 + 𝑞𝑛−1𝑥)

= [
𝑛

𝑘
]

𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

∏
𝑛−1

𝑗=0
(1 + 𝑞𝑗 (𝑥/ (1 − 𝑥)))

.

(4)

In [19], Ostrovska proved that, for each 𝑓 ∈ 𝐶[0, 1] and
𝑞 ∈ (0, 1), the sequence {𝑅

𝑛,𝑞
(𝑓, 𝑥)} converges to the limit

operator 𝑅
∞,𝑞

(𝑓, 𝑥) uniformly on [0, 1] as 𝑛 → ∞, where

𝑅
∞,𝑞

(𝑓, 𝑥) =

{{

{{

{

∞

∑

𝑘=0

𝑓 (1 − 𝑞
𝑘

) 𝑟
∞𝑘

(𝑞; 𝑥) , 0 ≤ 𝑥 < 1

𝑓 (1) , 𝑥 = 1,

(5)

𝑟
∞,𝑘

(𝑞; 𝑥) :=
𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

(1 − 𝑞)
𝑘

[𝑘]!∏
∞

𝑗=0
(1 + 𝑞𝑗 (𝑥/ (1 − 𝑥)))

. (6)

When 𝑞 > 1, the following relations (see [19]) allow us to
reduce to the case 𝑞 ∈ (0, 1):

𝑅
𝑛,𝑞

(𝑓; 𝑥) = 𝑅
𝑛,1/𝑞

(𝑔; 1 − 𝑥) ,

𝑅
∞,𝑞

(𝑓; 𝑥) = 𝑅
∞,1/𝑞

(𝑔; 1 − 𝑥) ,

(7)

where 𝑔(𝑥) = 𝑓(1 − 𝑥) ∈ 𝐶[0, 1].
The problem to find the rate of convergence occurs

naturally and this paper deals with the problem of finding
estimates for the rate of convergence for a sequence of the 𝑞-
analogue of the Bernstein operator 𝑅

𝑛,𝑞
(𝑓; 𝑥) for 0 < 𝑞 < 1.

For 𝑓 ∈ 𝐶[0, 1], 𝑡 > 0, the modulus of continuity 𝜔(𝑓, 𝑡)

and the second modulus of smoothness 𝜔
2
(𝑓, 𝑡) are defined

as follows:
𝜔 (𝑓; 𝑡) := sup

|𝑥−𝑦|≤𝑡
𝑥,𝑦∈[0,1]

𝑓 (𝑥) − 𝑓 (𝑦)
 ;

𝜔
2
(𝑓, 𝑡) := sup

0<ℎ≤𝑡

sup
𝑥∈[0,1−2ℎ]

𝑓 (𝑥 + 2ℎ) − 2𝑓 (𝑥 + ℎ) + 𝑓 (𝑥)
 .

(8)

The main results of the paper are as follows.

Theorem 1. Let 𝑞 ∈ (0, 1) and let 𝑓 ∈ 𝐶[0, 1]. Then

𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝐶
𝑞
𝜔 (𝑓; 𝑞

𝑛

) , (9)

where 𝐶
𝑞

= 2 + 6/(1 − 𝑞). This estimate is sharp in the
following sense of order: for each 𝛼, 0 < 𝛼 ≤ 1, there exists
a function 𝑓

𝛼
(𝑥) which belongs to the Lipschitz class Lip𝛼 :=

{𝑓 ∈ 𝐶[0, 1] | 𝜔(𝑓; 𝑡) ≪ 𝑡
𝛼

} such that

𝑅
𝑛,𝑞

(𝑓
𝛼
) − 𝑅
∞,𝑞

(𝑓
𝛼
)

≍ 𝑞
𝑛𝛼

. (10)

Theorem 2. Let 0 < 𝑞 < 1. Then


𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝑐𝜔
2
(𝑓;√𝑞𝑛) . (11)

Furthermore,

sup
0<𝑞<1


𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝑐𝜔
2
(𝑓; 𝑛
−1/2

) , (12)

where 𝑐 is an absolute constant.

