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The aim of this paper is to obtain some new integral type fixed point theorems for nonself weakly compatible mappings in
symmetric spaces satisfying generalized (𝜓, 𝜑)-contractive conditions employing the common limit range property. We furnish
some interesting examples which support our main theorems. Our results generalize and extend some recent results contained in
Imdad et al. (2013) to symmetric spaces. Consequently, a host of metrical common fixed theorems are generalized and improved.
In the process, we also derive a fixed point theorem for four finite families of mappings which can be utilized to derive common
fixed point theorems involving any number of finite mappings.

1. Introduction

The celebrated Banach contraction principle is indeed the
most fundamental result ofmetrical fixed point theory, which
states that a contraction mapping of a complete metric space
into itself has a unique fixed point. This theorem is very effec-
tively utilized to establish the existence of solutions of non-
linear Volterra integral equations, Fredholm integral equa-
tions, and nonlinear integrodifferential equations in Banach
spaces besides supporting the convergence of algorithms
in computational mathematics. In [1], Hicks and Rhoades
proved some common fixed point theorems in symmetric
spaces and showed that a general probabilistic structure
admits a compatible symmetric or semimetric.

The study of common fixed points for noncompatible
mappings is equally interesting due to Pant [2]. Jungck [3]
generalized the idea of weakly commuting pair of mappings
due to Sessa [4] by introducing the notion of compatible
mappings and showed that compatible pair of mappings

commutes on the set of coincidence points of the involved
mappings. In 1998, Jungck and Rhoades [5] introduced the
notion of weakly compatible mappings in nonmetric spaces.
For more details on systematic comparisons and illustrations
of these described notions, we refer to Singh and Tomar
[6] and Murthy [7]. Afterwards, Al-Thagafi and Shahzad [8]
introduced an even weaker notion which they called occa-
sionally weak compatibility. Many authors (see, e.g., [9–12])
used this notion to obtain common fixed point results.
Recently, Ðorić et al. [13] showed that, for single-valued
mappings, the condition of occasionally weak compatibility
reduces to weak compatibility in the case of a unique point of
coincidence (and a unique common fixed point) of the given
mappings. However, for hybrid pairs of maps, this is not the
case.

On the other hand, in 2002, Aamri and El Moutawakil
[14] introduced the notion of property (E.A) which is a
special case of tangential property due to Sastry and Krishna
Murthy [15]. Later on, Liu et al. [16] initiated the notion of
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common property (E.A) for hybrid pairs of mappings which
contained property (E.A). In this continuation, Imdad et al.
[17] and Soliman et al. [18] extended the results of Sastry
and Krishna Murthy [15] and Pant [19] to symmetric spaces
by utilizing the weak compatible property with common
property (E.A). Since the notions of property (E.A) and
common property (E.A) always require the completeness
(or closedness) of underlying subspaces for the existence of
common fixed point, hence Sintunavarat and Kumam [20]
coined the idea of “common limit range property” which
relaxes the requirement of completeness (or closedness)
of the underlying subspace. Afterward, Imdad et al. [21]
extended the notion of common limit range property to two
pairs of self-mappings and proved some fixed point theorems
in Menger and metric spaces. Most recently, Karapınar et al.
[22] utilized the notion of common limit range property and
showed that the new notion buys certain typical conditions
utilized by Pant [19] up to a pair of mappings on the cast of a
relatively more natural absorbing property due to Gopal et al.
[23].

The concept of weak contraction was introduced by
Alber and Guerre-Delabriere [24] in 1997 wherein authors
introduced the following notion for mappings defined on a
Hilbert space𝐻.

Consider the following set of real functions:

Φ = {𝜑 : [0, +∞) 󳨀→ [0, +∞) : 𝜑 is lower

semi-continuous and 𝜑
−1

({0}) = {0}} .

(1)

Amapping𝑇 : 𝑋 → 𝑋 is called a𝜑-weak contraction if there
exists a function 𝜑 ∈ Φ such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) − 𝜑 (𝑑 (𝑥, 𝑦)) , ∀𝑥, 𝑦 ∈ 𝑋. (2)

Alber and Guerre-Delabriere [24] also showed that each
𝜑-weak contraction on a Hilbert space has a unique fixed
point. Thereafter, Rhoades [25] showed that the results con-
tained in [24] are also valid for any Banach space. In partic-
ular, he generalized the Banach contraction principle which
follows in case one chooses 𝜑(𝑡) = (1 − 𝑘)𝑡.

In 2002, Branciari [26] firstly studied the integral ana-
logue of Banach’s contraction principle. Some interesting
results can be easily seen in [27–32]. Most recently, Vetro
et al. [33] proved some integral type fixed point results for
mappings in metric spaces employing common limit range
property. Zhang and Song [34] proved a common fixed point
theorem for twomappings by using 𝜑-weak contraction.This
result was extended by Ðorić [35] and Dutta and Choudhury
[36] to a pair of (𝜓, 𝜑)-weak contractive mappings. However,
the main fixed point theorem for a self-mapping satisfying
(𝜓, 𝜑)-weak contractive condition contained in Dutta and
Choudhury [36] is given below, but, before that, we consider
the following set of real functions:

Ψ = {𝜓 : [0, +∞) 󳨀→ [0, +∞) : 𝜓 is continuous

nondecreasing and 𝜓
−1

({0}) = {0}} .

(3)

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a self-mapping satisfying

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) − 𝜑 (𝑑 (𝑥, 𝑦)) , (4)

for some 𝜓 ∈ Ψ and 𝜑 ∈ Φ and all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has a
unique fixed point in𝑋.

The object of this paper is to prove some integral type
common fixed point theorems for two pairs of nonself
weakly compatible mappings satisfying generalized (𝜓, 𝜑)-
contractive conditions by using the common limit range
property in symmetric spaces. We give some illustrative
examples to highlight the superiority of our results over
several results existing in the literature. As an extension of
our main result, we state some fixed point theorems for six
mappings and four finite families of mappings in symmetric
spaces by using the notion of the pairwise commuting
mappings which is studied by Imdad et al. [37].

