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We consider the functional equation 𝑓(𝑎𝑥 + 𝑦) + 𝑓(𝑎𝑥 − 𝑦) − 𝑎(𝑎 + 1)𝑓(𝑥) − 𝑎(𝑎 − 1)𝑓(−𝑥) − [𝑓(𝑦) + 𝑓(−𝑦)] + 𝑘[𝑓(𝑥 + 𝑦) + 𝑓(𝑥 −
𝑦) − 2𝑓(𝑥) − 𝑓(𝑦) − 𝑓(−𝑦)] = 0 for a fixed rational number 𝑎 with 𝑎 ̸= 1, −1, 0 and a fixed real number 𝑘. We study the solution of
the equation between linear spaces and prove the generalized Hyers-Ulam stability for it when the target space is a fuzzy normed
space.

1. Introduction and Preliminaries

In 1940, Ulam proposed the following stability problem (cf.
[1]):

“Let 𝐺
1
be a group and 𝐺

2
a metric group with

the metric 𝑑. Given a constant 𝛿 > 0, does there
exist a constant 𝑐 > 0 such that if a mapping 𝑓 :
𝐺
1
→ 𝐺
2
satisfies 𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝑐 for

all 𝑥, 𝑦 ∈ 𝐺
1
, then there exists a unique homo-

morphism ℎ : 𝐺
1
→ 𝐺
2
with 𝑑(𝑓(𝑥), ℎ(𝑥)) < 𝛿

for all 𝑥 ∈ 𝐺
1
?”

In the next year, Hyers [2] gave a partial solution ofUlam’s
problem for the case of approximate additive mappings.
Subsequently, his result was generalized by Aoki [3] and
Moslehian and Rassias [4] for additive mappings, and by
Rassias [5] for linear mappings, to consider the stability
problemwith unboundedCauchy differences. During the last
decades, the stability problems of functional equations have
been extensively investigated by a number of mathematicians
(see [6–10]).

Recently, the stability problems in the fuzzy spaces have
been extensively studied (see [11–13]). The concept of fuzzy
norm on a linear space was introduced by Katsaras [14] in
1984. Later, Cheng and Mordeson [15] gave a new definition

of a fuzzy norm in such a manner that the corresponding
fuzzy metric is of Kramosil and Michálek type [16]. In 2008,
for the first time, Mirmostafaee and Moslehian [12, 13] used
the definition of a fuzzy norm in [17] to obtain a fuzzy version
of stability for the Cauchy functional equation

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) , (1)

and the quadratic functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) . (2)

We call a solution of (1) an additive mapping and a
solution of (2) is called a quadratic mapping. Also, the
equation

𝑇
𝑓
(𝑥, 𝑦) = 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

−2𝑓 (𝑥) − 𝑓 (𝑦) − 𝑓 (−𝑦) = 0
(3)

is called Drygas functional equation (see [18, 19] for details).
Najati and Moghimi [20] investigated the generalized

Hyers-Ulam stability for functional equation derived from
additive and quadratic functions on quasi-Banach spaces.
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In this paper, we introduce the following functional
equation for a fixed rational number 𝑎 with 𝑎 ̸= 1, −1, 0 and
a fixed real number 𝑘:

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 𝑎 (𝑎 + 1) 𝑓 (𝑥)

− 𝑎 (𝑎 − 1) 𝑓 (−𝑥) − [𝑓 (𝑦) + 𝑓 (−𝑦)]

+ 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

− 2𝑓 (𝑥) −𝑓 (𝑦) − 𝑓 (−𝑦)] = 0

(4)

with 𝑓(0) = 0. It is easy to see that the function 𝑓(𝑥) =
𝑝𝑥2 + 𝑞𝑥 is a solution of the functional equation (4), so we
can expect that a solution of (4) is additive-quadratic type.
We note that the left-hand side of (4) is essentially the sum of
twoDrygas functionals𝑇

𝑓
(𝑎𝑥, 𝑦) and 𝑘𝑇

𝑓
(𝑥, 𝑦). In Section 2,

a complete characterization of the solution of (4) is given.
In Section 3, we prove the stability for (4) in fuzzy Banach
spaces. One can find some kinds of gaps for finding 𝑟 in
Theorems 13 and 14. InTheorem 15, we resolve these gaps for
special and practical case of 𝜙(𝑥, 𝑦). Also, we give an example
related to Theorem 15. We list some definitions related to
fuzzy normed spaces.

