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The three-dimensional flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated. Numerical
results are obtained using bvp4c in MATLAB. The results show nonunique solutions for the shrinking case. The effects of the
stretching/shrinking parameter, suction parameter, Brownian motion parameter, thermophoresis parameter, and Lewis number
on the local skin friction coefficient and the local Nusselt number are studied. Suction increases the solution domain. Furthermore,
as the sheet is shrunk in the 𝑥-direction, suction increases the skin friction coefficient in the same direction while decreasing the
skin friction coefficient in the 𝑦-direction. The local Nusselt number is consistently lower for higher values of thermophoresis
parameter and Lewis number. On the other hand, the local Nusselt number increases as the Brownian motion parameter increases.

1. Introduction

Nanofluids are dispersions of nanometer-sized particles in
a base fluid such as water, ethylene glycol, and propylene
glycol, to increase their thermal conductivities. Choi and
Eastman [1] showed that the addition of a small amount
(less than 1% by volume) of nanoparticles to conventional
heat transfer liquids increased the thermal conductivity of
the fluid up to approximately two times. In his paper, Buon-
giorno [2] developed a model for convective transport in
nanofluids which takes into account the Brownian diffusion
and thermophoresis effects. Buongiorno’s nanofluid model
was used in many recent papers, for example, Nield and
Kuznetsov [3–5], Khan and Pop [6], Bachok et al. [7–9],
Mansur and Ishak [10, 11], and Zaimi et al. [12] among
others.

The boundary layer flow over a stretching sheet is
significant in applications such as extrusion, wire drawing,
metal spinning, and hot rolling [13]. Wang [14, 15], Mandal

and Mukhopadhyay [16], P. S. Gupta and A. S. Gupta [17],
Andersson [18], Ishak et al. [19], and Makinde and Aziz [20]
are among various names who published their papers on
a stretching sheet. Miklavčič and Wang [21] studied flow
over a shrinking sheet in which they observed that the
vorticity is not confined within a boundary layer and the
steady flow cannot exist without exerting adequate suction
at the boundary. As the studies of shrinking sheet garner
considerable attention, this finding proves to be crucial
to these researches. In response to Miklavčič and Wang,
numerous studies on these problems have been conducted by
researches, namely, Wang [22], Fang et al. [23], Bachok et al.
[24], Bhattacharyya et al. [25], Zaimi et al. [26], and Roşca
and Pop [27] among others.

All the above-mentioned studies dealt with problems
involving linear stretching/shrinking sheet. The boundary
layer flow induced by a stretching/shrinking sheet is very
important in engineering processes [28] and has attracted
many researchers to delve into this study such as Bachok et al.
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Figure 1: Geometry of the problem.

[29], Bhattacharyya and Vajravelu [30], and Rohni et al. [31].
However, most studies revolved around two-dimensional
flows. Motivated by this, the objective of this paper is
to solve the problem of three-dimensional flow and heat
transfer past a permeable exponentially stretching/shrinking
sheet in a nanofluid. The dependency of the local skin
friction coefficient and the local Nusselt number on several
parameters, namely, the stretching/shrinking, Brownian
motion, and thermophoresis parameters is the main focus of
the present investigation. Numerical solutions are presented
graphically and in tabular forms to show the effects of these
parameters on the local skin friction coefficient and the local
Nusselt number.

2. Problem Formulation

We consider the steady three-dimensional boundary layer
flow of a viscous nanofluid past a permeable stretch-
ing/shrinking flat surface in a quiescent fluid. A locally
orthogonal set of coordinates (𝑥, 𝑦, 𝑧) is chosen with the
origin 𝑂 in the plane of the stretching/shrinking sheet. The
𝑥- and 𝑦-coordinates are in the plane of the sheet, while
the coordinate 𝑧 is measured in the perpendicular direction
to the stretching/shrinking surface as shown in Figure 1. It
is assumed that the flat surface is stretched/shrunk contin-
uously in the both 𝑥- and 𝑦-directions with the velocities
𝑢(𝑥) = 𝑢