Remark 3. From (12), it follows that, for each 𝑓 ∈ 𝐶[0, 1],

lim
𝑛→∞

𝑅
𝑛,𝑞

(𝑓; 𝑥) = 𝑅
∞,𝑞

(𝑓; 𝑥) (13)

uniformly not only in 𝑥 ∈ [0, 1], and but also in 𝑞 ∈ (0, 1],
which generalizes the Ostrovska’s result in [19].

Remark 4. It should be emphasized that Theorem 1 cannot
be obtained in a way similar to the proof of the Popoviciu
Theorem for the classical Bernstein polynomials (see [22]).
It requires different estimation techniques due to the infinite
product involved. Also, the proof in the paper ismore difficult
than the one used for 𝑞-Bernstein polynomials (see [14]),
since the Lupas 𝑞-analogue of Bernstein operators has the
singular nature at the point 𝑥 = 1 and needs a new method
(when 𝑥 → 1, 𝑥/(1 − 𝑥) → ∞).

Remark 5. Results similar to Theorems 1 and 2 for 𝑞-
Bernstein polynomials were obtained in [14] and [12], respec-
tively. Note that when 𝑓(𝑥) = 𝑥

2, for 𝑞 ∈ (0, 1), we have (see
(46))


𝑅
𝑛,𝑞

(𝑓; 𝑥) − 𝑅
∞,𝑞

(𝑓; 𝑥)


=



𝑞
𝑛

𝑥 (1 − 𝑥)

(1 − 𝑥 + 𝑞𝑥) [𝑛]



≍ 𝑞
𝑛

≍ 𝜔
2
(𝑓;√𝑞𝑛) .

(14)

Hence, the estimate (11) is sharp in the following sense:
the sequence √𝑞𝑛 in (11) cannot be replaced by any other
sequence decreasing to zero more rapidly as 𝑛 → ∞.
However, (11) is not sharp for the Lipschitz class Lip 𝛼 (𝛼 ∈

(0, 1]) in the sense of order. This, combining withTheorem 1,
shows that in the case 0 < 𝑞 < 1 the modulus of continuity
is more appropriate to describe the rate of convergence for
the Lupas 𝑞-analogue Berstein operators than the second
modulus of smoothness.This is different from that in the case
𝑞 = 1.
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Remark 6. The numbers 𝑐 in (11) and 𝐶
𝑞
in (9) are both the

constants independent of 𝑓 and 𝑛. However, while 𝑐 in (11)
does not depend on 𝑞, the constant 𝐶

𝑞
in (9) depends on 𝑞

and tends to +∞ as 𝑞 → 1−. Hence, (11) does not follow
from (9).

Let 𝑓 ∈ 𝐶[0, 1] and 𝑔(𝑥) = 𝑓(1 − 𝑥). Using (7) and the
relations

𝜔 (𝑓, 𝑡) = 𝜔 (𝑔, 𝑡) ; 𝜔
2
(𝑓, 𝑡) = 𝜔

2
(𝑔, 𝑡) , (15)

we have the following corollaries.

Corollary 7. Let 𝑓 ∈ 𝐶[0, 1]. Then for any 𝑞 ∈ (1,∞),


𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝐶
𝑞
𝜔(𝑓;

1

𝑞𝑛
) , (16)

where 𝐶
𝑞
is a constant independent of 𝑓 and 𝑛.

Corollary 8. Let 𝑓 ∈ 𝐶[0, 1]. Then for any 𝑞 ∈ (1,∞),


𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝑐𝜔
2
(𝑓;√

1

𝑞𝑛
) . (17)

Furthermore,

sup
𝑞>0


𝑅
𝑛,𝑞

(𝑓) − 𝑅
∞,𝑞

(𝑓)

≤ 𝑐𝜔
2
(𝑓; 𝑛
−1/2

) , (18)

where 𝑐 is an absolute constant.

2. Proofs of Theorems 1 and 2

For the proofs of Theorems 1 and 2, we need the following
lemmas.

Lemma 9 (see [2]). The following equalities are true:

𝑅
𝑛,𝑞

(1; 𝑥) = 𝑅
∞,𝑞

(1; 𝑥) = 1,

𝑅
𝑛,𝑞

(𝑡; 𝑥) = 𝑅
∞,𝑞

(𝑡; 𝑥) = 𝑥,

(19)

𝑅
𝑛,𝑞

(𝑡
2

; 𝑥) = 𝑥
2

+
𝑥 (1 − 𝑥)

[𝑛]
−
𝑥
2

(1 − 𝑥) (1 − 𝑞)

1 − 𝑥 + 𝑥𝑞
(1 −

1

[𝑛]
) .

