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This paper investigates the robust synchronization problem for a class of fractional-order hyperchaotic systems subjected to
unmatched uncertainties and input nonlinearity. Based on the sliding mode control (SMC) technique, this approach only
uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control
implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched
perturbations, respectively, even with input nonlinearity.

1. Introduction

Synchronization, which means “designing a system whose
behavior mimics that of another chaotic system,” has become
more and more interesting topic to engineering and science
communities [1]. Fractional calculus as an extension of
ordinary calculus has a 300-year-old mathematical topic;
the applications of the fractional calculus to physics and
engineering are just a recent focus of interest [2, 3]. It
has been recognized that many dynamical systems can be
more precisely modeled by using the means of the fractional
calculus, such as mechanics [4, 5], image processing [6],
viscoelastic materials [7], electrical circuits [8], and pop-
ulation models [9]. Meanwhile, it has been demonstrated
that some dynamics of fractional-order systems can behave
chaotically or hyperchaotically [10, 11]. Due to the potential
applications in physics and engineering, many methods have
been presented to achieve synchronization for fractional-
order chaotic systems such as sliding mode control [12, 13],
𝐻
∞ controlmethod [14], and active control [15], amongmany

others [16, 17]. Unfortunately, all synchronization schemes
in the above-mentioned papers for fractional-order chaotic
systems are derived on the basis of the ideal assumption

of control input or matched external perturbations. As well
known, the control schemes for robust chaos synchronization
can be realized by electronic components such as opera-
tional amplifier (OPA), resistor, and capacitor. However, in
practice, there always exists nonlinearity in the control input
including saturation, backlash, and dead zone in OPA or
electromechanical devices. Therefore the implementation of
control inputs of practical systems is frequently subjected
to nonlinearity as a result of physical limitations. It has
been shown that input nonlinearity might cause a serious
degradation of the system performance, a reduced rate of
response, and, in a worst-case scenario, system failure if
the controller is not well designed [18, 19]. Therefore, its
effect cannot be ignored in analysis of control design and
realization for chaos synchronization. On the other hand,
for designing a robust control, sliding mode control is
frequently adopted due to its inherent advantages of easy
realization, fast response, good transient performance, and
being insensitive to variation in plant parameters or external
disturbances [20, 21]. However, the property of robustness
to external perturbations is just for the case of matched
condition. The dynamics of controlled systems in the sliding
manifold is still influenced by unmatched perturbations.
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Therefore, it still needs to discuss the effect of unmatched
external perturbations for fractional-order chaotic systems in
the sliding mode.

Motivated by the above discussions, this paper considers
the robust synchronization problem for robust synchroniza-
tion of fractional-order hyperchaotic systems subjected to
input nonlinearity and unmatched external perturbations.
To achieve this goal, a new fraction-integer integral (FII)
switching surface is newly proposed such that it becomes
easy to analyze the stability of the closed-loop nonlinear
chaotic systems. Having established the fractional switching
surface, a sliding mode controller is designed.This controller
is robust to the nonlinear input and guarantees the occur-
rence of sliding motion of the controlled fractional-order
chaotic system. In our design, a single controller is used
enough to realize synchronization, which reduces the cost
and complexity for synchronization control implementation.
As expected, the synchronization error states can be driven
to zero with the matched perturbations or into predictable
bounds with unmatched perturbations.

This paper is organized as follows. Section 2 describes the
problem formulation, FII switching surface, and the sliding
mode controller design; a numerical example to demonstrate
the effectiveness of the proposed method is included in
Section 3. In Section 4, we draw conclusions on the new
results. Throughout this paper, it is noted that notation 𝑀𝑇
is used to denote the transpose for a square matrix𝑀, while,
for𝑥 ∈ R𝑛, ‖𝑥‖ = (𝑥𝑇𝑥)1/2 denotes the Euclidean normof the
vector. Note that, for a scalar 𝜎, sign(𝜎) is the sign function of
𝜎; when 𝜎 > 0, sign(𝜎) = 1; when 𝜎 = 0, sign(𝜎) = 0; when
𝜎 < 0, sign(𝜎) = −1.

