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Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical
process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical
and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a
process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying
disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a
very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which
affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture
types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM)
and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental
results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system.

1. Introduction

Due to the fact that the process quality is mainly based on
the detection and control of the disturbance, it is customized
to develop various kinds of monitoring and controlling
techniques in the past decade. Statistical process control
(SPC) chart is one of the most commonly used techniques
to monitor and improve the quality of a process. Typically, a
process is considered in an out-of-control statewhen a plotted
point falls outside the control limits or when the SPC charts
exhibit nonrandom or systematic patterns [1].

Themain function of SPC charts is to monitor and detect
the presence of process disturbances when they intrude in
the process. A limitation of using traditional SPC charts is
that they should monitor the independent process outputs
[2–5]. If correlation among process outputs exists, the type I
errors would be increased and the detecting capability of SPC
charts is seriously decreased. However, the correlation does
exist in some continuous and chemical processes [6–10]. One
of the effective ways to deal with the difficulty in monitoring

correlated outputs for SPC applications is to use the engineer-
ing process control (EPC) [11–19]. The use of a suitable EPC
action would produce independent process outputs, and the
problems of charting correlated outputs by SPC charts can be
overcome.

Although EPC provides advantages in helping SPC appli-
cations, little work has been reported on addressing the
deficiencies of integration of SPC/EPC. The use of EPC may
be embedded in the effects of underlying disturbances. That
is, the process disturbance patterns are concealed. It causes
the identification of the disturbance patterns to become
much more difficult [4, 17]. Effective recognition of those
nonrandompatterns is very important because those patterns
are usually associatedwith some specific process disturbances
which antagonistically influence the process [20–22]. For
example, a step-change disturbance may be resulted from the
introduction of new rawmaterials, workers, or machines or a
change in the skill of the operators. A trend disturbance pat-
ternmay be associated with a gradual wearing out or deterio-
ration of a tool. Accordingly, the identification of disturbance
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Figure 1: The process outputs with the presence of a shift disturbance.

patterns for a combined SPC andEPC (i.e., SPC/EPC) process
has become a promising research issue.

Due to their greater generalization ability and superior
performance in practical applications [23–29], this study uses
artificial neural network (ANN) and support vector machine
(SVM) to serve as the classifiers to identify three commonly
observed disturbance patterns [20, 30, 31]. Those three
process disturbance patterns include shift, trend, and cycle
patterns. In this study, we propose the combination of SPC,
EPC, and ANN (i.e., the SEA approach) as well as SPC, EPC,
and SVM (i.e., the SES approach) to overcome the problems
in an SPC/EPC system. Using the proposedmechanisms, this
study is able to effectively identify the underlying process
disturbance patterns in a correlated process. The superiority
of the proposed approaches is addressed with the use of
simulated experiments.

The structure of this study is organized as follows.
Section 2 describes the difficulty of SPC/EPC system for
monitoring a correlated process. The concept of an EPC is
introduced in this section as well. Section 3 discusses the
proposed approaches for identifying the disturbance patterns
for a SPC/EPC system. Section 4presents a series of simulated
experiments which are used to report the performance of the
proposed approaches. The final section reports the research
findings and concludes this study.

2. Process Models and the Problem Statements

The process model without autocorrelation is presented in
Section 2.1. An SPC chart is demonstrated to effectively
detect a disturbance. Section 2.2 introduces the models of
an autocorrelated process and EPC action. The difficulty of
recognition of underlying process disturbance patterns is
reported. Section 2.3 addresses three types of disturbance
models.

2.1. Process Model without Autocorrelation. Suppose that a
process, which has no correlation presented, is modeled as
follows:

𝑌
𝑡+1

= 𝑢 + 𝑎
𝑡+1

, (1)

where 𝑌
𝑡+1

: output deviation at time 𝑡 + 1, 𝑢: process mean
level, and 𝑎

𝑡+1
: white noise at time 𝑡+1.The white noise series

are assumed to be normally and independently distributed
with mean zero and constant variance 𝜎

2

𝑎
.

Without loss of generality, this study assumes that 𝜎2 = 1.
Also, suppose that a shift disturbance (with a shift level of 3)
has intruded into the process after time 101; Figure 1 displays
the results by using a typical SPC chart to monitor such
process. Observing Figure 1, one is able to notice that the SPC
signal is triggered around time 101 (i.e., the value of 𝑌

101
falls

outside of the upper control limit (UCL) and lower control
limit (LCL)). Accordingly, the effectiveness of using an SPC
chart can be apparently observed.