𝑤
(𝑥) and V(𝑦) = V

𝑤
(𝑦), respectively. It is

also assumed that the mass flux velocity is 𝑤
𝑤
(𝑥, 𝑦), where

𝑤
𝑤
(𝑥, 𝑦) < 0 is for suction and𝑤

𝑤
(𝑥, 𝑦) > 0 is for injection or

withdrawal of the fluid. Further, we assume that the constant
surface temperature and the constant surface volume fraction
are 𝑇

𝑤
and 𝐶

𝑤
, while the constant temperature and the

constant surface volume fraction of the ambient (inviscid)
fluid are 𝑇

∞
and 𝐶

∞
, respectively. Under these conditions,

the boundary layer equations are
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+
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, (6)

along with the boundary conditions

𝑢 = 𝑢
𝑤
(𝑥) = 𝜆

1
𝑈
𝑤
(𝑥) , V = V
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2
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= 0 at 𝑧 = 0

𝑢 󳨀→ 0, 𝑤 󳨀→ 0, 𝑇 󳨀→ 𝑇
∞
, 𝐶 󳨀→ 𝐶

∞
as 𝑧󳨀→∞.

(7)

Here 𝑢, V, and 𝑤 are the velocity components along 𝑥-, 𝑦-,
and 𝑧-axes, respectively; ] is the kinematic viscosity of the
fluid, 𝜆

1
is the constant stretching (𝜆

1
> 0) or shrinking

(𝜆
1
< 0) parameter in the 𝑥-direction, and 𝜆

2
is the constant

stretching (𝜆
2
> 0) or shrinking (𝜆

2
< 0) parameter in the 𝑦-

direction, respectively. Further, we assume that 𝑈
𝑤
(𝑥, 𝑦) and

𝑉
𝑤
(𝑥, 𝑦) are of the following form:

𝑈
𝑤
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0
𝑒
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, (8)

where𝐿 is the characteristic length and𝑈
0
is the characteristic

velocity of the stretching/shrinking sheet.
We introduce now the following similarity variables:
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(9)

where primes denote differentiation with respect to 𝜂. Next
we take

𝑤
𝑤
(𝑥, 𝑦) = −(

]𝑈
0

2𝐿

)

1/2

𝑒
(𝑥+𝑦)/2𝐿

𝑆, (10)

where 𝑆 is the surface mass transfer parameter with 𝑆 > 0 for
suction and 𝑆 < 0 for injection. Substituting the similarity
variables (9) into (1) to (6), it is found that the continuity
equation (1) is automatically satisfied, and (2) to (6) are
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reduced to the following ordinary (similarity) differential
equations:
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subject to the boundary conditions
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1
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2
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where Pr is the Prandtl number, Le is the Lewis number, Nb is
the Brownian motion parameter, and Nt is the thermophore-
sis parameter, which are defined as follows:

Pr = ]
𝛼

, Le = ]
𝐷
𝐵
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∞
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(13)

The physical quantities of practical interest are the local
skin friction coefficients, 𝐶

𝑓𝑥
and 𝐶

𝑓𝑦
, and the local Nusselt

number Nu
𝑥
, which are defined as follows:
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(14)

where 𝜏
𝑤𝑥

and 𝜏
𝑤𝑦

are the shear stresses in the 𝑥- and 𝑦-
directions of the stretching/shrinking sheet and 𝑞

𝑤
is the heat

flux from the surface of the sheet, which are given by

𝜏
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Substituting (9) into (14) and using (15), we obtain

Re1/2
𝑥
𝐶
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𝑦
𝐶
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(16)

where Re
𝑥
= 𝑈
𝑤
𝐿/] and Re

𝑦
= 𝑉
𝑤
𝐿/] are the local Reynolds

numbers.
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3. Results and Discussions

The system of ordinary differential equations (11) subject
to the boundary conditions (12) was solved numerically
using the package bvp4c in MATLAB for different values
of parameters: the stretching/shrinking parameter in 𝑥-
direction 𝜆

1
, suction 𝑆, Brownian motion parameter Nb,

thermophoresis parameter Nt, and Lewis number Le. We
fixed the Prandtl number to be equal to 6.8 and the stretch-
ing/shrinking parameter in the𝑦-direction 𝜆

2
to be 1 (𝜆

2
= 1)
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Table 1: Values of 𝜆
1𝑐
.