2. System Description and
Problem Formulation

Consider a four-dimensional fractional-order hyperchaotic
system; the dynamics is described by the following equations
[22]:

𝐷
𝑞

𝑥 = 𝑎𝑥 − 𝑦,

𝐷
𝑞

𝑦 = 𝑥 − 𝑦𝑧
2

,

𝐷
𝑞

𝑧 = −𝑏
1
𝑦 − 𝑏
2
𝑧 − 𝑏
3
𝑤,

𝐷
𝑞

𝑤 = 𝑧 + 𝑐𝑤,

(1)

where 𝑎, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑐 are system parameters. 𝐷𝑞 denotes

the Riemann-Liouville fractional derivative of order 𝑞 ∈ 𝑅

defined as follows [23]:

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (1 − 𝑞)

𝑑

𝑑𝑡
∫

𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)
𝑞
𝑑𝜏. (2)

Also Γ(𝑞) is the Euler Gamma function given as

Γ (𝑞) = ∫

∞

0

V𝑞−1𝑒V𝑑V. (3)

The order denoted by 𝑞 is subject to 0 < 𝑞 < 1.

In this paper, we focus on system (1) since it is a hyper-
chaotic system with more complicated dynamical behav-
ior. Also, methods developed herein are also applicable
to other fractional chaotic systems. System (1) generates
chaotic oscillations when the system parameters and initial
condition are set as 𝑎 = 0.56, 𝑏

1
= 1.0, 𝑏

2
= 1.0,

𝑏
3
= 6.0, 𝑐 = 0.8, and 𝑞 = 0.95 and initial condition

[𝑥(0) 𝑦(0) 𝑧(0) 𝑤(0)] = [0.5 0.3 −0.1 0.1]. Figure 1
shows the typical chaotic attractors.This paper aims to design
a robust synchronization controller such that the response
system, even with unmatched external perturbations and
input nonlinearity, is able to mimic the behavior of the drive
chaotic system. Let the drive system and response system be
defined below, respectively.

Drive system is

𝐷
𝑞

𝑥
𝑚
= 𝑎𝑥
𝑚
− 𝑦
𝑚
,

𝐷
𝑞

𝑦
𝑚
= 𝑥
𝑚
− 𝑦
𝑚
𝑧
2

𝑚
,

𝐷
𝑞

𝑧
𝑚
= −𝑏
1
𝑦
𝑚
− 𝑏
2
𝑧
𝑚
− 𝑏
3
𝑤
𝑚
,

𝐷
𝑞

𝑤
𝑚
= 𝑧
𝑚
+ 𝑐𝑤
𝑚
,

(4)

and response system is

𝐷
𝑞

𝑥
𝑠
= 𝑎𝑥
𝑠
− 𝑦
𝑠
+ 𝑑
1
,

𝐷
𝑞

𝑦
𝑠
= 𝑥
𝑠
− 𝑦
𝑠
𝑧
2

𝑠
+ 𝑑
2
+ 𝜙 (𝑢) ,

𝐷
𝑞

𝑧
𝑠
= −𝑏
1
𝑦
𝑠
− 𝑏
2
𝑧
𝑠
− 𝑏
3
𝑤
𝑠
+ 𝑑
3
,

𝐷
𝑞

𝑤
𝑠
= 𝑧
𝑠
+ 𝑐𝑤
𝑠
+ 𝑑
4
,

(5)

where 𝑢(𝑡) ∈ 𝑅 is the control input. 𝜙(𝑢(𝑡)) is a continuous
nonlinear function and 𝜙(0) = 0, where 𝜙 : 𝑅 → 𝑅 with the
law 𝑢(𝑡) → 𝜙(𝑢(𝑡)) and inside sector [𝛽