2.2. Process Model with Autocorrelation. Autocorrelation
commonly exists in real processes, and it decreases the
monitoring capability of SPC charts [11, 32–34]. Consider
an autocorrelated process which is well represented by the
following autoregressive model with order 1 model, AR(1)
[19, 31, 35–37]:

𝑌
𝑡+1

= 𝜙𝑌
𝑡
+ 𝑎
𝑡+1

, (2)

where 𝜙 is the unknown parameter and this study arbitrarily
sets 𝜙 = 0.9.

Figure 2 displays the results by using a typical SPC chart
to monitor an autocorrelated process which is represented
by (2). One can observe that the false alarm signal has been
triggered many times since there are no disturbances in this
process. The main reason for such poor monitoring of an
SPC chart is just simply that the autocorrelation was involved
in this process, and it causes the increase in the false alarm
rates. Due to the fact that the monitoring capability would be
decreased when SPC is used in an autocorrelated process, the
EPC is a good alternative method to overcome this difficulty.
Consider the following autocorrelated process with the use of
EPC adjustment [15, 34]:

𝑌
𝑡+1

= 𝑞𝑋
𝑡
+ 𝑑
𝑡+1

, 𝑑
𝑡+1

=
𝑎
𝑡+1

(1 − 𝜙𝐵)
, (3)
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Figure 2: The process outputs with the presence of autocorrelation after time 101.

where 𝑋
𝑡
: deviation from the manipulate variable at time 𝑡,

𝑞: process gain, and it is an unknown parameter, 𝑑
𝑡+1

: noise
at time 𝑡 + 1, and they follow AR(1)model, and 𝐵: backward
shift operator, and it is defined as 𝑌

𝑡
𝐵
𝑗
= 𝑌
𝑡−𝑗

.
Also, the minimummean squared error (MMSE) control

action, one type of EPC, is widely used to tune the process in
(3). The MMSE is described as follows [11, 15, 34]:

𝑋
𝑡
= 𝜙𝑋
𝑡−1

−
𝜙

𝑞
𝑎
𝑡
= 𝜙𝑋
𝑡−1

−
𝜙

𝑞
𝑌
𝑡
. (4)

Substituting (4) into (3), the following relationship holds:

𝑌
𝑡+1

= 𝑎
𝑡+1

. (5)

Equation (4) implies that the process output deviations from
the target follow a sequence of independent white noise.
Accordingly, the traditional SPC charts can be used to
monitor the autocorrelation. Suppose that a disturbance has
intruded into the autocorrelated process (i.e., (3)); then the
process can be modeled as follows:

𝑌
𝑡+1

= 𝑞𝑋
𝑡
+ 𝑑
𝑡+1

+ 𝐷
𝑡+1

, (6)

where𝐷
𝑡+1

is a certain disturbance at time 𝑡 + 1.

2.3. Disturbance Models. The 𝐷
𝑡+1

which is defined in (6)
presents a certain disturbance in a process. In this study, we
consider three types of disturbance models and they include
shift, trend, and cycle disturbances.The corresponding mod-
els are described as follows [35, 38]:

Shift: 𝐷𝑆
𝑡
= 𝐷
𝑡
+ 𝑎
𝑡

Trend: 𝐷𝑇
𝑡
= 𝑡𝑆
𝑡
+ 𝑎
𝑡

Cycle: 𝐷𝐶
𝑡
= sin(

2𝜋𝑡

𝜓
)𝑈
𝑡
+ 𝑎
𝑡
,

(7)

where 𝐷𝑆
𝑡
: shift disturbance value at time 𝑡, 𝐷

𝑡
: level of shift

disturbance, and it is assumed that 𝐷
𝑡
= 3 after shifting, 𝐷𝑇

𝑡
:

trend disturbance value at time 𝑡, 𝑆
𝑡
: trend slope, and it is

assumed to follow a uniform distribution with the range of
(0.05–0.1), 𝐷𝐶

𝑡
: cycle disturbance value at time 𝑡, 𝑈

𝑡
: cycle

amplitude, and it is assumed to follow a uniform distribution
with the range of (1.5–2.5), and 𝜓: cycle period, and it is
assumed 𝜓 = 8.