2. Preliminaries

A common fixed point result generally involves conditions
on commutativity, continuity, and contraction along with
a suitable condition on the containment of range of one
mapping into the range of the other. Hence, one is always
required to improve one or more of these conditions in
order to prove a new common fixed point theorem. It can be
observed that in the case of two mappings 𝐴, 𝑆 : 𝑋 → 𝑋,
where (𝑋, 𝑑) is metric space (or symmetric space), one can
consider the following classes of mappings for the existence
and uniqueness of common fixed points:

𝑑 (𝐴𝑥, 𝐴𝑦) ≤ 𝐹 (𝑚 (𝑥, 𝑦)) , (5)

where 𝐹 is some function and𝑚(𝑥, 𝑦) is the maximum of one
of the sets. Thus,

𝑀
5

𝐴,𝑆

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝐴𝑥) , 𝑑 (𝑆𝑦, 𝐴𝑦) ,

𝑑 (𝑆𝑥, 𝐴𝑦) , 𝑑 (𝑆𝑦, 𝐴𝑥)} ,

𝑀
4

𝐴,𝑆

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑆𝑦) , 𝑑 (𝑆𝑥, 𝐴𝑥) , 𝑑 (𝑆𝑦, 𝐴𝑦) ,

1

2
(𝑑 (𝑆𝑥, 𝐴𝑦) + 𝑑 (𝑆𝑦, 𝐴𝑥))} ,

𝑀
3

𝐴,𝑆

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑆𝑦) ,
1

2
(𝑑 (𝑆𝑥, 𝐴𝑥) + 𝑑 (𝑆𝑦, 𝐴𝑦)) ,

1

2
(𝑑 (𝑆𝑥, 𝐴𝑦) + 𝑑 (𝑆𝑦, 𝐴𝑥))} .

(6)

A further possible generalization is to consider four
mappings instead of two and ascertain analogous common
fixed point theorems. In the case of four mappings𝐴, 𝐵, 𝑆, 𝑇 :
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𝑋 → 𝑋, where (𝑋, 𝑑) is metric space (or symmetric space),
the corresponding sets take the form

𝑀
5

𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑇𝑦) , 𝑑 (𝑆𝑥, 𝐴𝑥) , 𝑑 (𝑇𝑦, 𝐵𝑦) ,

𝑑 (𝑆𝑥, 𝐵𝑦) , 𝑑 (𝑇𝑦, 𝐴𝑥)} ,

𝑀
4

𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑇𝑦) , 𝑑 (𝑆𝑥, 𝐴𝑥) , 𝑑 (𝑇𝑦, 𝐵𝑦) ,

1

2
(𝑑 (𝑆𝑥, 𝐵𝑦) + 𝑑 (𝑇𝑦, 𝐴𝑥))} ,

𝑀
3

𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑥, 𝑇𝑦) ,
1

2
(𝑑 (𝑆𝑥, 𝐴𝑥) + 𝑑 (𝑇𝑦, 𝐵𝑦)) ,

1

2
(𝑑 (𝑆𝑥, 𝐵𝑦) + 𝑑 (𝑇𝑦, 𝐴𝑥))} .

(7)

In this case (5) is usually replaced by

𝑑 (𝐴𝑥, 𝐵𝑦) ≤ 𝐹 (𝑚 (𝑥, 𝑦)) , (8)

where𝑚(𝑥, 𝑦) is the maximum of one of the𝑀-sets.
Similarly, we can define the 𝑀-sets for six mappings

𝐴, 𝐵,𝐻, 𝑅, 𝑆, 𝑇 : 𝑋 → 𝑋, where (𝑋, 𝑑) is metric space (or
symmetric space), as

𝑀
5

𝐴,𝐵,𝐻,𝑅,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑅𝑥, 𝑇𝐻𝑦) , 𝑑 (𝑆𝑅𝑥, 𝐴𝑥) ,

𝑑 (𝑇𝐻𝑦, 𝐵𝑦) ,

𝑑 (𝑆𝑅𝑥, 𝐵𝑦) , 𝑑 (𝑇𝐻𝑦,𝐴𝑥)} ,

𝑀
4

𝐴,𝐵,𝐻,𝑅,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑅𝑥, 𝑇𝐻𝑦) ,

𝑑 (𝑆𝑅𝑥, 𝐴𝑥) , 𝑑 (𝑇𝐻𝑦, 𝐵𝑦) ,

1

2
(𝑑 (𝑆𝑅𝑥, 𝐵𝑦) + 𝑑 (𝑇𝐻𝑦,𝐴𝑥))} ,

𝑀
3

𝐴,𝐵,𝐻,𝑅,𝑆,𝑇

(𝑥, 𝑦) = {𝑑 (𝑆𝑅𝑥, 𝑇𝐻𝑦) ,

1

2
(𝑑 (𝑆𝑅𝑥, 𝐴𝑥) + 𝑑 (𝑇𝐻𝑦, 𝐵𝑦)) ,

1

2
(𝑑 (𝑆𝑅𝑥, 𝐵𝑦) + 𝑑 (𝑇𝐻𝑦,𝐴𝑥))} ,

(9)

and the contractive condition is again in the form (8).
By using different arguments of control functions, Rade-

nović et al. [38] proved some common fixed point results
for two and three mappings by using (𝜓, 𝜑)-weak contractive
conditions and improved several known metrical fixed point
theorems. Motivated by these results, we prove some com-
mon fixed point theorems for two pairs of weakly compatible
mappings with common limit range property satisfying
generalized (𝜓, 𝜑)-weak contractive conditions.Many known
fixed point results are improved, especially the ones proved
in [38] and also contained in the references cited therein. We

also obtain a fixed point theorem for four finite families of
self-mappings. Some related results are also derived besides
furnishing illustrative examples.

The following definitions and results will be needed in the
sequel.

A symmetric on a set𝑋 is a function 𝑑 : 𝑋×𝑋 → [0,∞)

satisfying the following conditions:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for 𝑥, 𝑦 ∈ 𝑋,
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋.

Let 𝑑 be a symmetric on a set 𝑋. For 𝑥 ∈ 𝑋 and 𝜖 > 0,
let B(𝑥, 𝜖) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝜖}. A topology 𝜏(𝑑) on
𝑋 is defined as follows: 𝑈 ∈ 𝜏(𝑑) if and only if, for each
𝑥 ∈ 𝑈, there exists an 𝜖 > 0 such that B(𝑥, 𝜖) ⊂ 𝑈. A
subset 𝑆 of 𝑋 is a neighbourhood of 𝑥 ∈ 𝑋 if there exists
𝑈 ∈ 𝜏(𝑑) such that 𝑥 ∈ 𝑈 ⊂ 𝑆. A symmetric 𝑑 is a
semimetric if, for each 𝑥 ∈ 𝑋 and each 𝜖 > 0, B(𝑥, 𝜖)

is a neighbourhood of 𝑥 in the topology 𝜏(𝑑). A symmet-
ric (resp., semimetric) space (𝑋, 𝑑) is a topological space
whose topology 𝜏(𝑑) on 𝑋 is induced by symmetric (resp.,
semimetric) 𝑑. The difference of a symmetric and a metric
comes from the triangle inequality. Since a symmetric space
is not essentially Hausdorff, therefore in order to prove
fixed point theorems some additional axioms are required.
The following axioms, which are available in Wilson [39],
Aliouche [40], and Imdad et al. [17], are relevant to this
presentation.

From now on symmetric space will be denoted by (𝑋, 𝑑)
whereas a nonempty arbitrary set will be denoted by 𝑌.