1
𝛽
2
]; that is,

𝛽
2
𝑢
2

(𝑡) ≥ 𝑢 (𝑡) 𝜙 (𝑢 (𝑡)) ≥ 𝛽
1
𝑢
2

(𝑡) , (6)

where 𝛽
1
and 𝛽

2
are nonzero positive constants [19]. A

nonlinear function 𝜙(𝑢(𝑡)) is illustrated in Figure 2. Also
𝑑
𝑖
(𝑡), 𝑖 = 1, 2, 3, 4, are the unavoidable external perturbations

in practical systems and assumed bounded; that is,
𝑑𝑖 (𝑡)

 ≤ 𝛼𝑖, 𝑖 = 1, 2, 3, 4, (7)

where 𝛼
𝑖
> 0 are given. Generally, 𝑑

2
is called the matched

perturbation and 𝑑
𝑖
, 𝑖 = 1, 3, 4, are the unmatched perturba-

tions. Now define the synchronization error as 𝑒
1
= 𝑥
𝑠
− 𝑥
𝑚
,

𝑒
2
= 𝑦
𝑠
− 𝑦
𝑚
, 𝑒
3
= 𝑧
𝑠
− 𝑧
𝑚
, 𝑒
4
= 𝑤
𝑠
− 𝑤
𝑚
, respectively. Then

yield the following error system:

𝐷
𝑞

𝑒
1
= 𝑎𝑒
1
− 𝑒
2
+ 𝑑
1
,

𝐷
𝑞

𝑒
2
= 𝑒
1
− 𝑦
𝑠
𝑧
2

𝑠
+ 𝑦
𝑚
𝑧
2

𝑚
+ 𝑑
2
+ 𝜙 (𝑢) ,

𝐷
𝑞

𝑒
3
= −𝑏
1
𝑒
2
− 𝑏
2
𝑒
3
− 𝑏
3
𝑒
4
+ 𝑑
3
,

𝐷
𝑞

𝑒
4
= 𝑒
3
+ 𝑐𝑒
4
+ 𝑑
4
.

(8)

Obviously, the aim of this work is to propose a slid-
ing mode control law 𝑢(𝑡) subjected to input nonlinearity
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Figure 1: Attractors of the considered fractional-order system: (a) three-dimensional view (𝑥−𝑦−𝑧); (b) three-dimensional view (𝑥−𝑦−𝑤);
(c) three-dimensional view (𝑥 − 𝑧 − 𝑤).
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Figure 2: A scalar nonlinear function 𝜙(𝑢) inside sector [𝛽
1

𝛽
2
].

specified by (6), such that the resulting tracking error state
vector 𝐸 = [𝑒

1
𝑒
2
𝑒
3
𝑒
4
] can be forced to zero or into a

predictable bound when unmatched external perturbations

are present. Accordingly, to achieve the control goal by
using the SMC technique, there exist two basic steps for
the design procedure. The first step is to construct an
appropriate switching surface such that the sliding motion
can result in lim

𝑡→∞
‖𝐸(𝑡)‖ ≤ 𝜌 and 𝜌 ≥ 0 are a

predictable constant depending on the external perturba-
tions, which will be explained later. The second step is to
establish a SMC law which can guarantee the attraction
of the sliding manifold even with the input nonlinearity
(6).

2.1. Switching Surface Design of Chaos Synchronization. To
complete the design steps above, we firstly propose a novel
type of FII switching surface as

𝜎 (𝑡) = 𝐼
1−𝑞

𝑒
2
(𝑡) + ∫

𝑡

0

𝐾𝐸 (𝜏) 𝑑𝜏, (9)
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Figure 3: The time response of switching surface 𝜎(𝑡).

where 𝐼1−𝑞𝑒
2
(𝑡) is the Riemann-Liouville fractional integral

of order 1 − 𝑞 given by

𝐼
1−𝑞

𝑒
2
(𝑡) =

1

Γ (1 − 𝑞)
∫

𝑡

0

𝑒
2
(𝜏)

(𝑡 − 𝜏)
𝑞
𝑑𝜏. (10)