Figures 1, 3, and 4 show the patterns of those three distur-
bances. Figures 5, 6, and 7 display the results when theMMSE
(i.e., (4)) is used to tune the process with the presence of
those three disturbances. Observing Figures 5, 6, and 7, one
can notice that the recognition of those disturbance patterns
would be a very difficult task. Although there have beenmany
works on systematic pattern recognition [38–42], most of
the existing works are concerned with the recognition of the
single systematic patterns. As a result, they usually assume
that the observed process outputs only possess single basic
type of systematic patterns [40–42].

However, in real control chart applications, the observed
process data may be mixture of patterns where the original
single disturbance pattern was embedded. Compared to the
patterns illustrated in Figures 1, 3, and 4, it can be observed
in Figures 5 and 6 that the mixture patterns are more difficult
to recognize than the single disturbance patterns. Moreover,
in practice, mixture process patterns usually result in serious
performance degradation for pattern classification [20]. Con-
sequently, how to effectively identify disturbance patterns in
the SPC/EPC system is an important and challenging task.

3. Methodology

Because of their classification capability, both SVM andANN
have been increasingly used in many areas. Accordingly,
this study employs those two techniques to recognize the
disturbance patterns in the SPC/EPC systems. In this section,
we present the concept of ANN and SVM.

3.1. Support Vector Machine. The basic idea of SVM can be
briefly described as follows. SVM initially maps the input
vectors into a high dimensional feature space, either linearly
or nonlinearly, which is relevant with the selection of the
kernel function. The input or feature vectors in the feature
space are then classified linearly by a numerically optimized
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Figure 3: The process outputs with the presence of a trend disturbance.
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Figure 4: The process outputs with the presence of a cycle disturbance.

hyperplane, separating the two classes (this can be extended
to multiclass). SVM training always seeks a global optimized
solution and the hyperplane depends only on a subset of
training examples [43].

Let {(𝑥
𝑖
, 𝑦
𝑖
)}
𝑛

𝑖=1
, 𝑥
𝑖
∈ 𝑅
𝑚, 𝑦
𝑖
∈ {−1, 1} be the training

set with input vectors (𝑥
𝑖
) and outputs (𝑦

𝑖
). Here, 𝑛 is the

number of sample observations and 𝑚 is the dimension of
each observation, and 𝑦

𝑖
is known target.The algorithm is to

seek the hyperplane 𝑤 ⋅ 𝑥
𝑖
+ 𝑏 = 0, where 𝑤 is the vector

of hyperplane and 𝑏 is a bias term, to separate the data from
two classes with maximal margin width 2/‖𝑤‖

2, and all the
points under the boundary are named support vector. In
order to optimize the hyperplane, SVM solves the following
optimization problem [43]:

Min Φ (𝑥) =
1

2
‖𝑤‖
2

s.t. 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1, 𝑖 = 1, 2, . . . , 𝑛.

(8)

It is difficult to solve (8). Thus, SVM transforms the
optimization problem to be dual problem by Lagrange
method. The value of 𝛼 in the Lagrange method must be

nonnegative real coefficients. Equation (8) is transformed
into the following constrained form [43]:

Max Φ(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) =

𝑁

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑁

∑

𝑖=1,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝑥
𝑇

𝑖
𝑥
𝑗

s.t.
𝑛

∑

𝑗=1

𝛼
𝑗
𝑦
𝑗
= 0; 0 ≤ 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛.

(9)

In (9), 𝐶 is the penalty factor and determines the degree
of penalty assigned to an error. It can be viewed as a tuning
parameter which can be used to control the trade-off between
maximizing the margin and the classification error. In order
to separate two classes exactly, add a slack variable (𝜉) in the
Lagrange equation to have 𝑦

𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝜉
𝑖
≥ 0. An

objective of slack variable is to increase the flexible buffer of
boundary.

In general, it may not find the linear separate hyperplane
for all application data. For problems that cannot be linearly
separated in the input space, the SVM uses the kernel
method to transform the original input space into a high
dimensional feature space where an optimal linear separating
hyperplane can be found. The common kernel functions are
linear, polynomial, radial basis function (RBF), and sigmoid.
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Figure 5: The results of using MMSE to tune a process with a shift disturbance.
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Figure 6: The results of using MMSE to tune a process with a trend disturbance.

Although several choices for the kernel function are available,
the most widely used kernel function is the RBF which is
defined as [44]

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝛾󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥

𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , 𝛾 ≥ 0, (10)

where 𝛾 denotes thewidth of theRBF.Consequently, theRBF
is employed in this study and the multiclass SVM method is
used in this study [45].