Definition 1. Let𝑋 be a real vector space. A function𝑁 : 𝑋×
R → [0, 1] is called a fuzzy norm on𝑋 if for all 𝑥, 𝑦 ∈ 𝑋 and
all 𝑠, 𝑡 ∈ R,

(N1) 𝑁(𝑥, 𝑡) = 0 for 𝑡 ≤ 0;
(N2) 𝑥 = 0 if and only if𝑁(𝑥, 𝑡) = 1 for all 𝑡 > 0;
(N3) 𝑁 = (𝑐𝑥, 𝑡) = 𝑁(𝑥, 𝑡/|𝑐|) if 𝑐 ̸= 0;
(N4) 𝑁 = (𝑥 + 𝑦, 𝑠 + 𝑡) ≥ min{𝑁(𝑥, 𝑠),𝑁(𝑦, 𝑡)};
(N5) 𝑁(𝑥, ⋅) is a nondecreasing function of R and

lim
𝑡→∞

𝑁(𝑥, 𝑡) = 1;
(N6) for any 𝑥 ̸= 0,𝑁(𝑥, ⋅) is continuous on R.

In this case, the pair (𝑋,𝑁) is called a fuzzy normed space.

Definition 2. Let (𝑋,𝑁) be a fuzzy normed space. A sequence
{𝑥
𝑛
} in𝑋 is said to be convergent if there exists an 𝑥 ∈ 𝑋 such

that lim
𝑛→∞

𝑁(𝑥
𝑛
− 𝑥, 𝑡) = 1 for all 𝑡 > 0. In this case, 𝑥 is

called the limit of the sequence {𝑥
𝑛
} in X and one denotes it

by𝑁 − lim
𝑛→∞

𝑥
𝑛
= 𝑥.

Definition 3. Let (𝑋,𝑁) be a fuzzy normed space. A sequence
{𝑥
𝑛
} in 𝑋 is said to be Cauchy if for any 𝜖 > 0, 𝑡 > 0, there is

an𝑚 ∈ 𝑁 such that for any 𝑛 ≥ 𝑚 and any positive integer 𝑝,
𝑁(𝑥
𝑛+𝑝
− 𝑥
𝑛
, 𝑡) > 1 − 𝜖.

It is well known that every convergent sequence in a fuzzy
normed space is Cauchy. A fuzzy normed space is said to be
complete if each Cauchy sequence in it is convergent and the
complete fuzzy normed space is called a fuzzy Banach space.

2. Solution of (4)
In this section, we investigate solutions of (4) between linear
spaces 𝑋 and 𝑌 by separating cases into odd functions and

even functions. And then, in Theorem 8, it can be concluded
that any solution of (4) is additive-quadratic type. We start
with the odd function case.

Lemma 4. Let 𝑓 : 𝑋 → 𝑌 be an odd mapping with 𝑓(0) =
0 satisfying (4). Suppose that 𝑘 ̸= − 𝑎. Then 𝑓 is an additive
mapping.

Proof. Since𝑓 is an oddmapping, the functional equation (4)
can be written by

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎𝑓 (𝑥)

+ 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥)] = 0,
(5)

for all 𝑥, 𝑦 ∈ 𝑋.
If 𝑘 = 0, then it is easy to check that𝑓 is additive. Suppose

that 𝑘 ̸= 0. Letting 𝑦 = 0 in (5), we have

𝑓 (𝑎𝑥) = 𝑎𝑓 (𝑥) , (6)

for all 𝑥 ∈ 𝑋. Replacing 𝑦 by 𝑥 + 𝑦 in (5), we have

𝑓 ((𝑎 + 1) 𝑥 + 𝑦) + 𝑓 ((𝑎 − 1) 𝑥 − 𝑦)

−2𝑎𝑓 (𝑥) + 𝑘 [𝑓 (2𝑥 + 𝑦) − 𝑓 (𝑦) − 2𝑓 (𝑥)] = 0,
(7)

for all 𝑥, 𝑦 ∈ 𝑋; letting 𝑦 = −𝑦 in (7), we have

𝑓 ((𝑎 + 1) 𝑥 − 𝑦) + 𝑓 ((𝑎 − 1) 𝑥 + 𝑦) − 2𝑎𝑓 (𝑥)