Obviously, when the system operates in the sliding mode,
the controlled system satisfies the following conditions [20,
21]:

𝜎 (𝑡) = 0; �̇� (𝑡) = 0. (11)

Then, based on (8)–(11), one can deduce the following result:

𝐷
𝑞

𝐸 = (𝐴 − 𝐵𝐾)𝐸 + 𝐷, (12)

where

𝐸 =

[
[
[

[

𝑒
1

𝑒
2

𝑒
3

𝑒
4

]
]
]

]

; 𝐴 =

[
[
[

[

𝑎 −1 0 0

0 0 0 0

0 −𝑏
1
−𝑏
2
−𝑏
3

0 0 1 𝑐

]
]
]

]

;

𝐵 =

[
[
[

[

0

1

0

0

]
]
]

]

; 𝐾 = [𝑘
1
𝑘
2
𝑘
3
𝑘
4
] ; 𝐷 =

[
[
[

[

𝑑
1

0

𝑑
3

𝑑
4

]
]
]

]

.

(13)

When the system enters into the sliding mode, the system
dynamics is governed by (12). It has been shown that system
(12) without external perturbations is asymptotically stable if
the eigenvalues of the matrix 𝐴 − 𝐵𝐾 satisfy the following
argument stability criterion [24]:

min
𝑖

arg 𝜆𝑖 (𝐴 − 𝐵𝐾)
 > 𝑞

𝜋

2
, 𝑖 = 1, 2, . . . , 𝑛. (14)

By (13), obviously (𝐴, 𝐵) is controllable. Therefore, a param-
eter vector 𝐾 does exist such that the maximum real part
eigenvalue of 𝐴 − 𝐵𝐾 is negative and (14) is satisfied.
Furthermore, we can easily assign the system performance in
the sliding mode just by selecting an appropriate matrix 𝐾
using any pole assignment method.

The solution of the dynamics (12) can be obtained as
follows [23]:

𝐸 (𝑡) = 𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞
𝐸 (𝑡
1
) + ∫

𝑡−𝑡
1

0

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞
𝐷(𝑠) 𝑑𝑠,

(15)

where

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞
= (𝑡 − 𝑡

1
)
𝑞−1

∞

∑

𝑘=0

((𝐴 − 𝐵𝐾)
𝑘
(𝑡 − 𝑡
1
)
𝑘𝑞

Γ ((𝑘 + 1) 𝑞)
)

(16)

is the q-exponential function and represents the transition
matrix of system (12).

From (15), we have

‖𝐸 (𝑡)‖

=



𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞
𝐸 (𝑡
1
) + ∫

𝑡−𝑡
1

0

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞
𝐷 (𝑠) 𝑑𝑠



≤

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞



𝐸 (𝑡1)


+ ‖𝐷 (𝑠)‖



∫

𝑡−𝑡
1

0

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞
𝑑𝑠



≤

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞



𝐸 (𝑡1)


+ ∑

𝑖=1,3,4

(𝛼
𝑖
)



∫

𝑡−𝑡
1

0

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞
𝑑𝑠



.

(17)

Furthermore,

∫

𝑡−𝑡
1

0

𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞
𝑑𝑠

= (𝐴 − 𝐵𝐾)
−1

(𝐸
𝑞,1
((𝐴 − 𝐵𝐾) (𝑡 − 𝑡

1
)
𝑞

) − 𝐼
𝑛
) ,

(18)

where 𝐸
𝑞,1
((𝐴 − 𝐵𝐾)(𝑡 − 𝑡

1
)
𝑞

) denotes the Mittag-Leffler
function defined as [23]

𝐸
𝑞,1
((𝐴 − 𝐵𝐾) (𝑡 − 𝑡

1
)
𝑞

) =

∞

∑

𝑘=0

(𝐴 − 𝐵𝐾)
𝑘
(𝑡 − 𝑡
1
)
𝑘𝑞

Γ (𝑘𝑞 + 1)
. (19)

Since we assign an appropriate matrix 𝐾 such that the argu-
ment stability criterion (14) is satisfied, then lim