3.2. Artificial Neural Network. ANN can be classified into
two different categories, feedforward networks and feedback
networks [46]. The nodes in the ANN can be divided into
three layers: the input layer, the output layer, and one or
more hidden layers.The nodes in the input layer receive input
signals from an external source and the nodes in the output
layer provide the target output signals.

The output of each neuron in the input layer is the same
as the input to that neuron. For each neuron 𝑗 in the hidden
layer and neuron 𝑘 in the output layer, the net inputs are given
by

net
𝑗
= ∑

𝑖

𝑤
𝑗𝑖
× 𝑜
𝑖
, net

𝑘
= ∑

𝑗

𝑤
𝑘𝑗
× 𝑜
𝑗
, (11)

where 𝑖(𝑗) is a neuron in the previous layer, 𝑜
𝑖
(𝑜
𝑗
) is the output

of node 𝑖(𝑗), and 𝑤
𝑗𝑖
(𝑤
𝑘𝑗
) is the connection weight from

neuron 𝑖(𝑗) to neuron 𝑗(𝑘).The neuron outputs are given by

𝑜
𝑖
= net
𝑖
,

𝑜
𝑗
=

1

1 + exp−(net𝑗+𝜃𝑗)
= 𝑓
𝑗
(net
𝑗
, 𝜃
𝑗
) ,

𝑜
𝑘
=

1

1 + exp−(net𝑘+𝜃𝑘)
= 𝑓
𝑘
(net
𝑘
, 𝜃
𝑘
) ,

(12)

where net
𝑗
(net
𝑘
) is the input signal from the external source

to the node 𝑗(𝑘) in the input layer and 𝜃
𝑗
(𝜃
𝑘
) is the bias. The

transformation function shown in (12) is called a sigmoid
function. Because this is one of the most commonly utilized
functions, it is applied in this study.

The generalized delta rule is the conventional technique
used to derive the connection weights of the feedforward
network [46]. Initially, a set of random numbers is assigned
to the connection weights. Then, to determine the pattern 𝑝

with a target output vector 𝑡
𝑝
= [𝑡
𝑝1
, 𝑡
𝑝2
, . . . , 𝑡

𝑝𝑀
]
𝑇, the sum

of the minimized squared error is given by

𝐸
𝑝
=

1

2

𝑀

∑

𝑗=1

(𝑡
𝑝𝑗
− 𝑜
𝑝𝑗
)
2

, (13)
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Figure 7: The results of using MMSE to tune a process with a cycle disturbance.

Table 1: AIR for the proposed models (i.e., recognition of shift and trend disturbances).

Proposed approach Structures or parameters Shift Trend AIR
SES 𝐶 = 0.0625; 𝛾 = 32 0.986 0.826 90.60%

SEA

{2-2-1} 0.984 0.824 90.40%
{2-3-1} 0.984 0.822 90.30%
{2-4-1} 0.984 0.822 90.30%
{2-5-1} 0.988 0.822 90.50%
{2-6-1} 0.988 0.822 90.50%

where 𝑀 is the number of output nodes. By minimizing
the error 𝐸

𝑝
using the technique of gradient descent, the

connection weights can be updated by using the following
equations:

Δ𝑤
𝑗𝑖
(𝑝) = 𝜂𝛿

𝑝𝑗
𝑜
𝑝𝑗
+ 𝛼Δ𝑤

𝑗𝑖
(𝑝 − 1) , (14)

where for output nodes

𝛿
𝑝𝑗

= (𝑡
𝑝𝑗
− 𝑜
𝑝𝑗
) 𝑜
𝑝𝑗
(1 − 𝑜

𝑝𝑗
) , (15)

and for other nodes

𝛿
𝑝𝑗

= (∑

𝑘

𝛿
𝑝𝑘

∗ 𝑤
𝑘𝑗
)𝑜
𝑝𝑗
(1 − 𝑜

𝑝𝑗
) . (16)

Note that the learning rate affects the network’s generalization
and the learning speed to a great extent.

4. Experimental Results

This study combines the methodologies of SEA and SES to
recognize the types of underlying disturbances for a SPC/EPC
system. Suppose a stochastic process is represented in (6) in
which 𝑞 = 0.5, 𝜙 = 0.9, and the variance of the white noise
is 1. This autocorrelated process is fine-tuned with the use of
MMSE control action (4). After time 101, a shift, a trend, or a
cycle disturbance has intruded in the process.