(𝑊
3

) Given {𝑥
𝑛

}, 𝑥, and 𝑦 in 𝑋, lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑥) = 0 and
lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑦) = 0 imply 𝑥 = 𝑦 [39].
(𝑊
4

) Given {𝑥
𝑛

}, {𝑦
𝑛

}, and 𝑥 in 𝑋, lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑥) = 0

and lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑦
𝑛

) = 0 imply lim
𝑛→∞

𝑑(𝑦
𝑛

, 𝑥) = 0

[39].
(𝐻𝐸) Given {𝑥

𝑛

}, {𝑦
𝑛

}, and 𝑥 in 𝑋, lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑥) = 0

and lim
𝑛→∞

𝑑(𝑦
𝑛

, 𝑥) = 0 imply lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑦
𝑛

) = 0

[40].
(1𝐶) A symmetric 𝑑 is said to be 1-continuous if

lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑥) = 0 implies lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑦) =

𝑑(𝑥, 𝑦), where {𝑥
𝑛

} is a sequence in 𝑋 and 𝑥, 𝑦 ∈ 𝑋

[41].
(𝐶𝐶) A symmetric 𝑑 is said to be continuous if

lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑥) = 0 and lim
𝑛→∞

𝑑(𝑦
𝑛

, 𝑦) = 0

imply lim
𝑛→∞

𝑑(𝑥
𝑛

, 𝑦
𝑛

) = 𝑑(𝑥, 𝑦), where {𝑥
𝑛

} and
{𝑦
𝑛

} are sequences in𝑋 and 𝑥, 𝑦 ∈ 𝑋 [41].

Here, it is observed that (𝐶𝐶) ⇒ (1𝐶), (𝑊
4

) ⇒ (𝑊
3

),
and (1𝐶) ⇒ (𝑊

3

) but the converse implications are not
true. In general, all other possible implications amongst (𝑊

3

),
(1𝐶), and (𝐻𝐸) are not true. For detailed description, we refer
an interesting note of Cho et al. [42] which contained some
illustrative examples. However, (𝐶𝐶) implies all the remain-
ing four conditions, namely, (𝑊

3

), (𝑊
4

), (𝐻𝐸), and (1𝐶).
Employing these axioms, several authors proved common
fixed point theorems in the framework of symmetric spaces
(see [22, 43–48]).
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Definition 2. Let (𝐴, 𝑆) be a pair of self-mappings defined on
a nonempty set 𝑋 equipped with a symmetric 𝑑. Then the
mappings 𝐴 and 𝑆 are said to be

(1) commuting if 𝐴𝑆𝑥 = 𝑆𝐴𝑥 for all 𝑥 ∈ 𝑋,
(2) compatible [3] if lim

𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛

, 𝑆𝐴𝑥
𝑛

) = 0 for
each sequence {𝑥

𝑛

} in 𝑌 such that lim
𝑛→∞

𝐴𝑥
𝑛

=

lim
𝑛→∞

𝑆𝑥
𝑛

,
(3) noncompatible [2] if there exists a sequence {𝑥

𝑛

}

in 𝑋 such that lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

but
lim
𝑛→∞

𝑑(𝐴𝑆𝑥
𝑛

, 𝑆𝐴𝑥
𝑛

) is either nonzero or nonexis-
tent,

(4) weakly compatible [5] if they commute at their coinci-
dence points, that is, 𝐴𝑆𝑥 = 𝑆𝐴𝑥 whenever 𝐴𝑥 = 𝑆𝑥,
for some 𝑥 ∈ 𝑋,

(5) satisfied the property (E.A) [14] if there exists a
sequence {𝑥

𝑛

} in 𝑋 such that lim
𝑛→∞

𝐴𝑥
𝑛

=

lim
𝑛→∞

𝑆𝑥
𝑛

= 𝑧, for some 𝑧 ∈ 𝑋.

Any pair of compatible as well as noncompatible self-
mappings satisfies the property (E.A) but a pair of mappings
satisfying the property (E.A) needs not be noncompatible.

Definition 3 (see [16]). Let 𝑌 be an arbitrary set and let 𝑋 be
a nonempty set equipped with symmetric 𝑑. Then the pairs
(𝐴, 𝑆) and (𝐵, 𝑇) of mappings from 𝑌 into𝑋 are said to share
the common property (E.A), if there exist two sequences {𝑥

𝑛

}

and {𝑦
𝑛

} in 𝑌 such that

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= lim
𝑛→∞

𝐵𝑦
𝑛

= lim
𝑛→∞

𝑇𝑦
𝑛

= 𝑧, (10)

for some 𝑧 ∈ 𝑋.

Definition 4 (see [20]). Let 𝑌 be an arbitrary set and let 𝑋
be a nonempty set equipped with symmetric 𝑑. Then the pair
(𝐴, 𝑆) of mappings from 𝑌 into𝑋 is said to have the common
limit range property with respect to the mapping 𝑆 (denoted
by (CLR

𝑆

)) if there exists a sequence {𝑥
𝑛

} in 𝑌 such that

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= 𝑧, (11)

where 𝑧 ∈ 𝑆(𝑌).

Definition 5 (see [21]). Let 𝑌 be an arbitrary set and let 𝑋 be
a nonempty set equipped with symmetric 𝑑. Then the pairs
(𝐴, 𝑆) and (𝐵, 𝑇) of mappings from 𝑌 into 𝑋 are said to have
the common limit range property with respect to mappings 𝑆
and 𝑇, denoted by (CLR

𝑆𝑇

), if there exist two sequences {𝑥
𝑛

}

and {𝑦
𝑛

} in 𝑌 such that

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= lim
𝑛→∞

𝐵𝑦
𝑛

= lim
𝑛→∞

𝑇𝑦
𝑛

= 𝑧, (12)

where 𝑧 ∈ 𝑆(𝑌) ∩ 𝑇(𝑌).

Remark 6. It is clear that (CLR
𝑆𝑇

) property implies the
common property (E.A) but the converse is not true (see [49,
Example 1]).

Definition 7 (see [37]). Two families of self-mappings {𝐴
𝑖

}
𝑚

𝑖=1

and {𝑆
𝑘

}
𝑛

𝑘=1

are said to be pairwise commuting if

(1) 𝐴
𝑖

𝐴
𝑗

= 𝐴
𝑗

𝐴
𝑖

for all 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚},
(2) 𝑆
𝑘

𝑆
𝑙

= 𝑆
𝑙

𝑆
𝑘

for all 𝑘, 𝑙 ∈ {1, 2, . . . , 𝑛},
(3) 𝐴
𝑖

𝑆
𝑘

= 𝑆
𝑘

𝐴
𝑖

for all 𝑖 ∈ {1, 2, . . . , 𝑚} and 𝑘 ∈

{1, 2, . . . , 𝑛}.

3. Results

Now, we state and prove our main results for four mappings
employing the common limit range property in symmetric
spaces. Firstly, we prove the following lemma.