𝑡→∞
𝐸
𝑞,1
((𝐴−

𝐵𝐾)(𝑡 − 𝑡
1
)
𝑞

) = 0 and lim
𝑡→∞

𝑒
(𝐴−𝐵𝐾)𝑡

𝑞
= 0. Therefore, from

(17), (18), and (19), we have

lim
𝑡→∞

‖𝐸 (𝑡)‖ ≤ lim
𝑡→∞


𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
)

𝑞



𝐸 (𝑡1)


+ ∑

𝑖=1,3,4

(𝛼
𝑖
) lim
𝑡→∞

∫

𝑡−𝑡
1

0


𝑒
(𝐴−𝐵𝐾)(𝑡−𝑡

1
−𝑠)

𝑞


𝑑𝑠

≤ 𝜌 = ∑

𝑖=1,3,4

(𝛼
𝑖
)

(𝐴 − 𝐵𝐾)

−1

.

(20)

According to the discussion above, we can conclude that
when the fractional-order system is in the sliding manifold,
the tracking error ‖𝐸‖ can converge to a predictable bound 𝜌
relative to ∑

𝑖=1,3,4
𝛼
𝑖
and parameter matrix 𝐾 chosen in the

switching surface (9).
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Figure 4: State responses of controlled drive and response systems: (a) state response of 𝑥
𝑚
, 𝑥
𝑠
; (b) state response of 𝑦

𝑚
, 𝑦
𝑠
; (c) state response

of 𝑧
𝑚
, 𝑧
𝑠
; (d) state response of 𝑤

𝑚
, 𝑤
𝑠
.

2.2. Design of SlidingMode Controller with Input Nonlinearity.
In order to guarantee the occurrence of slidingmanifold even
with the input nonlinearity, we choose a slidingmode control
of the form

𝑢 (𝑡) = −𝜁𝜂 sign (𝜎 (𝑡)) , 𝜁 >
1

𝛽
1

, (21)

where 𝜂 = |𝑒
1
− 𝑦
𝑠
𝑧
2

𝑠
+ 𝑦
𝑚
𝑧
2

𝑚
+ 𝐾𝐸| + 𝛼

2
.

In the following, the proposed scheme (21) will be proved
to be able to derive the uncertain error dynamics (8) onto the
sliding mode 𝜎(𝑡) = 0.

Theorem 1. If the control 𝑢(𝑡) is given by (21), the reaching
condition of expression 𝜎(𝑡)�̇�(𝑡) < 0 of the sliding mode is
satisfied in spite of the input nonlinearity.

Proof. Substituting (9), (10), and (21) into 𝜎(𝑡)�̇�(𝑡), we obtain

𝜎 (𝑡) �̇� (𝑡)

= 𝜎 (𝑡) [𝐷
𝑞

𝑒
2
(𝑡) + 𝐾𝐸]

= 𝜎 (𝑡) [𝑒
1
(𝑡) − 𝑦

𝑠
(𝑡) 𝑧
2

𝑠
(𝑡) + 𝑦

𝑚
(𝑡) 𝑧
2

𝑚
(𝑡)

+ 𝑑
2
+ 𝜙 (𝑢 (𝑡)) + 𝐾𝐸]

= 𝜎 (𝑡) [𝑒
1
(𝑡) − 𝑦

𝑠
(𝑡) 𝑧
2

𝑠
(𝑡) + 𝑦

𝑚
(𝑡) 𝑧
2

𝑚
(𝑡) + 𝐾𝐸 + 𝑑

2
]

+ 𝜎 (𝑡) 𝜙 (𝑢 (𝑡))

≤

𝑒
1
(𝑡) − 𝑦

𝑠
(𝑡) 𝑧
2

𝑠
(𝑡) + 𝑦

𝑚
(𝑡) 𝑧
2

𝑚
(𝑡) + 𝐾𝐸


|𝜎 (𝑡)|

+ 𝛼
2
|𝜎 (𝑡)| + 𝜎 (𝑡) 𝜙 (𝑢 (𝑡))

= 𝜂 |𝜎 (𝑡)| + 𝜎 (𝑡) 𝜙 (𝑢 (𝑡)) .