(20)

Lemma 10. With the definitions of 𝑟
𝑛,𝑘
(𝑞; 𝑥) and 𝑟

∞,𝑘
(𝑞; 𝑥),

we have

𝑛

∑

𝑘=0

𝑞
𝑘

𝑟
𝑛,𝑘

(𝑞; 𝑥) = 1 − 𝑥 + 𝑞
𝑛

𝑥,

∞

∑

𝑘=0

𝑞
𝑘

𝑟
∞,𝑘

(𝑞; 𝑥) = 1 − 𝑥.

(21)

Proof. Using (19) and (3), we get

𝑛

∑

𝑘=0

𝑞
𝑘

𝑟
𝑛,𝑘

(𝑞; 𝑥)

= (𝑞
𝑛

− 1)

𝑛

∑

𝑘=0

𝑞
𝑘

− 1

𝑞𝑛 − 1
𝑟
𝑛,𝑘

(𝑞; 𝑥) +

𝑛

∑

𝑘=0

𝑟
𝑛,𝑘

(𝑞; 𝑥)

= (𝑞
𝑛

− 1)

𝑛

∑

𝑘=0

[𝑘]

[𝑛]
𝑟
𝑛,𝑘

(𝑞; 𝑥) + 1

= (𝑞
𝑛

− 1) 𝑅
𝑛,𝑞

(𝑡; 𝑥) + 1

= 1 − 𝑥 + 𝑞
𝑛

𝑥.

(22)

Similarly, using (19) and (5), we have

∞

∑

𝑘=0

𝑞
𝑘

𝑟
∞,𝑘

(𝑞; 𝑥)

=

∞

∑

𝑘=0

(𝑞
𝑘

− 1) 𝑟
∞,𝑘

(𝑞; 𝑥) +

∞

∑

𝑘=0

𝑟
∞,𝑘

(𝑞; 𝑥)

= −(

∞

∑

𝑘=0

(1 − 𝑞
𝑘

) 𝑟
∞,𝑘

(𝑞; 𝑥)) +

∞

∑

𝑘=0

𝑟
∞,𝑘

(𝑞; 𝑥)

= −𝑅
∞,𝑞

(𝑡; 𝑥) + 1 = 1 − 𝑥.

(23)

The proof of Lemma 10 is complete.

For integers 𝑛, 𝑘, and 𝑞 ∈ (0, 1), 𝑥 ∈ [0, 1], we have

𝑟
𝑛,𝑘

(𝑞; 𝑥) − 𝑟
∞𝑘

(𝑞; 𝑥)

= [
𝑛

𝑘
]

𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

∏
𝑛−1

𝑠=0
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

−
𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

(1 − 𝑞)
𝑘

[𝑘]!∏
∞

𝑠=0
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

= [
𝑛

𝑘
]

𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

∏
𝑛−1

𝑠=0
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

× (1 −
1

∏
∞

𝑠=𝑛
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

)

+
𝑞
𝑘(𝑘−1)/2

(𝑥/ (1 − 𝑥))
𝑘

∏
∞

𝑠=0
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

([
𝑛

𝑘
] −

1

(1 − 𝑞)
𝑘

[𝑘]!

)

= 𝑟
𝑛,𝑘

(𝑞; 𝑥) (1 −
1

∏
∞

𝑠=𝑛
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

)

− 𝑟
∞,𝑘

(𝑞; 𝑥)(1 −

𝑛

∏

𝑠=𝑛−𝑘+1

(1 − 𝑞
𝑠

))

= 𝑟
𝑛,𝑘

(𝑞; 𝑥) 𝐽
1
− 𝑟
∞,𝑘

(𝑞; 𝑥) 𝐽
2
,

(24)
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where

𝐽
1
:= 1 −

1

∏
∞

𝑠=𝑛
(1 + 𝑞𝑠 (𝑥/ (1 − 𝑥)))

,

𝐽
2
:= 1 −

𝑛

∏

𝑠=𝑛−𝑘+1

(1 − 𝑞
𝑠

) .