To use the proposed approaches, this study designs the
structure of both SVM and ANN models. In addition, this

study considers two cases for recognizing the disturbance
patterns. While the first case is the combinations of any two
disturbances that would be introduced in the process, the
second case is the combination of those three disturbances
that would occur in the process. In the case of any two types
of disturbances in a process, this study includes 2000 and
1000 data vectors for training and testing stages, respectively.
The first 1000 training data vectors are from one of the two
disturbances and the remaining 1000 data vectors are from
the other disturbances. The testing data structure is the same
as the training stage structure. That is, the first 500 data
vectors are involved with one disturbance and the remaining
500 data vectors are from the other disturbances.The ratio of
2 : 1 for training and testing data vectors are still applied to the
case of three disturbances.

The inputs to SVM and ANN were the MMSE action, 𝑋,
and the process outputs, 𝑌. The outputs consist of one node,
𝑍. This output node indicates the prediction of the process
status. The value of 1, 2, or 3 indicates that the underlying
disturbance is shift, trend, or cycle, respectively. For SVM
design, since the RBF kernel function is adopted in this study,
the performance of SVM is mainly affected by the setting of
parameters of two parameters, 𝐶 and 𝛾. There are no general
rules for the choice of 𝐶 and 𝛾. The grid search method uses
exponentially growing sequences of𝐶 and 𝛾 to identify good
parameters. The parameter set of 𝐶 and 𝛾 which generates
the highest correct classification rate is considered to be ideal
set. In the ANN design, this study defines the term of {𝑛

𝑖
−

𝑛
ℎ
− 𝑛
𝑜
} as the number of neurons in the input layer, number

of neurons in the hidden layer, and number of neurons in
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Table 2: AIR for the proposed models (i.e., recognition of shift and cycle disturbances).

Proposed approach Structures or parameters Shift Cycle AIR
SES 𝐶 = 0.25; 𝛾 = 0.0625 0.842 0.770 80.60%

SEA

{2-2-1} 0.902 0.706 80.40%
{2-3-1} 0.902 0.706 80.40%
{2-4-1} 0.904 0.710 80.70%
{2-5-1} 0.904 0.710 80.70%
{2-6-1} 0.902 0.710 80.60%

Table 3: AIR for the proposed models (i.e., recognition of trend and cycle disturbances).

Proposed approach Structures or parameters Trend Cycle AIR
SES 𝐶 = 16; 𝛾 = 16 0.882 0.966 92.40%

SEA

{2-2-1} 0.886 0.970 92.80%
{2-3-1} 0.860 0.996 92.80%
{2-4-1} 0.860 0.996 92.80%
{2-5-1} 0.860 0.996 92.80%
{2-6-1} 0.860 0.996 92.80%

the output layer, respectively. The hidden nodes in ANN was
set to range from (2𝑛 − 2) to (2𝑛 + 2), where n is the number
of input variables.

In the case of recognition for combination of two dis-
turbances, Tables 1, 2, and 3 list the accurate identification
rate (AIR) values for the setting of SVM and various setting
of ANN topologies. From Table 1, it can be found that both
of the {2-5-1} and the {2-6-1} designs have the highest AIR
for the proposed SEA approach. That is, when the shift
and/or trend disturbances exist in an SPC/EPC system,
the SEA model with either {2-5-1} or {2-6-1} design could
have a 90.50% chance to accurately recognize the type of
underlying disturbance. Also, the proposed SES model with
the parameter setting of 𝐶 = 0.0625 and 𝛾 = 32 could have
a 90.60% chance to accurately recognize the type of under-
lying disturbance. From Table 2, it can be observed that
both SES and SEA approaches provide 80.60% and 80.70%
chances to accurately recognize the types of shift and/or cycle
disturbances in an SPC/EPC system. Table 3 indicates that
both SES and SEA approaches provide 92.40% and 92.80%
chances to accurately recognize the types of shift and/or cycle
disturbances in an SPC/EPC system.

In the case of recognition for all three disturbances in an
SPC/EPC system, Table 4 displays the AIR for the setting of
SVM and various setting of ANN topologies. From Table 4,
it can be found that both SES and SEA approaches provide
78.22% and 77.33% chances to accurately recognize the types
of shift, trend, and cycle disturbances in the SPC/EPC
system. Actually, it can be seen that the proposed SES and
SEA approaches perform well in recognizing the underlying
disturbances. The performance for the proposed approaches
does not have significant differences, and the performance
can be considered to be satisfactory.