+ 𝑘 [𝑓 (2𝑥 − 𝑦) + 𝑓 (𝑦) − 2𝑓 (𝑥)] = 0,
(8)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 and 𝑦 by 𝑥+ (1/𝑎)𝑦 and 𝑥 in (5),
respectively, by (6), we have

𝑎 [𝑓 ((𝑎 + 1) 𝑥 + 𝑦) + 𝑓 ((𝑎 − 1) 𝑥 + 𝑦)] − 2𝑎𝑓 (𝑎𝑥 + 𝑦)

+ 𝑘 [𝑓 (2𝑎𝑥 + 𝑦) + 𝑓 (𝑦) − 2𝑓 (𝑎𝑥 + 𝑦)] = 0,
(9)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 = −𝑦 in (9), we have

𝑎 [𝑓 ((𝑎 + 1) 𝑥 − 𝑦) + 𝑓 ((𝑎 − 1) 𝑥 − 𝑦)] − 2𝑎𝑓 (𝑎𝑥 − 𝑦)

+ 𝑘 [𝑓 (2𝑎𝑥 − 𝑦) − 𝑓 (𝑦) − 2𝑓 (𝑎𝑥 − 𝑦)] = 0,

(10)

for all 𝑥, 𝑦 ∈ 𝑋, and letting 𝑥 = 2𝑥 in (5), we have

𝑓 (2𝑎𝑥 + 𝑦) + 𝑓 (2𝑎𝑥 − 𝑦) − 2𝑎𝑓 (2𝑥)

+ 𝑘 [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 2𝑓 (2𝑥)] = 0,
(11)

for all 𝑥, 𝑦 ∈ 𝑋. By (5), (7), (8), (9), (10), and (11), we have

𝑘 (𝑎 + 𝑘) [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 2𝑓 (2𝑥)]

− 2𝑘 (𝑎 + 𝑘) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥)] = 0,

(12)

for all 𝑥, 𝑦 ∈ 𝑋. If 𝑘 ̸= − 𝑎, then by (12), we have

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 2𝑓 (2𝑥)

− 2𝑓 (𝑥 + 𝑦) − 2𝑓 (𝑥 − 𝑦) + 4𝑓 (𝑥) = 0,
(13)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑓 is additive-cubic ([20]). Since 𝑓(𝑎𝑥) =
𝑎𝑓(𝑥) for all 𝑥 ∈ 𝑋, 𝑓 is additive.



Journal of Applied Mathematics 3

Lemma 5. Let 𝑓 : 𝑋 → 𝑌 be an odd mapping with 𝑓(0) =
0 satisfying (4). Suppose that 𝑘 = −𝑎. Then 𝑓 is an additive
mapping.

Proof. Since𝑓 is an oddmapping, the functional equation (4)
can be written by

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 𝑎 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)] = 0,
(14)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑦 by 𝑥 + 𝑦 in (14), we have

𝑓 ((𝑎 + 1) 𝑥 + 𝑦) + 𝑓 ((𝑎 − 1) 𝑥 − 𝑦)

−𝑎 [𝑓 (2𝑥 + 𝑦) − 𝑓 (𝑦)] = 0,
(15)

for all 𝑥, 𝑦 ∈ 𝑋, and interchanging 𝑥 and 𝑦 in (15), we have

𝑓 (𝑥 + (𝑎 + 1) 𝑦) − 𝑓 (𝑥 − (𝑎 − 1) 𝑦)

− 𝑎 [𝑓 (𝑥 + 2𝑦) − 𝑓 (𝑥)] = 0,
(16)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 and 𝑦 by 𝑥 + 𝑦 and 𝑎𝑦 in (5),
respectively, we have

𝑓 (𝑥 + (𝑎 + 1) 𝑦) + 𝑓 (𝑥 − (𝑎 − 1) 𝑦)

−𝑓 (𝑥 + 2𝑦) − 𝑓 (𝑥) = 0,
(17)

for all 𝑥, 𝑦 ∈ 𝑋. By (16) and (17), we have

2𝑓 (𝑥 + (𝑎 + 1) 𝑦) − (𝑎 + 1) 𝑓 (𝑥 + 2𝑦) + (𝑎 − 1) 𝑓 (𝑥) = 0,
(18)

for all 𝑥, 𝑦 ∈ 𝑋.
Replacing 𝑥 and 𝑦 by 𝑦/𝑎 and 𝑎𝑥 + 𝑦 in (5), respectively,

we have

𝑓 (𝑎𝑥 + 2𝑦) − 𝑓 (𝑎𝑥)