(25)

We will prove the following lemma.

Lemma 11. Let 0 < 𝑞 < 1. Then for integers 𝑛, 𝑘 and for 0 <

𝑥 < 1/(1 + 𝑞
𝑛

),
𝑛

∑

𝑘=0

𝑞
𝑘 𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)

 ≤
3𝑞
𝑛

1 − 𝑞
. (26)

Proof. It is easy to prove by induction that

0 ≤ 𝐽
2
:= 1 −

𝑛

∏

𝑠=𝑛−𝑘+1

(1 − 𝑞
𝑠

)

≤

𝑛

∑

𝑠=𝑛−𝑘+1

𝑞
𝑠

≤

∞

∑

𝑠=𝑛−𝑘

𝑞
𝑠

=
𝑞
𝑛−𝑘

1 − 𝑞
.

(27)

Since 1 − exp(−𝑥) ≤ 𝑥 and ln(1 + 𝑥) ≤ 𝑥 for all 𝑥 ∈ [0,∞),
we obtain

0 ≤ 𝐽
1
= 1 − exp(−

∞

∑

𝑠=𝑛

ln(1 + 𝑞
𝑠

𝑥

1 − 𝑥
))

≤

∞

∑

𝑠=𝑛

ln(1 + 𝑞
𝑠

𝑥

1 − 𝑥
)

≤

∞

∑

𝑠=𝑛

𝑞
𝑠

𝑥

1 − 𝑥
=

𝑞
𝑛

𝑥

(1 − 𝑞) (1 − 𝑥)
.

(28)

Hence,

𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟
∞𝑘

(𝑞; 𝑥)
 ≤

𝑞
𝑛

𝑥

(1 − 𝑞) (1 − 𝑥)
𝑟
𝑛,𝑘

(𝑞; 𝑥)

+
𝑞
𝑛−𝑘

1 − 𝑞
𝑟
∞,𝑘

(𝑞; 𝑥) ,

(29)

and therefore, by (21) and (19) we get
𝑛

∑

𝑘=0

𝑞
𝑘 𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)



≤
𝑞
𝑛

𝑥

(1 − 𝑞) (1 − 𝑥)

𝑛

∑

𝑘=0

𝑞
𝑘

𝑟
𝑛,𝑘

(𝑞; 𝑥) +
𝑞
𝑛

1 − 𝑞

𝑛

∑

𝑘=0

𝑟
∞,𝑘

(𝑞; 𝑥)

≤
𝑞
𝑛

𝑥

(1 − 𝑞) (1 − 𝑥)
(1 − 𝑥 + 𝑞

𝑛

𝑥) +
𝑞
𝑛

1 − 𝑞
.

(30)

Since 0 < 𝑥 < 1/(1 + 𝑞
𝑛

) < 1, it follows that 0 < 𝑥/(1 − 𝑥) <

1/𝑞
𝑛 and thence

𝑛

∑

𝑘=0

𝑞
𝑘 𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)

 ≤
3𝑞
𝑛

1 − 𝑞
. (31)

This completes the proof of Lemma 11.

Proof of Theorem 1. It follows from the definition of𝑅
𝑛,𝑞
(𝑓; 𝑥)

and 𝑅
∞,𝑞

(𝑓; 𝑥) that both of them possess the end point
interpolation property; in other words,

𝑅
𝑛,𝑞

(𝑓; 0) = 𝑅
∞,𝑞

(𝑓; 0) = 𝑓 (0) ,

𝑅
𝑛,𝑞

(𝑓; 1) = 𝑅
∞,𝑞

(𝑓; 1) = 𝑓 (1) .