5. Conclusions

Theuse of SPC chart for continuous improvement is an effec-
tive strategy for loweringmanufacturing costs and improving
product value. However, the autocorrelation usually exists in
the real manufacturing process, and it causes the increase
of false alarm signals of SPC chart. The integration of SPC
and EPC has been reported as an alternative to monitor
and control the autocorrelated process. Although the EPC
compensation may be able to overcome the autocorrelation
problems, it causes the underlying disturbance patterns to
be embedded. Accordingly, it becomes very difficult to rec-
ognize the types of underlying disturbances in an SPC/EPC
system.

This study proposes the SES and SEA mechanisms to
recognize the types of underlying process disturbances.Three
commonly seen disturbances are used in this study for evalu-
ating the performance of the proposedmethod. Experimental
results showed that the proposed schemes are able to produce
the satisfactory AIR rate in the tested data sets. According
to the experimental results, it can be concluded that the pro-
posed schemes can effectively recognize disturbance patterns
in an SPC/EPC system.

In addition to the three types of disturbances which
were discussed in this study, there exist other disturbances.
For example, the systematic or stratification can also be
observed in the process. An attempt to recognize more
types of disturbances would be a valuable contribution to
this area of research. Also, the issue of recognition of the
disturbance patterns for the multivariate systems can be
extended as the future research direction [47, 48]. Finally,
because more disturbance patterns need to be recognized,
the extreme learning machine (ELM) classification scheme is
under investigation.
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Table 4: AIR for the proposed models (i.e., recognition of all three disturbances).

Proposed approach Structures or parameters Shift Trend Cycle AIR
SES 𝐶 = 8; 𝛾 = 16; 0.746 0.792 0.808 78.20%

SEA

{2-2-1} 0.746 0.782 0.782 77.00%
{2-3-1} 0.740 0.786 0.786 77.07%
{2-4-1} 0.740 0.786 0.786 77.07%
{2-5-1} 0.740 0.790 0.786 77.20%
{2-6-1} 0.728 0.784 0.808 77.33%

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partially supported by the National Science
Council of Taiwan, Grant no. NSC 102-2221-E-030-019. The
author also gratefully acknowledges the helpful comments
and suggestions of the reviewers, which have improved the
presentation.

References

[1] W. Hachicha and A. Ghorbel, “A survey of control-chart
pattern-recognition literature (1991–2010) based on a new
conceptual classification scheme,” Computers and Industrial
Engineering, vol. 63, no. 1, pp. 204–222, 2012.

[2] D. C. Montgomery and C. M. Mastrangelo, “Some statistical
process control for autocorrelation data (with discussion),”
Journal of Quality Technology, vol. 23, no. 3, pp. 179–193, 1991.

[3] S. Bisgaard and M. Kulahci, “Quality quandaries: the effect
of autocorrelation on statistical process control procedures,”
Quality Engineering, vol. 17, no. 3, pp. 481–489, 2005.

[4] Y. E. Shao, C.-J. Lu, and C.-C. Chiu, “A fault detection system
for an autocorrelated process using SPC/EPC/ANN AND
SPC/EPC/SVM schemes,” International Journal of Innovative
Computing, Information andControl, vol. 7, no. 9, pp. 5417–5428,
2011.

[5] J. G. Requeijo and J. Cordeiro, “Implementation of the statistical
process control with autocorrelated data in an automotive
manufacturer,” International Journal of Industrial and Systems
Engineering, vol. 13, no. 3, pp. 325–344, 2013.

[6] B. Wu and J.-B. Yu, “A neural network ensemble model for
on-line monitoring of process mean and variance shifts in
correlated processes,” Expert Systems with Applications, vol. 37,
no. 6, pp. 4058–4065, 2010.

[7] C. W. Zobel, D. F. Cook, and Q. J. Nottingham, “An augmented
neural network classification approach to detecting mean shifts
in correlated manufacturing process parameters,” International
Journal of Production Research, vol. 42, no. 4, pp. 741–758, 2004.

[8] R.-S. Guh, “Real-time recognition of control chart patterns in
autocorrelated processes using a learning vector quantization
network-based approach,” International Journal of Production
Research, vol. 46, no. 14, pp. 3959–3991, 2008.

[9] C.M.Wright, D. E. Booth, andM. Y. Hu, “Joint estimation: SPC
method for short-run autocorrelated data,” Journal of Quality
Technology, vol. 33, no. 3, pp. 365–378, 2001.