Lemma 8. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑 satisfies
the conditions (𝐶𝐶) whereas 𝑌 is an arbitrary nonempty set
with 𝐴, 𝐵, 𝑆 and 𝑇 : 𝑌 → 𝑋. Suppose that

(1) the pair (𝐴, 𝑆) (or (𝐵, 𝑇)) satisfies the (𝐶𝐿𝑅
𝑆

) (or
(𝐶𝐿𝑅
𝑇

)) property,
(2) 𝐴(𝑌) ⊂ 𝑇(𝑌) (or 𝐵(𝑌) ⊂ 𝑆(𝑌)),
(3) 𝑇(𝑌) (or 𝑆(𝑌)) is a closed subset of𝑋,
(4) {𝐵𝑦

𝑛

} converges for every sequence {𝑦
𝑛

} in 𝑌 whenever
{𝑇𝑦
𝑛

} converges (or {𝐴𝑥
𝑛

} converges for every sequence
{𝑥
𝑛

} in 𝑌 whenever {𝑆𝑥
𝑛

} converges),
(5) there exist 𝜑 ∈ Φ and 𝜓 ∈ Ψ such that for all 𝑥, 𝑦 ∈ 𝑌,

we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) ,

(13)

where

𝑚(𝑥, 𝑦) = max𝑀5
𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦) (14)

and 𝜙 : [0, +∞) → [0, +∞) is a Lebesgue-integrable mapping
which is summable and nonnegative such that

∫
𝜖

0

𝜙 (𝑡) 𝑑𝑡 > 0, (15)

for all 𝜖 > 0.
Then the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (CLR

𝑆𝑇

)

property.

Proof. First, we show that the conclusion of this theorem
holds for first case. Since the pair (𝐴, 𝑆) enjoys the (CLR

𝑆

)

property; therefore there exists a sequence {𝑥
𝑛

} in𝑌 such that

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= 𝑧, (16)

where 𝑧 ∈ 𝑆(𝑌). Since 𝐴(𝑌) ⊂ 𝑇(𝑌), hence for each sequence
{𝑥
𝑛

} there exists a sequence {𝑦
𝑛

} in 𝑌 such that 𝐴𝑥
𝑛

= 𝑇𝑦
𝑛

.
Therefore, by closedness of 𝑇(𝑌),

lim
𝑛→∞

𝑇𝑦
𝑛

= lim
𝑛→∞

𝐴𝑥
𝑛

= 𝑧, (17)

for 𝑧 ∈ 𝑇(𝑌) and in all 𝑧 ∈ 𝑆(𝑌) ∩ 𝑇(𝑌). Thus, in all, we have
𝐴𝑥
𝑛

→ 𝑧, 𝑆𝑥
𝑛

→ 𝑧 and 𝑇𝑦
𝑛

→ 𝑧 as 𝑛 → ∞. Since by
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(4), {𝐵𝑦
𝑛

} converges, in all we need to show that {𝐵𝑦
𝑛

} → 𝑧

as 𝑛 → ∞. Assume this contrary, we get 𝐵𝑦
𝑛

→ 𝑡( ̸= 𝑧) as
𝑛 → ∞. Now, using inequality (13) with = 𝑥

𝑛

, 𝑦 = 𝑦
𝑛

, we
have

𝜓(∫
𝑑(𝐴𝑥

𝑛
,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ,

(18)

where

𝑚(𝑥
𝑛

, 𝑦
𝑛

) = max {𝑑 (𝑆𝑥
𝑛

, 𝑇𝑦
𝑛

) , 𝑑 (𝑆𝑥
𝑛

, 𝐴𝑥
𝑛

) , 𝑑 (𝑇𝑦
𝑛

, 𝐵𝑦
𝑛

) ,

𝑑 (𝑆𝑥
𝑛

, 𝐵𝑦
𝑛

) , 𝑑 (𝑇𝑦
𝑛

, 𝐴𝑥
𝑛

)} .

(19)

Taking limit as 𝑛 → ∞ and using property (𝐶𝐶) in
inequality (18), we get

lim
𝑛→∞

𝜓(∫
𝑑(𝐴𝑥

𝑛
,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ lim
𝑛→∞

𝜓(∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

− lim
𝑛→∞

𝜑(∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ;

(20)

that is,

𝜓(∫
𝑑(𝑧,𝑡)

0

𝜙 (𝑡) 𝑑𝑡)

= 𝜓( lim
𝑛→∞

∫
𝑑(𝐴𝑥

𝑛
,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓( lim
𝑛→∞

∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑( lim
𝑛→∞

∫
𝑚(𝑥

𝑛
,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ,

(21)

where

lim
𝑛→∞

𝑚(𝑥
𝑛

, 𝑦
𝑛

)

= max {𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝑡) , 𝑑 (𝑧, 𝑡) , 𝑑 (𝑧, 𝑧)}

= max {0, 0, 𝑑 (𝑧, 𝑡) , 𝑑 (𝑧, 𝑡) , 0}

= 𝑑 (𝑧, 𝑡) .

(22)

Hence inequality (21) implies

𝜓(∫
𝑑(𝑧,𝑡)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑑(𝑧,𝑡)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑑(𝑧,𝑡)

0

𝜙 (𝑡) 𝑑𝑡) ;

(23)

that is, 𝜑(∫𝑑(𝑧,𝑡)
0

𝜙(𝑡)𝑑𝑡) ≤ 0 and so 𝜑(∫𝑑(𝑧,𝑡)
0

𝜙(𝑡)𝑑𝑡) = 0 and,
by the property of the function 𝜑, we have 𝑑(𝑧, 𝑡) = 0 or
equivalently 𝑧 = 𝑡, which contradicts the hypothesis 𝑡 ̸= 𝑧.
Hence both the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (CLR

𝑆𝑇

)

property.
In the second case, it similar to the first case. So, in order

to avoid repetition, the details of the proof are omitted. This
completes the proof.

Theorem9. Let (𝑋, 𝑑) be a symmetric spacewherein𝑑 satisfies
the conditions (1𝐶) and (𝐻𝐸) whereas 𝑌 is an arbitrary
nonempty set with 𝐴, 𝐵, 𝑆, 𝑇 : 𝑌 → 𝑋, which satisfy the
inequalities (13) and (15) of Lemma 8. Suppose that the pairs
(𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (𝐶𝐿𝑅

𝑆𝑇

) property.Then (𝐴, 𝑆) and
(𝐵, 𝑇) have a coincidence point each. Moreover, if 𝑌 = 𝑋, then
𝐴, 𝐵, 𝑆 and𝑇 have a unique common fixed point provided both
the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible.