−𝑎 [𝑓(𝑎𝑥 +
𝑎 + 1

𝑎
𝑦) − 𝑓(𝑎𝑥 +

𝑎 − 1

𝑎
𝑦)] = 0,

(19)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 = 𝑎𝑦 in (19), we have

𝑓 (𝑥 + 2𝑦) − 𝑓 (𝑥)

− [𝑓 (𝑎𝑥 + (𝑎 + 1) 𝑦) − 𝑓 (𝑎𝑥 + (𝑎 + 1) 𝑦)] = 0,
(20)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 by 𝑥 + 𝑦 in (14), we have

𝑓 (𝑎𝑥 + (𝑎 + 1) 𝑦) + 𝑓 (𝑎𝑥 + (𝑎 − 1) 𝑦)

−𝑎 [𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥)] = 0,
(21)

for all 𝑥, 𝑦 ∈ 𝑋 and by (20) and (21), we have

2𝑓 (𝑎𝑥 + (𝑎 + 1) 𝑦) − (𝑎 + 1) 𝑓 (𝑥 + 2𝑦) + (𝑎 − 1) 𝑓 (𝑥) = 0,
(22)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 by 𝑎𝑥 in (18), we have

2𝑓 (𝑎𝑥 + (𝑎 + 1) 𝑦) − (𝑎 + 1) 𝑓 (𝑎𝑥 + 2𝑦)

+𝑎 (𝑎 − 1) 𝑓 (𝑥) = 0,
(23)

for all 𝑥, 𝑦 ∈ 𝑋 and by (22) and (23), we have

(𝑎 + 1) 𝑓 (𝑎𝑥 + 2𝑦) − (𝑎 + 1) 𝑓 (𝑥 + 2𝑦)

− (𝑎2 − 1)𝑓 (𝑥) = 0,
(24)

for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑎 ̸= − 1, we have

𝑓 (𝑎𝑥 + 2𝑦) − 𝑓 (𝑥 + 2𝑦) − (𝑎 − 1) 𝑓 (𝑥) = 0, (25)

for all 𝑥, 𝑦 ∈ 𝑋 and letting 𝑦 = −𝑦 in (25), we have

𝑓 (𝑎𝑥 − 2𝑦) − 𝑓 (𝑥 − 2𝑦) − (𝑎 − 1) 𝑓 (𝑥) = 0, (26)

for all 𝑥, 𝑦 ∈ 𝑋. By (22) and (23), we have

𝑓 (𝑎𝑥 − 2𝑦) + 𝑓 (𝑎𝑥 − 2𝑦) − 𝑓 (𝑥 + 2𝑦)

−𝑓 (𝑥 − 2𝑦) − 2 (𝑎 − 1) 𝑓 (𝑥) = 0,
(27)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 = 2𝑦 in (5), we have

𝑓 (𝑎𝑥 + 2𝑦) + 𝑓 (𝑎𝑥 − 2𝑦)

−𝑎 [𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦)] = 0,
(28)

for all 𝑥, 𝑦 ∈ 𝑋, and by (27) and (28), we have

(𝑎 − 1) [𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) − 2𝑓 (𝑥)] = 0, (29)

for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑎 ̸= 1, we have

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) − 2𝑓 (𝑥) = 0, (30)

for all 𝑥, 𝑦 ∈ 𝑋, and hence 𝑓 is additive.

Combining Lemmas 4 and 5, we can get the following
theorem.

Theorem6. Let𝑓 : 𝑋 → 𝑌 be an oddmapping with𝑓(0) = 0
satisfying (4). Then 𝑓 is an additive mapping.

Now if we assume that 𝑓 is an even function, (4) turns
into the following equation with 𝑏 = 1:

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) − 2𝑎2𝑓 (𝑥) − 2𝑏
2𝑓 (𝑦)

− 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)] = 0.

(31)

And in [21], the authors proved the following theorem.

Theorem 7 (see [21]). Let 𝑓 : 𝑋 → 𝑌 be a mapping with
𝑓(0) = 0. Then 𝑓 is quadratic if and only if 𝑓 satisfies (31) for
all 𝑥 ∈ 𝑋, a fixed nonzero rational number 𝑎, and fixed real
numbers 𝑏, 𝑘 with 𝑎2 ̸= 𝑏2.