[10] D.W. Apley and J. Shi, “TheGLRT for statistical process control
of autocorrelated processes,” IIE Transactions, vol. 31, no. 12, pp.
1123–1134, 1999.

[11] Y. E. Shao, “Integrated application of the cumulative score
control chart and engineering process control,” Statistica Sinica,
vol. 8, no. 1, pp. 239–252, 1998.

[12] G. Box and T. Kramer, “Statistical process monitoring and feed-
back adjustment—a discussion,” Technometrics, vol. 34, no. 3,
pp. 251–285, 1992.

[13] Y. E. Shao andC.C.Chih, “Developing identification techniques
with the integrated use of SPC/EPC and neural networks,”
Quality and Reliability Engineering International, vol. 15, no. 4,
pp. 287–294, 1999.

[14] W. Jiang and K.-L. Tsui, “SPC monitoring of MMSE- and PI-
controlled processes,” Journal of Quality Technology, vol. 34, no.
4, pp. 384–398, 2002.

[15] Y. E. Shao, G. C. Runger, J. Haddock, andW. A.Wallace, “Adap-
tive controllers to integrate SPC and EPC,” Communications in
Statistics B: Simulation and Computation, vol. 28, no. 1, pp. 13–
36, 1999.

[16] F. Tsung and K.-L. Tsui, “Amean-shift pattern study on integra-
tion of SPC and APC for process monitoring,” IIE Transactions,
vol. 35, no. 3, pp. 231–242, 2003.

[17] C.-C. Chiu, Y. E. Shao, T.-S. Lee, and K.-M. Lee, “Identification
of process disturbance using SPC/EPC and neural networks,”
Journal of Intelligent Manufacturing, vol. 14, no. 3-4, pp. 379–
388, 2003.

[18] C.-J. Lu, C.-M. Wu, C.-J. Keng, and C.-C. Chiu, “Integrated
application of SPC/EPC/ICA and neural networks,” Interna-
tional Journal of Production Research, vol. 46, no. 4, pp. 873–893,
2008.

[19] G. Box and S. Narasimhan, “Rethinking statistics for quality
control,” Quality Engineering, vol. 22, no. 2, pp. 60–72, 2010.

[20] C.-J. Lu, Y. E. Shao, and P.-H. Li, “Mixture control chart pat-
terns recognition using independent component analysis and
support vector machine,” Neurocomputing, vol. 74, no. 11, pp.
1908–1914, 2011.

[21] Y. E. Shao, C.-J. Lu, and Y.-C. Wang, “A hybrid ICA-SVM
approach for determining the quality variables at fault in a
multivariate process,” Mathematical Problems in Engineering,
vol. 2012, Article ID 284910, 12 pages, 2012.

[22] C. J. Lu, Y. E. Shao, and C. C. Li, “Recognition of concurrent
control chart patterns by integrating ICA and SVM,” Applied
Mathematics & Information Sciences, vol. 8, no. 2, pp. 681–689,
2014.

[23] Y. E. Shao and C.-D. Hou, “Change point determination for a
multivariate process using a two-stage hybrid scheme,” Applied
Soft Computing Journal, vol. 13, no. 3, pp. 1520–1527, 2013.



Abstract and Applied Analysis 9

[24] Y. E. Shao and C.-D. Hou, “Fault identification in industrial
processes using an integrated approach of neural network and
analysis of variance,”Mathematical Problems in Engineering, vol.
2013, Article ID 516760, 7 pages, 2013.

[25] Y. E. Shao, C.-J. Lu, and C.-D. Hou, “Hybrid soft computing
schemes for the prediction of import demand of crude oil
in Taiwan,” Mathematical Problems in Engineering, vol. 2014,
Article ID 257947, 11 pages, 2014.

[26] Y. E. Shao, “Body fat percentage prediction using intelligent
hybrid approaches,” The Scientific World Journal, vol. 2014,
Article ID 383910, 8 pages, 2014.

[27] Y. E. Shao, C. D. Hou, and C. C. Chiu, “Hybrid intelligent
modeling schemes for heart disease classification,” Applied Soft
Computing, vol. 14, pp. 47–52, 2014.

[28] Y. E. Shao and C. D. Hou, “Hybrid artificial neural networks
modeling for faults identification of a stochastic multivariate
process,” Abstract and Applied Analysis, vol. 2013, Article ID
386757, 10 pages, 2013.