Proof. Since the pairs (𝐴, 𝑆) and (𝐵, 𝑇) enjoy the (CLR
𝑆𝑇

)

property, there exist two sequences {𝑥
𝑛

} and {𝑦
𝑛

} in 𝑌 such
that

lim
𝑛→∞

𝑑 (𝐴𝑥
𝑛

, 𝑧) = lim
𝑛→∞

𝑑 (𝑆𝑥
𝑛

, 𝑧) = lim
𝑛→∞

𝑑 (𝐵𝑦
𝑛

, 𝑧)

= lim
𝑛→∞

𝑑 (𝑇𝑦
𝑛

, 𝑧) = 0,
(24)

where 𝑧 ∈ 𝑆(𝑌) ∩ 𝑇(𝑌). It follows from 𝑧 ∈ 𝑆(𝑌) that there
exists a point𝑤 ∈ 𝑌 such that 𝑆𝑤 = 𝑧. We assert that𝐴𝑤 = 𝑧.
If not, then, using inequality (13) with 𝑥 = 𝑤 and 𝑦 = 𝑦

𝑛

, one
obtains

𝜓(∫
𝑑(𝐴𝑤,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ,

(25)

where

𝑚(𝑤, 𝑦
𝑛

) =max {𝑑 (𝑆𝑤, 𝑇𝑦
𝑛

) , 𝑑 (𝑆𝑤, 𝐴𝑤) , 𝑑 (𝑇𝑦
𝑛

, 𝐵𝑦
𝑛

) ,

𝑑 (𝑆𝑤, 𝐵𝑦
𝑛

) , 𝑑 (𝑇𝑦
𝑛

, 𝐴𝑤)} .

(26)

Taking limit as 𝑛 → ∞ and using properties (1𝐶) and (𝐻𝐸)
in inequality (25), one obtains

lim
𝑛→∞

𝜓(∫
𝑑(𝐴𝑤,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ lim
𝑛→∞

𝜓(∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

− lim
𝑛→∞

𝜑(∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ;

(27)
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that is,

𝜓(∫
𝑑(𝐴𝑤,𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

= 𝜓( lim
𝑛→∞

∫
𝑑(𝐴𝑤,𝐵𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓( lim
𝑛→∞

∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑( lim
𝑛→∞

∫
𝑚(𝑤,𝑦

𝑛
)

0

𝜙 (𝑡) 𝑑𝑡) ,

(28)

where
lim
𝑛→∞

𝑚(𝑤, 𝑦
𝑛

)

= max {𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝐴𝑤) , 𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝐴𝑤)}

= max {0, 𝑑 (𝑧, 𝐴𝑤) , 0, 0, 𝑑 (𝑧, 𝐴𝑤)}

= 𝑑 (𝑧, 𝐴𝑤) .

(29)

From inequality (28), one gets

𝜓(∫
𝑑(𝐴𝑤,𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑑(𝐴𝑤,𝑧)

0

𝜙 (𝑡)) − 𝜑(∫
𝑑(𝐴𝑤,𝑧)

0

𝜙 (𝑡)) ,

(30)

so that 𝜑(∫𝑑(𝐴𝑤,𝑧)
0

𝜙(𝑡)𝑑𝑡) = 0; that is, 𝑑(𝐴𝑤, 𝑧) = 0. Hence
𝐴𝑤 = 𝑆𝑤 = 𝑧 which shows that 𝑤 is a coincidence point of
the pair (𝐴, 𝑆).

Also 𝑧 ∈ 𝑇(𝑌), there exists a point V ∈ 𝑌 such that𝑇V = 𝑧.
We assert that 𝐵V = 𝑧. If not, then, using inequality (13) with
𝑥 = 𝑤, 𝑦 = V, we have

𝜓(∫
𝑑(𝑧,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝐴𝑤,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑤,V)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑤,V)

0

𝜙 (𝑡) 𝑑𝑡) ,

(31)

where
𝑚(𝑤, V)

= max {𝑑 (𝑆𝑤, 𝑇V) , 𝑑 (𝑆𝑤, 𝐴𝑤) , 𝑑 (𝑇V, 𝐵V) ,

𝑑 (𝑆𝑤, 𝐵V) , 𝑑 (𝑇V, 𝐴𝑤)}

= max {𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝑧) , 𝑑 (𝑧, 𝐵V) , 𝑑 (𝑧, 𝐵V) , 𝑑 (𝑧, 𝑧)}

= max {0, 0, 𝑑 (𝑧, 𝐵V) , 𝑑 (𝑧, 𝐵V) , 0}

= 𝑑 (𝑧, 𝐵V) .
(32)

Hence inequality (31) implies

𝜓(∫
𝑑(𝑧,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑑(𝑧,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑑(𝑧,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡) ,

(33)

so that 𝜑(∫𝑑(𝑧,𝐵V)
0

𝜙(𝑡)𝑑𝑡) = 0; that is, 𝑑(𝑧, 𝐵V) = 0. Therefore
𝑧 = 𝐵V = 𝑇V which shows that V is a coincidence point of the
pair (𝐵, 𝑇).

Consider 𝑌 = 𝑋. Since the pair (𝐴, 𝑆) is weakly compat-
ible and 𝐴𝑤 = 𝑆𝑤, hence 𝐴𝑧 = 𝐴𝑆𝑤 = 𝑆𝐴𝑤 = 𝑆𝑧. Now
we assert that 𝑧 is a common fixed point of the pair (𝐴, 𝑆). To
accomplish this, using inequality (13) with 𝑥 = 𝑧 and 𝑦 = V,
one gets

𝜓(∫
𝑑(𝐴𝑧,𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝐴𝑧,𝐵V)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑧,V)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑧,V)

0

𝜙 (𝑡) 𝑑𝑡) ,

(34)

where
𝑚(𝑧, V)

= max {𝑑 (𝑆𝑧, 𝑇V) , 𝑑 (𝑆𝑧, 𝐴𝑧) , 𝑑 (𝑇V, 𝐵V) ,

𝑑 (𝑆𝑧, 𝐵V) , 𝑑 (𝑇V, 𝐴𝑧)}

= max {𝑑 (𝐴𝑧, 𝑧) , 𝑑 (𝐴𝑧, 𝐴𝑧) , 𝑑 (𝑧, 𝑧) ,

𝑑 (𝐴𝑧, 𝑧) , 𝑑 (𝑧, 𝐴𝑧)}

= 𝑑 (𝐴𝑧, 𝑧) .

(35)

From inequality (34), we have

𝜓(∫
𝑑(𝐴𝑧,𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑑(𝐴𝑧,𝑧)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑑(𝐴𝑧,𝑧)

0

𝜙 (𝑡) 𝑑𝑡) ,

(36)

so that 𝜑(∫𝑑(𝐴𝑧,𝑧)
0

𝜙(𝑡)𝑑𝑡) = 0; that is, 𝑑(𝐴𝑧, 𝑧) = 0. Hence we
have𝐴𝑧 = 𝑧 = 𝑆𝑧which shows that 𝑧 is a commonfixed point
of the pair (𝐴, 𝑆).