By Theorems 6 and 7, we have the following theorem
which is the conclusion of this section.

Theorem 8. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Then 𝑓 satisfies (4) if and only if 𝑓 is an additive-quadratic
mapping.
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3. The Generalized Hyers-Ulam
Stability for (4)

In this section, we prove the generalizedHyers-Ulam stability
of functional equation (4) in fuzzy normed spaces. Through-
out this section, we assume that 𝑋 is a linear space, (𝑌,𝑁) is
a fuzzy Banach space, and (𝑍,𝑁󸀠) is a fuzzy normed space.

For any mapping 𝑓 : 𝑋 → 𝑌, we define the difference
operator𝐷𝑓 : 𝑋2 → 𝑌 by

𝐷𝑓 (𝑥, 𝑦) = 𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 𝑎 (𝑎 + 1) 𝑓 (𝑥)

− 𝑎 (𝑎 − 1) 𝑓 (−𝑥) − [𝑓 (𝑦) + 𝑓 (−𝑦)]

+ 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

−2𝑓 (𝑥) − 𝑓 (𝑦) − 𝑓 (−𝑦)] ,

(32)

for all 𝑥, 𝑦 ∈ 𝑋.

Theorem 9. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that 0 < |𝑟| < |𝑎| and

𝑁󸀠 (𝜙 (𝑎𝑥, 𝑎𝑦) , 𝑡) ≥ 𝑁󸀠 (𝑟𝜙 (𝑥, 𝑦) , 𝑡) , (33)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be an odd
mapping such that 𝑓(0) = 0 and

𝑁(𝐷𝑓 (𝑥, 𝑦) , 𝑡) ≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) , (34)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Then there exists a unique
additive mapping 𝐴 : 𝑋 → 𝑌 such that the inequality

𝑁(𝑓 (𝑥) − 𝐴 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (

𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) (35)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Proof. Since 𝑓 is an odd mapping, the inequality (34) is
equivalent to the following inequality:

𝑁(𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎𝑓 (𝑥)

+ 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥)] , 𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) ,

(36)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. By (33) and (N3), we have

𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , 𝑡) ≥ 𝑁󸀠 (𝑟𝑛𝜙 (𝑥, 𝑦) , 𝑡)

= 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
𝑡

|𝑟|𝑛
) ,

(37)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0, and so by (37), we have

𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , |𝑟|
𝑛𝑡) ≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) , (38)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Letting 𝑦 = 0 in (36), by (N3),
we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑥)

𝑎
,
𝑡

2 |𝑎|
) ≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) , (39)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. By (38), (39), and (N3), we have

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
−
𝑓 (𝑎𝑛+1𝑥)

𝑎𝑛+1
,
|𝑟|𝑛𝑡

2|𝑎|𝑛+1
) ≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 0) , |𝑟|

𝑛𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(40)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. Hence by
(40) and (N4), for any 𝑥 ∈ 𝑋, we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
,
𝑛−1

∑
𝑖=0

|𝑟|𝑖𝑡

2|𝑎|𝑖+1
)

= 𝑁(
𝑛−1

∑
𝑖=0

[
𝑓 (𝑎𝑖𝑥)

𝑎𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎𝑖+1
] ,
𝑛−1

∑
𝑖=0

|𝑟|𝑖𝑡

2|𝑎|𝑖+1
)

≥ min{𝑁(
𝑓(𝑎𝑖𝑥)

𝑎𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎𝑖+1
,
|𝑟|𝑖𝑡

2|𝑎|𝑖+1
) |

0 ≤ 𝑖 ≤ 𝑛 − 1}

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(41)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. So for any
𝑥 ∈ 𝑋, we have

𝑁(
𝑓 (𝑎𝑚𝑥)

𝑎𝑚
−
𝑓 (𝑎𝑚+𝑝𝑥)

𝑎𝑚+𝑝
,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑟|𝑖𝑡

2|𝑎|𝑖+1
)

= 𝑁(

𝑚+𝑝−1

∑
𝑖=𝑚

[
𝑓 (𝑎𝑖𝑥)

𝑎𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎𝑖+1
] ,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑟|𝑖𝑡