(32)

It follows from the definition of 𝑟
𝑛,𝑘
(𝑞; 𝑥) and 𝑟

∞,𝑘
(𝑞; 𝑥) that

𝑟
𝑛,𝑘
(𝑞; 𝑥) ≥ 0 and 𝑟

∞,𝑘
(𝑞; 𝑥) ≥ 0 for 0 ≤ 𝑥 < 1. If 𝑥 → 1,

then 𝑥/(1 − 𝑥) → ∞. So, the Lupas 𝑞-analogue of Bernstein
operators has the singular nature at the point 𝑥 = 1 and the
rate of convergence near the point 1 needs to be considered
independently. First we suppose 𝑥 ∈ (1/(1 + 𝑞

𝑛

), 1); that is,
1 − 𝑥 < 𝑞

𝑛

/(1 + 𝑞
𝑛

) < 𝑞
𝑛. Then

𝐼 =

𝑅
𝑛,𝑞

(𝑓; 𝑥) − 𝑅
∞,𝑞

(𝑓; 𝑥)


=



𝑛

∑

𝑘=0

(𝑓(
[𝑘]

[𝑛]
) − 𝑓 (1)) 𝑟

𝑛,𝑘
(𝑞; 𝑥)

−

∞

∑

𝑘=0

(𝑓 (1 − 𝑞
𝑘

) − 𝑓 (1)) 𝑟
∞,𝑘

(𝑞; 𝑥)



≤

𝑛

∑

𝑘=0


𝑓 (

[𝑘]

[𝑛]
) − 𝑓 (1)


𝑟
𝑛,𝑘

(𝑞; 𝑥)

+

∞

∑

𝑘=0


𝑓 (1 − 𝑞

𝑘

) − 𝑓 (1)

𝑟
∞,𝑘

(𝑞; 𝑥) .

(33)

Since



[𝑘]

[𝑛]
− 1


=



1 − 𝑞
𝑘

1 − 𝑞𝑛
− 1



≤
𝑞
𝑘

(1 − 𝑞
𝑛−𝑘

)

1 − 𝑞𝑛
≤ 𝑞
𝑘

,

(0 ≤ 𝑘 ≤ 𝑛) ,

𝜔 (𝑓; 𝜆𝑡) ≤ (1 + 𝜆) 𝜔 (𝑓; 𝑡) , 𝜆 > 0,

(34)

we get

𝐼 ≤

𝑛

∑

𝑘=0

𝜔 (𝑓; 𝑞
𝑘

) 𝑟
𝑛,𝑘

(𝑞; 𝑥) +

∞

∑

𝑘=0

𝜔 (𝑓; 𝑞
𝑘

) 𝑟
∞,𝑘

(𝑞; 𝑥)

≤

𝑛

∑

𝑘=0

𝜔 (𝑓, 𝑞
𝑛

) (1 +
𝑞
𝑘

𝑞𝑛
) 𝑟
𝑛,𝑘

(𝑞; 𝑥)

+

∞

∑

𝑘=0

𝜔 (𝑓; 𝑞
𝑛

) (1 +
𝑞
𝑘

𝑞𝑛
) 𝑟
∞,𝑘

(𝑞; 𝑥)

≤ 2𝜔 (𝑓; 𝑞
𝑛

) +
𝜔 (𝑓, 𝑞

𝑛

)

𝑞𝑛

𝑛

∑

𝑘=0

𝑞
𝑘

𝑟
𝑛,𝑘

(𝑞; 𝑥)

+
𝜔 (𝑓, 𝑞

𝑛

)

𝑞𝑛

∞

∑

𝑘=0

𝑞
𝑘

𝑟
∞,𝑘

(𝑞; 𝑥) .

(35)



Abstract and Applied Analysis 5

By Lemma 10 and 1 − 𝑥 < 𝑞
𝑛, 𝑥 < 1, we have

𝐼 ≤ 2𝜔 (𝑓; 𝑞
𝑛

) +
𝜔 (𝑓, 𝑞

𝑛

)

𝑞𝑛
(1 − 𝑥 + 𝑞

𝑛

𝑥)

+
𝜔 (𝑓, 𝑞

𝑛

)

𝑞𝑛
(1 − 𝑥) ≤ 5𝜔 (𝑓; 𝑞

𝑛

) .