[29] Y. E. Shao, “Prediction of currency volume issued in taiwan
using a hybrid artificial neural network and multiple regression
approach,” Mathematical Problems in Engineering, vol. 2013,
Article ID 676742, 9 pages, 2013.

[30] W. Dai, Y. E. Shao, and C.-J. Lu, “Incorporating feature selection
method into support vector regression for stock index forecast-
ing,”Neural Computing and Applications, vol. 23, no. 6, pp. 1551–
1561, 2013.

[31] S.-Y. Lin, R.-S. Guh, and Y.-R. Shiue, “Effective recognition of
control chart patterns in autocorrelated data using a support
vector machine based approach,” Computers and Industrial
Engineering, vol. 61, no. 4, pp. 1123–1134, 2011.

[32] C.M.Mastrangelo andD.C.Montgomery, “SPCwith correlated
observations for the chemical and process industries,” Quality
and Reliability Engineering International, vol. 11, no. 2, pp. 79–
89, 1995.

[33] F. W. Faltin, C. M. Mastrangelo, G. C. Runger, and T. P.
Ryan, “Considerations in the monitoring of autocorrelated and
independent data,” Journal of Quality Technology, vol. 29, no. 2,
pp. 131–133, 1997.

[34] J. F. MacGregor, T. J. Harris, and J. D. Wright, “Duality between
the control of processes subject to randomly occurring deter-
ministic disturbances and ARIMA stochastic disturbances,”
Technometrics, vol. 26, no. 4, pp. 389–397, 1984.

[35] J. Arkat, S. T. A. Niaki, and B. Abbasi, “Artificial neural networks
in applying MCUSUM residuals charts for 𝐴𝑅(1) processes,”
AppliedMathematics and Computation, vol. 189, no. 2, pp. 1889–
1901, 2007.

[36] A. D. Karaoglan and G. M. Bayhan, “A regression control chart
for autocorrelated processes,” International Journal of Industrial
and Systems Engineering, vol. 16, no. 2, pp. 238–256, 2014.

[37] A. D. Karaoglan, “An integrated neural network structure for
recognizing autocorrelated and trending processes,”Mathemat-
ical and Computational Applications, vol. 16, no. 2, pp. 514–523,
2011.

[38] S. K. Gauri and S. Chakraborty, “Feature-based recognition of
control chart patterns,” Computers and Industrial Engineering,
vol. 51, no. 4, pp. 726–742, 2006.

[39] R.-S. Guh and J. D. T. Tannock, “Recognition of control
chart concurrent patterns using a neural network approach,”
International Journal of Production Research, vol. 37, no. 8, pp.
1743–1765, 1999.

[40] S. K. Gauri and S. Chakraborty, “Recognition of control chart
patterns using improved selection of features,” Computers and
Industrial Engineering, vol. 56, no. 4, pp. 1577–1588, 2009.

[41] R.-S. Guh and Y.-R. Shiue, “On-line identification of control
chart patterns using self-organizing approaches,” International
Journal of Production Research, vol. 43, no. 6, pp. 1225–1254,
2005.

[42] C.-H. Wang and W. Kuo, “Identification of control chart
patterns using wavelet filtering and robust fuzzy clustering,”
Journal of Intelligent Manufacturing, vol. 18, no. 3, pp. 343–350,
2007.

[43] V.N. Vapnik,TheNature of Statistical LearningTheory, Springer,
Berlin, Germany, 2000.

[44] V. Cherkassky and Y. Ma, “Practical selection of SVM parame-
ters and noise estimation for SVM regression,”Neural Networks,
vol. 17, no. 1, pp. 113–126, 2004.

[45] C.-W. Hsu and C.-J. Lin, “A comparison of methods for mul-
ticlass support vector machines,” IEEE Transactions on Neural
Networks, vol. 13, no. 2, pp. 415–425, 2002.

[46] B. Cheng and D. M. Titterington, “Neural networks: a review
from a statistical perspective,” Statistical Science, vol. 9, no. 1, pp.
2–30, 1994.

[47] S. T. A. Niaki andM.Davoodi, “Designing amultivariate-multi-
stage quality control system using artificial neural networks,”
International Journal of Production Research, vol. 47, no. 1, pp.
251–271, 2009.

[48] H. B. Hwarng and Y. Wang, “Shift detection and source identi-
fication in multivariate autocorrelated processes,” International
Journal of Production Research, vol. 48, no. 3, pp. 835–859, 2010.