2|𝑎|𝑖+1
)

≥ min{𝑁(
𝑓(𝑎𝑖𝑥)

𝑎𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎𝑖+1
,
|𝑟|𝑖𝑡

2|𝑎|𝑖+1
) |

𝑚 ≤ 𝑖 ≤ 𝑚 + 𝑝 − 1}

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(42)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, all nonnegative integers 𝑚, and all
positive integers 𝑝. Thus, by (42), for any 𝑥 ∈ 𝑋, we have

𝑁(
𝑓 (𝑎𝑚𝑥)

𝑎𝑚
−
𝑓 (𝑎𝑚+𝑝𝑥)

𝑎𝑚+𝑝
, 𝑡)

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
𝑡

∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑟|𝑖/2|𝑎|𝑖+1)

) ,

(43)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, all nonnegative integers 𝑚, and
all positive integers 𝑝. Since ∑∞

𝑖=0
(|𝑟|𝑖/2|𝑎|𝑖+1) is convergent,

lim
𝑚→∞

(𝑡/∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑟|𝑖/2|𝑎|𝑖+1)) = ∞, and so by the usual
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argument {𝑓(𝑎𝑛𝑥)/𝑎𝑛} is a Cauchy sequence in (𝑌,𝑁). Since
(𝑌,𝑁) is a fuzzy Banach space, there is amapping𝐴 : 𝑋 → 𝑌
defined by

𝐴 (𝑥) = 𝑁 − lim
𝑛→∞

𝑓 (𝑎𝑛𝑥)

𝑎𝑛
or

lim
𝑛→∞

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
− 𝐴 (𝑥) , 𝑡) = 1, 𝑡 > 0,

(44)

for all 𝑥 ∈ 𝑋. Moreover by (41), we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
, 𝑡)

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
𝑡

∑
𝑛−1

𝑖=0
(|𝑟|𝑖/2|𝑎|𝑖+1)

) ,

(45)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. Let 𝜖 be a
real number with 0 < 𝜖 < 1. Then, by (43), (44), (N4), and
(N5), we have

𝑁(𝑓 (𝑥) − 𝐴 (𝑥) , 𝑡)

≥ min{𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
, (1 − 𝜖) 𝑡) ,

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
− 𝐴 (𝑥) , 𝜖𝑡)}

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
(1 − 𝜖) 𝑡

∑
𝑛−1

𝑖=0
(|𝑟|𝑖/2|𝑎|𝑖+1)

)

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 2 (1 − 𝜖) (|𝑎| − |𝑟|) 𝑡) ,

(46)

for sufficiently large positive integer 𝑛, all 𝑥 ∈ 𝑋, and all
𝑡 > 0 or 𝑓(𝑥) = 𝑁 − lim

𝑛→∞
(𝑓(𝑎𝑛𝑥)/𝑎𝑛). Since 𝑁(𝑥, ⋅) is

continuous on R+ for all 𝑥 from (N2) and (N6), by taking
𝜖 → 0, we get

𝑁(𝑓 (𝑥) − 𝐴 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (𝜙 (𝑥, 0) , 2 (|𝑎| − |𝑟|) 𝑡) , (47)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, and so we have (35).
By (33), (34), and (N3), we have

𝑁(
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎𝑛
, 𝑡) ≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , |𝑎|

𝑛𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
|𝑎|𝑛

|𝑟|𝑛
𝑡) ,

(48)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Since lim
𝑛→∞

𝑁󸀠(𝜙(𝑥, 𝑦),
(|𝑎|𝑛/|𝑟|𝑛)𝑡) = 1 and

lim
𝑛→∞

𝑁(𝐷𝐴(𝑥, 𝑦) −
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎𝑛
, 𝑡) = 1, (49)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, by (44), (48), and (N4), we have

𝑁(𝐷𝐴 (𝑥, 𝑦) , 𝑡)

≥ min{𝑁(𝐷𝐴 (𝑥, 𝑦) −
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎𝑛
,
𝑡

2
) ,

𝑁 (
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎𝑛
,
𝑡

2
)}

≥ 𝑁(
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎𝑛
,
𝑡

2
)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
|𝑎|𝑛

2|𝑟|𝑛
𝑡) ,

(50)

for sufficiently large 𝑛, all 𝑥, 𝑦 ∈ 𝑋, and all 𝑡 > 0 or
𝑁 − lim(𝐷𝑓(𝑎𝑛𝑥, 𝑎𝑛𝑦)/𝑎𝑛) = 0. Since lim

𝑛→∞
𝑁󸀠(𝜙(𝑥, 𝑦),

(|𝑎|𝑛/|𝑟|𝑛)𝑡) = 1, 𝑁(𝐷𝐴(𝑥, 𝑦), 𝑡) = 1 for all 𝑡 > 0, and so,
by (N2), 𝐷𝐴(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝑋. By Theorem 8, 𝐴 is
additive.