(36)

Next, we assume that 0 < 𝑥 < 1/(1 + 𝑞
𝑛

). Then 0 ≤ 𝑥/(1 −

𝑥) ≤ 1/𝑞
𝑛. We have

𝐼 =

𝑅
𝑛,𝑞

(𝑓; 𝑥) − 𝑅
∞,𝑞

(𝑓; 𝑥)


=



𝑛

∑

𝑘=0

(𝑓(
[𝑘]

[𝑛]
) − 𝑓 (1 − 𝑞

𝑘

)) 𝑟
𝑛,𝑘

(𝑞; 𝑥)

+

𝑛

∑

𝑘=0

(𝑓 (1 − 𝑞
𝑘

) − 𝑓 (1)) (𝑟
𝑛,𝑘

(𝑞; 𝑥) − 𝑟
∞,𝑘

(𝑞; 𝑥))

−

∞

∑

𝑘=𝑛+1

(𝑓 (1 − 𝑞
𝑘

) − 𝑓 (1)) 𝑟
∞,𝑘

(𝑞; 𝑥)



≤

𝑛

∑

𝑘=0


𝑓 (

[𝑘]

[𝑛]
) − 𝑓 (1 − 𝑞

𝑘

)


𝑟
𝑛,𝑘

(𝑞; 𝑥)

+

𝑛

∑

𝑘=0


𝑓 (1 − 𝑞

𝑘

) − 𝑓 (1)


𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟
∞,𝑘

(𝑞; 𝑥)


+

∞

∑

𝑘=𝑛+1


𝑓 (1 − 𝑞

𝑘

) − 𝑓 (1)

𝑟
∞,𝑘

(𝑞; 𝑥)

=: 𝛿
1
+ 𝛿
2
+ 𝛿
3
.

(37)

First we estimate 𝛿
1
and 𝛿
3
. Since



[𝑘]

[𝑛]
− (1 − 𝑞

𝑘

)


=



1 − 𝑞
𝑘

1 − 𝑞𝑛
− (1 − 𝑞

𝑘

)



=
𝑞
𝑛

(1 − 𝑞
𝑘

)

1 − 𝑞𝑛
≤ 𝑞
𝑛

,

(0 ≤ 𝑘 ≤ 𝑛)


1 − (1 − 𝑞

𝑘

)

= 𝑞
𝑘

≤ 𝑞
𝑛

, (𝑘 ≥ 𝑛 + 1) ,

(38)

we get

𝛿
1
≤ 𝜔 (𝑓, 𝑞

𝑛

)

𝑛

∑

𝑘=0

𝑟
𝑛,𝑘

(𝑞; 𝑥) = 𝜔 (𝑓, 𝑞
𝑛

) , (39)

𝛿
3
≤ 𝜔 (𝑓, 𝑞

𝑛

)

∞

∑

𝑘=𝑛+1

𝑟
∞,𝑘

(𝑞; 𝑥) ≤ 𝜔 (𝑓, 𝑞
𝑛

) . (40)

Now we estimate 𝛿
2
. Since 𝜔(𝑓, 𝜆𝑡) ≤ (1 + 𝜆)𝜔(𝑓, 𝑡), by

Lemma 11 we get

𝛿
2
≤

𝑛

∑

𝑘=0

𝜔 (𝑓, 𝑞
𝑘

)
𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)



≤

𝑛

∑

𝑘=0

𝜔 (𝑓, 𝑞
𝑛

) (1 +
𝑞
𝑘

𝑞𝑛
)
𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)



≤
2𝜔 (𝑓; 𝑞

𝑛

)

𝑞𝑛

𝑛

∑

𝑘=0

𝑞
𝑘 𝑟𝑛,𝑘 (𝑞; 𝑥) − 𝑟

∞,𝑘
(𝑞; 𝑥)

 ≤
6𝜔 (𝑓; 𝑞

𝑛

)

1 − 𝑞
.

(41)

From (39)–(41), we have for 0 ≤ 𝑥 ≤ 1/(1 + 𝑞
𝑛

),

𝐼 ≤ (2 +
6

1 − 𝑞
)𝜔 (𝑓; 𝑞

𝑛

) . (42)

Hence from (36) and (42), we conclude that, for 𝑞 ∈ (0, 1),


𝑅
𝑛,𝑞

(𝑓; 𝑥) − 𝑅
∞,𝑞

(𝑓; 𝑥)

≤ 𝐶
𝑞
𝜔 (𝑓; 𝑞

𝑛

) , (43)

where 𝐶
𝑞
= 2 + 6/(1 − 𝑞).