Also the pair (𝐵, 𝑇) is weakly compatible and 𝐵V = 𝑇V;
hence 𝐵𝑧 = 𝐵𝑇V = 𝑇𝐵V = 𝑇𝑧. Using inequality (13) with
𝑥 = 𝑤 and 𝑦 = 𝑧, we have

𝜓(∫
𝑑(𝑧,𝐵𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

= 𝜓(∫
𝑑(𝐴𝑤,𝐵𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑤,𝑧)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑤,𝑧)

0

𝜙 (𝑡) 𝑑𝑡) ,

(37)
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where

𝑚(𝑤, 𝑧) = max {𝑑 (𝑆𝑤, 𝑇𝑧) , 𝑑 (𝑆𝑤, 𝐴𝑤) , 𝑑 (𝑇𝑧, 𝐵𝑧) ,

𝑑 (𝑆𝑤, 𝐵𝑧) , 𝑑 (𝑇𝑧, 𝐴𝑤)}

= max {𝑑 (𝑧, 𝐵𝑧) , 𝑑 (𝑧, 𝑧) , 𝑑 (𝐵𝑧, 𝐵𝑧) ,

𝑑 (𝑧, 𝐵𝑧) , 𝑑 (𝐵𝑧, 𝑧)}

= 𝑑 (𝑧, 𝐵𝑧) .

(38)

Hence inequality (37) implies

𝜓(∫
𝑑(𝑧,𝐵𝑧)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑑(𝑧,𝐵𝑧)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑑(𝑧,𝐵𝑧)

0

𝜙 (𝑡) 𝑑𝑡) ,

(39)

so that 𝜑(∫𝑑(𝑧,𝐵𝑧)
0

𝜙(𝑡)𝑑𝑡) = 0; that is, 𝑑(𝑧, 𝐵𝑧) = 0. Therefore,
𝐵𝑧 = 𝑧 = 𝑇𝑧 which shows that 𝑧 is a common fixed point
of the pair (𝐵, 𝑇). Hence 𝑧 is a common fixed point of the
pairs (𝐴, 𝑆) and (𝐵, 𝑇). Uniqueness of common fixed point is
an easy consequence of the inequality (13).This concludes the
proof.

Now, we furnish an illustrative example which demon-
strates the validity of the hypotheses and degree of generality
of Theorem 9.

Example 10. Consider 𝑋 = 𝑌 = [2, 11) equipped with the
symmetric 𝑑(𝑥, 𝑦) = (𝑥 − 𝑦)

2 for all 𝑥, 𝑦 ∈ 𝑋, which also
satisfies (1𝐶) and (𝐻𝐸). Define the mappings 𝐴, 𝐵, 𝑆 and 𝑇

by

𝐴𝑥 = {
2, if 𝑥 ∈ {2} ∪ (5, 11) ,

5, if 𝑥 ∈ (2, 5] ;

𝐵𝑥 = {
2, if 𝑥 ∈ {2} ∪ (5, 11) ,

4, if 𝑥 ∈ (2, 5] ;

𝑆𝑥 =

{{{

{{{

{

2, if 𝑥 = 2,

6, if 𝑥 ∈ (2, 5] ;
3𝑥 + 1

8
, if 𝑥 ∈ (5, 11) ;

𝑇𝑥 =

{{

{{

{

2, if 𝑥 = 2,

8, if 𝑥 ∈ (2, 5] ;

𝑥 − 3, if 𝑥 ∈ (5, 11) .

(40)

Then 𝐴(𝑋) = {2, 5}, 𝐵(𝑋) = {2, 4}, 𝑇(𝑋) = [2, 8] and 𝑆(𝑋) =
[2, 17/4) ∪ {6}. Now, consider the sequences {𝑥

𝑛

} = {5 + 1/𝑛}

and {𝑦
𝑛

} = {2}. Then

lim
𝑛→∞

𝐴𝑥
𝑛

= lim
𝑛→∞

𝑆𝑥
𝑛

= lim
𝑛→∞

𝐵𝑦
𝑛

= lim
𝑛→∞

𝑇𝑦
𝑛

= 2 ∈ 𝑆 (𝑋) ∩ 𝑇 (𝑋) ;

(41)

that is, both the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the (CLR
𝑆𝑇

)

property.

Let Lebesgue-integrable 𝜙 : [0, +∞) → [0, +∞) defined
by 𝜙(𝑡) = 𝑒

𝑡. Take 𝜓 ∈ Ψ and 𝜑 ∈ Φ given by 𝜓(𝑡) = 2𝑡 and
𝜑(𝑡) = (2/7)𝑡. In order to check the contractive condition (13),
consider the following nine cases:

(i) 𝑥 = 𝑦 = 2,

(ii) 𝑥 = 2, 𝑦 ∈ (2, 5],

(iii) 𝑥 = 2, 𝑦 ∈ (5, 11),

(iv) 𝑥 ∈ (2, 5], 𝑦 = 2,

(v) 𝑥, 𝑦 ∈ (2, 5],

(vi) 𝑥 ∈ (2, 5], 𝑦 ∈ (5, 11),

(vii) 𝑥 ∈ (5, 11), 𝑦 = 2,

(viii) 𝑥 ∈ (5, 11), 𝑦 ∈ (2, 5],

(ix) 𝑥, 𝑦 ∈ (5, 11).

In the cases (i), (iii), (vii), and (ix), we get that𝑑(𝐴𝑥, 𝐵𝑦) =
0 and (13) is trivially satisfied.

In the cases (ii) and (viii), we have 𝑑(𝐴𝑥, 𝐵𝑦) = 4 and
𝑚(𝑥, 𝑦) = 36. Now we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡) = 𝜓(∫
4

0

𝑒
𝑡

𝑑𝑡)

= 𝜓 (𝑒
4

− 1)

= 2 (𝑒
4

− 1)

≤
12

7
(𝑒
36

− 1)

= 2 (𝑒
36

− 1) −
2

7
(𝑒
36

− 1)

= 𝜓(∫
36

0

𝑒
𝑡

𝑑𝑡) − 𝜑(∫
36

0

𝑒
𝑡

𝑑𝑡)

= 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) .

(42)

Therefore, we get the fact that (13) holds.
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In the case (iv), we get 𝑑(𝐴𝑥, 𝐵𝑦) = 9 and 𝑚(𝑥, 𝑦) = 16.
Now we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡) = 𝜓(∫
9

0

𝑒
𝑡

𝑑𝑡)

= 𝜓 (𝑒
9

− 1)

= 2 (𝑒
9

− 1)

≤
12

7
(𝑒
16

− 1)

= 2 (𝑒
16

− 1) −
2

7
(𝑒
16

− 1)

= 𝜓(∫
16

0

𝑒
𝑡

𝑑𝑡) − 𝜑(∫
16

0

𝑒
𝑡

𝑑𝑡)

= 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) .