To prove the uniqueness of𝐴, let𝐴
1
: 𝑋 → 𝑌 be another

additive mapping satisfying (35). Then for any 𝑥 ∈ 𝑋 and a
positive integer 𝑛, 𝐴

1
(𝑎𝑛𝑥) = 𝑎𝑛𝐴

1
(𝑥), and so by (45),

𝑁(𝐴 (𝑥) − 𝐴
1
(𝑥) , 𝑡)

≥ min{𝑁(
𝐴 (𝑎𝑛𝑥)

𝑎𝑛
−
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
,
𝑡

2
) ,

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎𝑛
−
𝐴
1
(𝑎𝑛𝑥)

𝑎𝑛
,
𝑡

2
)}

≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 0) , 𝑎𝑛 (|𝑎| − |𝑟|) 𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 0) ,
𝑎𝑛 (|𝑎| − |𝑟|) 𝑡

|𝑟|𝑛
)

(51)

holds for all 𝑥 ∈ 𝑋, all positive integers 𝑛, and all 𝑡 > 0. Since
|𝑟| < |𝑎|, lim

𝑛→∞
𝑁󸀠(𝜙(𝑥, 0), (𝑎𝑛(|𝑎| − |𝑟|)𝑡)/|𝑟|𝑛) = 1, and so

𝐴(𝑥) = 𝐴
1
(𝑥) for all 𝑥 ∈ 𝑋.

Now we deal with the even function case.

Theorem 10. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that 0 < |𝑟| < 𝑎2 and

𝑁󸀠 (𝜙 (𝑎𝑥, 𝑎𝑦) , 𝑡) ≥ 𝑁󸀠 (𝑟𝜙 (𝑥, 𝑦) , 𝑡) , (52)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be an even
mapping satisfying 𝑓(0) = 0 and (34). Then there exists
a unique quadratic mapping 𝑄 : 𝑋 → 𝑌 such that the
inequality

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (

1

2 (𝑎2 − |𝑟|)
𝜙 (𝑥, 0) , 𝑡) (53)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.
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Proof. Since 𝑓 is an even mapping, the inequality (34) is
equivalent to the following inequality:

𝑁(𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎2𝑓 (𝑥) − 2𝑓 (𝑦)

+ 𝑘 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)] , 𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) ,

(54)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. By (52) and (N3), we have

𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , 𝑡) ≥ 𝑁󸀠 (𝑟𝑛𝜙 (𝑥, 𝑦) , 𝑡)

= 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
𝑡

|𝑟|𝑛
) ,

(55)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0, and so by (55), we have

𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , |𝑟|
𝑛𝑡) ≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) , (56)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Letting 𝑦 = 0 in (54), by (N3),
we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑥)

𝑎2
,
𝑡

2𝑎2
) ≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) , (57)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. By (52), (56), (57), and (N3), we
have

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
−
𝑓 (𝑎𝑛+1𝑥)

𝑎2(𝑛+1)
,
|𝑟|𝑛𝑡

2𝑎2(𝑛+1)
) ≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 0) , |𝑟|

𝑛𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(58)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. Hence by
(58) and (N4), for any 𝑥 ∈ 𝑋, we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
,
𝑛−1

∑
𝑖=0

|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
)

= 𝑁(
𝑛−1

∑
𝑖=0

[
𝑓 (𝑎𝑖𝑥)

𝑎2𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎2(𝑖+1)
] ,
𝑛−1

∑
𝑖=0

|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
)

≥ min{𝑁(
𝑓(𝑎𝑖𝑥)

𝑎2𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎2(𝑖+1)
,
|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
) |

0 ≤ 𝑖 ≤ 𝑛 − 1}

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(59)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. So for any
𝑥 ∈ 𝑋, we have

𝑁(
𝑓 (𝑎𝑚𝑥)