𝑆 𝜆
𝑐

2.0 −1.7785
2.5 −2.2164
3.0 −2.7157

throughout the paper. The relative tolerance is set to 10−10
and the boundary conditions (12) at 𝜂 = ∞ are replaced
by 𝜂 = 10. This choice is sufficient for the velocity and
the temperature profiles to reach the far field boundary
conditions asymptotically.

In this paper, we intend to study the three-dimensional
flow and heat transfer of a nanofluid over a stretch-
ing/shrinking sheet. The analysis shows that the existence
of solution depends on the suction parameter 𝑆 and the
stretching/shrinking parameter 𝜆

1
. Figures 2 and 3 show that

the skin friction coefficient in the 𝑥-direction and the 𝑦-
direction, respectively, decreases as 𝜆

1
increases. From these

figures, we can see that dual solutions exist for the problem.
However, based on the previous studies [27, 32, 33], only the
first solution is physically realizable and thus relevant to that
studies. It is portrayed in Figures 2 and 3 that unique solution
exists for 𝜆

1
≥ −1 and 𝜆

1
= 𝜆
𝑐
, where 𝜆

𝑐
is the critical values

of 𝜆
1
. Furthermore, it is seen that the range of 𝜆

1
, where

solutions exist, increases as 𝑆 increases, as shown inTable 1. In
addition, in Figure 2, it is shown that when the sheet is shrunk
in the 𝑥-direction, the skin friction coefficient parallel to the
direction increases as 𝑆 increases. However, the skin friction
coefficient in the 𝑦-direction decreases with increasing 𝑆 as
illustrated in Figure 3. Moreover, it is interesting to note that
the shear stress in the 𝑥-direction is prominently higher than
the shear stress in the 𝑦-direction.

Figure 4 shows that the local Nusselt number increases
with 𝜆

1
. However, the local Nusselt number decreases as

thermophoresis parameter increases. This phenomenon may
be caused by the thermal boundary layer that thickens as the
thermophoresis parameter is increased. As opposed to this
occurrence, the thermal boundary layer becomes thinner as
the Brownian motion parameter increases. This leads to the
increase of the local Nusselt number as Brownian motion
parameter increases as shown in Table 2.The table also shows
that the Lewis number lowers the local Nusselt number.

Figures 5–7 show the velocity profiles for the flow in
the 𝑥- and 𝑦-directions for different values 𝑆 and 𝜆

1
. These

profiles show that the far field boundary conditions are
satisfied which validates the numerical result. Furthermore,
these profiles also support the existence of dual solutions.The
effect of 𝑆 on both 𝑓󸀠(𝜂) and 𝑔󸀠(𝜂) is shown in Figures 5 and
6, respectively. From the two figures, it is noted that while 𝑆
increases the velocity 𝑓󸀠(𝜂), it decreases the velocity 𝑔󸀠(𝜂).
Figure 7 then shows the effect of 𝜆 on the velocity profiles
𝑓
󸀠

(𝜂) and 𝑔
󸀠

(𝜂). Increasing the stretching parameter in the
𝑥-direction causes 𝑓󸀠(𝜂) to increase. On the other hand, the
velocity 𝑔󸀠(𝜂) is consistently lower for higher 𝜆

1
although it

is seen that the changes are minuscule.
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4. Conclusions

The three-dimensional flow and heat transfer of a nanofluid
over a stretching/shrinking sheet was investigated numeri-
cally. The effects of various parameters on the skin friction
coefficient and the local Nusselt number were discussed.
The results showed that suction parameter increases the
solution domain. Furthermore, as the sheet is shrunk in the𝑥-
direction, suction increases the skin friction coefficient in the
same direction while decreasing the skin friction coefficient
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in the 𝑦-direction. As thermophoresis parameter and Lewis
number increase, the local Nusselt number decreases. On the
other hand, the local Nusselt number increases as Brownian
motion parameter increases.
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