(22)

Furthermore, from (6), we have

𝛽
2
𝜁
2

𝜂
2

[sign (𝜎 (𝑡))]2 ≥ −𝜁𝜂 [sign (𝜎 (𝑡))] 𝜙 (𝑢 (𝑡))

≥ 𝛽
1
𝜁
2

𝜂
2

[sign (𝜎 (𝑡))]2.
(23)

Since 𝜎2(𝑡) ≥ 0, we get

𝛽
2
𝜁
2

𝜂
2

[sign(𝜎(𝑡))]2𝜎2 (𝑡)

≥ −𝜁𝜂 [sign (𝜎 (𝑡))] 𝜙 (𝑢 (𝑡)) 𝜎2 (𝑡)

≥ 𝛽
1
𝜁
2

𝜂
2

[sign (𝜎 (𝑡))]2𝜎2 (𝑡)
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Figure 5: Error states of controlled drive and response systems: (a) error state of 𝑒
1
; (b) error state of 𝑒

2
; (c) error state of 𝑒

3
; (d) error state of

𝑒
4
.

⇒ 𝛽
2
𝜁
2

𝜂
2

|𝜎(𝑡)|
2

≥ −𝜁𝜂|𝜎(𝑡)|
2

𝜙 (𝑢 (𝑡)) ≥ 𝛽
1
𝜁
2

𝜂
2

|𝜎(𝑡)|
2

⇒ 𝛽
2
𝜁𝜂 |𝜎 (𝑡)| ≥ − |𝜎 (𝑡)| 𝜙 (𝑢 (𝑡)) ≥ 𝛽

1
𝜁𝜂 |𝜎 (𝑡)|

⇒ −𝛽
2
𝜁𝜂 |𝜎 (𝑡)| ≤ 𝜎 (𝑡) 𝜙 (𝑢 (𝑡)) ≤ −𝛽

1
𝜁𝜂 |𝜎 (𝑡)| .

(24)

By placing (24) into (22), we get

𝜎 (𝑡) �̇� (𝑡) ≤ −𝛽
1
𝜁𝜂 |𝜎 (𝑡)| + 𝜂 |𝜎 (𝑡)|

≤ (1 − 𝛽
1
𝜁) 𝜂 |𝜎 (𝑡)| .

(25)

Since 𝜁 > 1/𝛽
1
has been selected in (21), it can be concluded

that the hitting condition 𝜎(𝑡)�̇�(𝑡) < 0 is satisfied. Thus, the
proof is achieved completely.

Remark 2. The controller in (21) demonstrates a discontin-
uous control law and the phenomenon of chattering will
appear. In order to eliminate the chattering, controller (21)
can be modified as

𝑢 (𝑡) = −𝜁𝜂
𝜎

|𝜎| + 𝜀
, 𝜁 >

1

𝛽
1

, (26)

where 𝜀 is a sufficiently small positive constant. From the
works [21, 25], the solution of system (8) with (21) can be

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4

Time (s)

−1

−2

−3

−4

u
(t
)

Figure 6: The time response of control input 𝑢(𝑡).

made arbitrarily close to solution (8) with (26), if one chooses
𝜀 sufficiently small.

Remark 3. Obviously, for the case of 𝑞 = 1, the considered
system (1) degenerates to an integer-order chaotic system and
the design method developed in this paper is also available
just by some minor modifications.
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Figure 7: The error bound with matched perturbations.
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Figure 8: The error bound with unmatched perturbations.