At last we show that the estimate (9) is sharp. For each
𝛼, 0 < 𝛼 ≤ 1, suppose that 𝑓

𝛼
(𝑥) is a continuous function,

which is equal to zero in [0, 1 − 𝑞] and [1 − 𝑞
2

, 1], equal to
(𝑥 − (1 − 𝑞))

𝛼 in [1 − 𝑞, 1 − 𝑞 + 𝑞(1 − 𝑞)/2], and linear in the
rest of [0, 1]. It is obvious that 𝜔(𝑓

𝛼
; 𝑡) ≤ 𝑐𝑡

𝛼, and


𝑅
𝑛,𝑞

(𝑓
𝛼
) − 𝑅
∞,𝑞

(𝑓
𝛼
)

≈ 𝑞
𝑛𝛼 𝑟𝑛,1 (𝑞; ⋅)

 ≍ 𝑞
𝑛𝛼

. (44)

The proof of Theorem 1 is complete.

In order to proveTheorem 2, we need the following result.

Theorem A (see [12]). Let the sequence {𝐿
𝑛
} of positive linear

operators on 𝐶[0, 1] satisfy the following conditions.

(A) The sequence {𝐿
𝑛
(𝑒
2
)} converges to a function 𝐿

∞
(𝑒
2
)

in 𝐶[0, 1], where 𝑒
𝑖
(𝑥) = 𝑥

𝑖, 𝑖 = 0, 1, 2.

(B) The sequence {𝐿
𝑛
(𝑓, 𝑥)}

𝑛≥1
is nonincreasing for any

convex function 𝑓 and for any 𝑥 ∈ [0, 1].

Then there exists an operator 𝐿
∞
on𝐶[0, 1] such that ‖𝐿

𝑛
(𝑓)−

𝐿
∞
(𝑓)‖ → 0 for any 𝑓 ∈ 𝐶[0, 1]. Furthermore,

𝐿𝑛 (𝑓, 𝑥) − 𝐿
∞
(𝑓, 𝑥)

 ≤ 𝑐𝜔
2
(𝑓;√𝜆

𝑛
(𝑥)) , (45)

where 𝜆
𝑛
(𝑥) = 𝐿

𝑛
(𝑒
2
, 𝑥) − 𝐿

∞
(𝑒
2
, 𝑥) and 𝑐 is a constant which

depends only on ‖𝐿
1
(𝑒
0
)‖.

Proof of Theorem 2. From [2], we know that the Lupas 𝑞-
analogues of the Bernstein operators satisfy Condition (B).
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It follows from [19] that, for 𝑞 ∈ (0, 1), {𝑅
𝑛,𝑞
(𝑓; 𝑥)} converges

to 𝑅
∞,𝑞

(𝑓; 𝑥) uniformly in 𝑥 ∈ [0, 1] as 𝑛 → ∞; and

0 ≤ 𝜆
𝑛
(𝑥) = 𝑅

𝑛,𝑞
(𝑡
2

, 𝑥) − 𝑅
∞,𝑞

(𝑡
2

, 𝑥)

= 𝑅
𝑛,𝑞

(𝑡
2

, 𝑥) − lim
𝑛→∞

𝑅
𝑛,𝑞

(𝑡
2

; 𝑥)

=
𝑥 (1 − 𝑥)

[𝑛]
−
𝑥
2

(1 − 𝑥) (1 − 𝑞)

1 − 𝑥 + 𝑥𝑞
(1 −

1

[𝑛]
)

− 𝑥 (1 − 𝑥) (1 − 𝑞) +
𝑥
2

(1 − 𝑥) (1 − 𝑞) 𝑞

1 − 𝑥 + 𝑥𝑞

= 𝑥 (1 − 𝑥) (
1

[𝑛]
− (1 − 𝑞))

+
𝑥
2

(1 − 𝑥) (1 − 𝑞)

1 − 𝑥 + 𝑥𝑞
(

1

[𝑛]
− (1 − 𝑞))

=
𝑥 (1 − 𝑥)

1 − 𝑥 + 𝑥𝑞

(1 − 𝑞) 𝑞
𝑛

1 − 𝑞𝑛
≤ 𝑞
𝑛

.

(46)

Theorem 2 follows from (46) andTheorem A.
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