(43)

This implies that (13) holds.
In the case (vi), we have 𝑑(𝐴𝑥, 𝐵𝑦) = 9 and 𝑑(𝑆𝑥, 𝐵𝑦) =

16. Now we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡) = 𝜓(∫
9

0

𝑒
𝑡

𝑑𝑡)

= 𝜓 (𝑒
9

− 1)

= 2 (𝑒
9

− 1)

≤
12

7
(𝑒
16

− 1)

=
12

7
(𝑒
𝑑(𝑆𝑥,𝐵𝑦)

− 1)

≤
12

7
(𝑒
𝑚(𝑥,𝑦)

− 1)

= 2 (𝑒
𝑚(𝑥,𝑦)

− 1) −
2

7
(𝑒
𝑚(𝑥,𝑦)

− 1)

= 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) .

(44)

This shows that (13) holds.

Finally, in the case (v), we obtain 𝑑(𝐴𝑥, 𝐵𝑦) = 1 and
𝑚(𝑥, 𝑦) = 16. Now we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡) = 𝜓(∫
1

0

𝑒
𝑡

𝑑𝑡)

= 𝜓 (𝑒 − 1)

= 2 (𝑒 − 1)

≤
12

7
(𝑒
16

− 1)

= 2 (𝑒
16

− 1) −
2

7
(𝑒
16

− 1)

= 𝜓(∫
16

0

𝑒
𝑡

𝑑𝑡) − 𝜑(∫
16

0

𝑒
𝑡

𝑑𝑡)

= 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

− 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) ;

(45)

that is, the contractive condition (13) holds.
Hence, all the conditions ofTheorem 9 are satisfied and 2

is a unique common fixed point of the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
which also remains a point of coincidence as well. Here, one
may notice that all the involved mappings are discontinuous
at their unique common fixed point 2.

Corollary 11. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the condition (𝐶𝐶)whereas𝑌 is an arbitrary nonempty
set with 𝐴, 𝐵, 𝑆, 𝑇 : 𝑌 → 𝑋 satisfying all the hypotheses
of Lemma 8. Then (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point
each. Moreover, if 𝑌 = 𝑋, then 𝐴, 𝐵, 𝑆 and 𝑇 have a unique
common fixed point provided both the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
are weakly compatible.

Proof. Owing to Lemma 8, it follows that the pairs (𝐴, 𝑆) and
(𝐵, 𝑇) enjoy the (CLR

𝑆𝑇

) property. Hence, all the conditions
of Theorem 9 are satisfied, and 𝐴, 𝐵, 𝑆 and 𝑇 have a unique
common fixed point provided both the pairs (𝐴, 𝑆) and (𝐵, 𝑇)
are weakly compatible.

Remark 12. The conclusions of Lemma 8, Theorem 9,
and Corollary 11 remain true if we choose 𝑚(𝑥, 𝑦) =

max𝑀4
𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦) or𝑚(𝑥, 𝑦) = max𝑀3
𝐴,𝐵,𝑆,𝑇

(𝑥, 𝑦).

Our next result shows the importance of common limit
range property over common property (E.A).

Theorem 13. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the conditions (1𝐶) and (𝐻𝐸)whereas𝑌 is an arbitrary
nonempty set with 𝐴, 𝐵, 𝑆, 𝑇 : 𝑌 → 𝑋, which satisfy the
inequalities (13) and (15) of Lemma 8. Suppose that

(1) the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the common property
(E.A),

(2) 𝑆(𝑌) and 𝑇(𝑌) are closed subsets of𝑋.
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Then (𝐴, 𝑆) and (𝐵, 𝑇) have a coincidence point each.
Moreover, if 𝑌 = 𝑋, then𝐴, 𝐵, 𝑆 and 𝑇 have a unique common
fixed point provided both the pairs (𝐴, 𝑆) and (𝐵, 𝑇) are weakly
compatible.

Proof. Since the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy the common
property (E.A), there exist two sequences {𝑥

𝑛

} and {𝑦
𝑛

} in 𝑌
such that

lim
𝑛→∞

𝑑 (𝐴𝑥
𝑛

, 𝑧) = lim
𝑛→∞

𝑑 (𝑆𝑥
𝑛

, 𝑧) = lim
𝑛→∞

𝑑 (𝐵𝑦
𝑛

, 𝑧)

= lim
𝑛→∞

𝑑 (𝑇𝑦
𝑛

, 𝑧) = 0,
(46)

for some 𝑧 ∈ 𝑋. Since 𝑆(𝑌) and 𝑇(𝑌) are closed subsets of𝑋,
therefore 𝑧 ∈ 𝑆(𝑌)∩𝑇(𝑌). Since 𝑧 ∈ 𝑆(𝑌), there exists a point
𝑤 ∈ 𝑌 such that 𝑆𝑤 = 𝑧. Also, since 𝑧 ∈ 𝑇(𝑌), there exists a
point V ∈ 𝑋 such that 𝑇V = 𝑧. The rest of the proof runs on
the lines of the proof of Theorem 9.

Remark 14. The conclusions of Theorem 13 remain true if
condition (2) of Theorem 13 is replaced by one of the
following conditions:

(2)
󸀠

𝐴(𝑌) ⊂ 𝑇(𝑌) and 𝐵(𝑌) ⊂ 𝑆(𝑌), where 𝐴(𝑌) and 𝐵(𝑌)
denote the closure of ranges of themappings𝐴 and 𝐵,

(2)
󸀠󸀠

𝐴(𝑌) and 𝐵(𝑌) are closed subsets of 𝑋 provided
𝐴(𝑌) ⊂ 𝑇(𝑌) and 𝐵(𝑌) ⊂ 𝑆(𝑌).

By setting𝐴,𝐵, 𝑆 and𝑇 suitably, we can deduce corollaries
involving two and three self-mappings. As a sample, we can
deduce the following corollary involving two self-mappings.

Corollary 15. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the conditions (1𝐶) and (𝐻𝐸)whereas𝑌 is an arbitrary
nonempty set with 𝐴, 𝑆 : 𝑌 → 𝑋. Suppose that

(1) the pair (𝐴, 𝑆) satisfies the (𝐶𝐿𝑅
𝑆

) property,
(2) there exist 𝜑 ∈ Φ and 𝜓 ∈ Ψ such that, for all 𝑥, 𝑦 ∈ 𝑌,

we have

𝜓(∫
𝑑(𝐴𝑥,𝐴𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) ,

(47)

where 𝑚(𝑥, 𝑦) = max𝑀𝑘
𝐴,𝑆

(𝑥, 𝑦), 𝑘 ∈ {3, 4, 5}, and 𝜙 :

[0, +∞) → [0, +∞) is a Lebesgue-integrable mapping which
is summable and nonnegative such that (15) holds.