3. An Illustrative Example

In this section, to verify the validity of the proposed synchro-
nization scheme, we numerically examine the synchroniza-
tion. Here, the drive system and response system accord with
(4) and (5), respectively. The input nonlinearity is defined as

𝜙 (𝑢 (𝑡)) = [1 + 0.05 sin (𝑢 (𝑡))] 𝑢 (𝑡) . (27)

According to (6), 𝛽
1
= 0.95, 𝛽

2
= 1.05 can be obtained. In

numerical simulation, all system’s parameters are chosen as
𝜁 = 2 > 1/𝛽

1
. And the parameter 𝜀 = 0.01 in (26) is selected.

Case 1. Consider the case of a nominal system with 𝑑
1
(𝑡) =

𝑑
2
(𝑡) = 𝑑

3
(𝑡) = 𝑑

4
(𝑡) = 0. As mentioned in Section 2, the

proposed design procedure can be summarized as follows.

Step 1. According to (9), the switching surface, with
𝐾 = [−12.4824 6.8483 −7.8920 −16.8563] satisfying (14),
is given by

𝜎 (𝑡) = 𝐼
1−𝑞

𝑒
2
(𝑡) + ∫

𝑡

0

𝐾𝐸 (𝜏) 𝑑𝜏. (28)

Step 2. According to (26), the sliding mode control law is
obtained as follows:

𝑢 (𝑡) = −2𝜂
𝜎

|𝜎| + 0.01
, 2 >

1

𝛽
1

, (29)

where 𝜂 = |𝑒
1
− 𝑦
𝑠
𝑧
2

𝑠
+ 𝑦
𝑚
𝑧
2

𝑚
+ 𝐾𝐸|.

In numerical simulations, the simulations are all per-
formed by setting 𝑞 = 0.95 and the initial values of
the master and slave systems are given, respectively, as
[𝑥
𝑚
(0) 𝑦

𝑚
(0) 𝑧

𝑚
(0) 𝑤

𝑚
(0)]
𝑇

= [0.5 −0.2 0.2 0.5]
𝑇 and

[𝑥
𝑠
(0) 𝑦

𝑠
(0) 𝑧

𝑠
(0) 𝑤

𝑠
(0)]
𝑇

= [0.1 0.1 0.1 0.1]
𝑇.The sim-

ulation results are shown in Figures 3, 4, 5, 6, and 7. Figure 3
shows the corresponding 𝜎(𝑡) for the controlled fractional-
order hyperchaotic systems under the proposed slidingmode
control (29). Figures 4–6 represent, respectively, the state
responses, error states’ responses, and the control input. From
the simulation results, it is shown that the proposed controller
(29) can drive the resulting tracking errors lim

𝑡→∞
|𝑒
𝑖
(𝑡)| = 0,

𝑖 = 1, 2, 3, 4, which fully coincide with theoretical results in
this paper.

Case 2. Consider the case of a non-nominal system with
unmatched external perturbations of 𝑑

1
(𝑡) = 0.1 sin(4𝑡),

𝑑
2
(𝑡) = 0.3 sin(4𝑡), 𝑑

3
(𝑡) = 0, 𝑑

4
(𝑡) = 0. Under the same

simulation conditions as in Case 1, the switching surface with
𝐾 = [−12.4824 6.8483 −7.8920 −16.8563] is given by

𝜎 (𝑡) = 𝐼
1−𝑞

𝑒
2
(𝑡) + ∫

𝑡

0

𝐾𝐸 (𝜏) 𝑑𝜏 (30)

and the sliding mode control law is given as in (29).

The time response of the error states, under the proposed
sliding mode controller, is shown in Figure 8. It also shows
that the error norm ‖𝐸(𝑡)‖ is bounded in the estimated error
bound 𝜌 = 0.2439 as predicted.

4. Conclusion

This paper presents a method to design a sliding mode
controller for the fractional-order hyperchaotic system sub-
jected to unmatched perturbations and input nonlinearity.
A new switching surface of fraction-integer integral (FII)
type has been proposed such that the stability of the frac-
tional chaotic system dynamics in the sliding mode is easily
ensured. Illustrative examples, including nominal (matched)
and nonnominal (unmatched) cases, have been presented
to demonstrate the validity of the proposed synchronization
scheme.
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