Then (𝐴, 𝑆) has a coincidence point. Moreover, if 𝑌 = 𝑋,
then𝐴 and 𝑆 have a unique common fixed point in𝑋 provided
the pair (𝐴, 𝑆) is weakly compatible.

As an application of Theorem 9, we have the following
result involving four finite families of self-mappings.

Theorem 16. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the conditions (1𝐶) and (𝐻𝐸)whereas𝑌 is an arbitrary
nonempty set with {𝐴

𝑖

}
𝑚

𝑖=1

, {𝐵
𝑗

}
𝑛

𝑗=1

, {𝑆
𝑟

}
𝑝

𝑟=1

, {𝑇
𝑙

}
𝑞

𝑙=1

: 𝑌 →

𝑋 satisfying the inequalities (13) and (15) of Lemma 8 where
𝐴 = 𝐴

1

𝐴
2

⋅ ⋅ ⋅ 𝐴
𝑚

, 𝐵 = 𝐵
1

𝐵
2

⋅ ⋅ ⋅ 𝐵
𝑛

, 𝑆 = 𝑆
1

𝑆
2

⋅ ⋅ ⋅ 𝑆
𝑝

and
𝑇 = 𝑇

1

𝑇
2

⋅ ⋅ ⋅ 𝑇
𝑞

. Suppose that the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy
the (𝐶𝐿𝑅

𝑆𝑇

) property. Then (𝐴, 𝑆) and (𝐵, 𝑇) have a point of
coincidence each.

Moreover, if 𝑌 = 𝑋, then {𝐴
𝑖

}
𝑚

𝑖=1

, {𝐵
𝑗

}
𝑛

𝑗=1

, {𝑆
𝑟

}
𝑝

𝑟=1

, and
{𝑇
𝑙

}
𝑞

𝑙=1

have a unique common fixed point provided the families
({𝐴
𝑖

}, {𝑆
𝑟

}) and ({𝐵
𝑗

}, {𝑇
𝑙

}) commute pairwise where 𝑖 ∈

{1, 2, . . . , 𝑚}, 𝑟 ∈ {1, 2, . . . , 𝑝}, 𝑗 ∈ {1, 2, . . . , 𝑛}, and 𝑙 ∈

{1, 2, . . . , 𝑞}.

Now, we indicate that Theorem 16 can be utilized to
derive common fixed point theorems for any finite number of
mappings. As a sample, we can derive a common fixed point
theorem for six mappings by setting two families of two
members while setting the rest two of single members.

Corollary 17. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the conditions (1𝐶) and (𝐻𝐸)whereas𝑌 is an arbitrary
nonempty set with 𝐴, 𝐵,𝐻, 𝑅, 𝑆, 𝑇 : 𝑌 → 𝑋. Suppose that

(1) the pairs (𝐴, 𝑆𝑅) and (𝐵, 𝑇𝐻) share the (𝐶𝐿𝑅
(𝑆𝑅)(𝑇𝐻)

)

property,
(2) there exist 𝜑 ∈ Φ and 𝜓 ∈ Ψ such that, for all 𝑥, 𝑦 ∈ 𝑌,

we have

𝜓(∫
𝑑(𝐴𝑥,𝐵𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡)) − 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) ,

(48)

where 𝑚(𝑥, 𝑦) = max𝑀𝑘
𝐴,𝐵,𝐻,𝑅,𝑆,𝑇

(𝑥, 𝑦), 𝑘 ∈ {3, 4, 5}, and 𝜙 :

[0, +∞) → [0, +∞) is a Lebesgue-integrable mapping which
is summable and nonnegative such that (15) holds.

Then (𝐴, 𝑆𝑅) and (𝐵, 𝑇𝐻) have a coincidence point each.
Moreover, if 𝑌 = 𝑋, then 𝐴, 𝐵, 𝐻, 𝑅, 𝑆 and 𝑇 have a unique
common fixed point provided 𝐴𝑆 = 𝑆𝐴, 𝐴𝑅 = 𝑅𝐴, 𝑆𝑅 = 𝑅𝑆,
𝐵𝑇 = 𝑇𝐵, 𝐵𝐻 = 𝐻𝐵, and 𝑇𝐻 = 𝐻𝑇.

By setting 𝐴
1

= 𝐴
2

= ⋅ ⋅ ⋅ = 𝐴
𝑚

= 𝐴, 𝐵
1

= 𝐵
2

= ⋅ ⋅ ⋅ =

𝐵
𝑛

= 𝐵, 𝑆
1

= 𝑆
2

= ⋅ ⋅ ⋅ = 𝑆
𝑝

= 𝑆, and 𝑇
1

= 𝑇
2

= ⋅ ⋅ ⋅ = 𝑇
𝑞

= 𝑇

in Theorem 16, one gets the following corollary.

Corollary 18. Let (𝑋, 𝑑) be a symmetric space wherein 𝑑

satisfies the conditions (1𝐶) and (𝐻𝐸)whereas𝑌 is an arbitrary
nonempty set with 𝐴, 𝐵, 𝑆, 𝑇 : 𝑌 → 𝑋. Suppose that

(1) the pairs (𝐴𝑚, 𝑆𝑝) and (𝐵𝑛, 𝑇𝑞) share the (𝐶𝐿𝑅
(𝑆

𝑝
𝑇

𝑞
)

)

property, where𝑚, 𝑛, 𝑝, 𝑞 are fixed positive integers,
(2) there exist 𝜑 ∈ Φ and 𝜓 ∈ Ψ such that, for all 𝑥, 𝑦 ∈ 𝑌,

we have

𝜓(∫
𝑑(𝐴

𝑚

𝑥,𝐵

𝑛

𝑦)

0

𝜙 (𝑡) 𝑑𝑡)

≤ 𝜓(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) − 𝜑(∫
𝑚(𝑥,𝑦)

0

𝜙 (𝑡) 𝑑𝑡) ,

(49)
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where 𝑚(𝑥, 𝑦) = max𝑀𝑘
𝐴

𝑚
,𝐵

𝑛
,𝑆

𝑝
,𝑇

𝑞(𝑥, 𝑦), 𝑘 ∈ {3, 4, 5}, and 𝜙 :

[0, +∞) → [0, +∞) is a Lebesgue-integrable mapping which
is summable and nonnegative such that (15) holds.

Moreover, if 𝑌 = 𝑋, then 𝐴, 𝐵, 𝑆 and 𝑇 have a unique
common fixed point provided 𝐴𝑆 = 𝑆𝐴 and 𝐵𝑇 = 𝑇𝐵.

Remark 19. The above Corollary 18 is a slight but partial gen-
eralization of Theorem 9 as the commutativity requirements
(i.e., 𝐴𝑆 = 𝑆𝐴 and 𝐵𝑇 = 𝑇𝐵) in this corollary are relatively
stronger as compared to weak compatibility in Theorem 9.
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