𝑎2𝑚
−
𝑓 (𝑎𝑚+𝑝𝑥)

𝑎2(𝑚+𝑝)
,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
)

= 𝑁(

𝑚+𝑝−1

∑
𝑖=𝑚

[
𝑓 (𝑎𝑖𝑥)

𝑎2𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎2(𝑖+1)
] ,

𝑚+𝑝−1

∑
𝑖=𝑚

|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
)

≥ min{𝑁(
𝑓(𝑎𝑖𝑥)

𝑎2𝑖
−
𝑓 (𝑎𝑖+1𝑥)

𝑎2(𝑖+1)
,
|𝑟|𝑖𝑡

2𝑎2(𝑖+1)
) |

𝑚 ≤ 𝑖 ≤ 𝑚 + 𝑝 − 1}

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 𝑡) ,

(60)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, all nonnegative integers 𝑚, and all
positive integers 𝑝. Thus, by (60) and (N3), for any 𝑥 ∈ 𝑋, we
have

𝑁(
𝑓 (𝑎𝑚𝑥)

𝑎2𝑚
−
𝑓 (𝑎𝑚+𝑝𝑥)

𝑎2(𝑚+𝑝)
, 𝑡)

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
𝑡

∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑟|𝑖/2𝑎2(𝑖+1))

) ,

(61)

for all 𝑥 ∈ 𝑋, all 𝑡 > 0, all nonnegative integers 𝑚, and
all positive integers 𝑝. Since ∑∞

𝑖=0
(|𝑟|𝑖/2𝑎2(𝑖+1)) is convergent,

lim
𝑚→∞

(𝑡/∑
𝑚+𝑝−1

𝑖=𝑚
(|𝑟|𝑖/2𝑎2(𝑖+1))) = ∞, and so by the usual

argument again, {𝑓(𝑎𝑛𝑥)/𝑎2𝑛} is a Cauchy sequence in (𝑌,𝑁).
Since (𝑌,𝑁) is a fuzzy Banach space, there is a mapping 𝑄 :
𝑋 → 𝑌 defined by

𝑄 (𝑥) = 𝑁 − lim
𝑛→∞

𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
or

lim
𝑛→∞

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
− 𝑄 (𝑥) , 𝑡) = 1, 𝑡 > 0,

(62)

for all 𝑥 ∈ 𝑋. Moreover by (59), we have

𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
, 𝑡)

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
𝑡

∑
𝑛−1

𝑖=0
(|𝑟|𝑖/2𝑎2(𝑖+1))

) ,

(63)
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for all 𝑥 ∈ 𝑋, all 𝑡 > 0, and all positive integers 𝑛. Let 𝜖 be a
real number with 0 < 𝜖 < 1. Then, by (62), (63), and (N4), we
have

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡)

≥ min{𝑁(𝑓 (𝑥) −
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
, (1 − 𝜖) 𝑡) ,

𝑁(
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
− 𝑄 (𝑥) , 𝜖𝑡)}

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
(1 − 𝜖) 𝑡

∑
𝑛−1

𝑖=0
(|𝑟|𝑖/2𝑎2(𝑖+1))

)

≥ 𝑁󸀠 (𝜙 (𝑥, 0) , 2 (1 − 𝜖) (𝑎
2 − |𝑟|) 𝑡) ,

(64)

for sufficiently large positive integer 𝑛, all 𝑥 ∈ 𝑋, and all
𝑡 > 0 or 𝑓(𝑥) = 𝑁 − lim

𝑛→∞
(𝑓(𝑎𝑛𝑥)/𝑎2𝑛). Since 𝑁(𝑥, ⋅) is

continuous on R+ for all 𝑥 from (N2) and (N6), we get

𝑁(𝑓 (𝑥) − 𝑄 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (𝜙 (𝑥, 0) , 2 (𝑎

2 − |𝑟|) 𝑡) , (65)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, and so we have (53). By (34) and
(N5), we have

𝑁(
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎2𝑛
, 𝑡) ≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) , 𝑎2𝑛𝑡)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
𝑎2𝑛

|𝑟|𝑛
𝑡) ,

(66)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Since

lim
𝑛→∞

𝑁(𝐷𝑄(𝑥, 𝑦) −
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎2𝑛
, 𝑡) = 1, (67)

for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, and by (62), (66), and (N4), we
have

𝑁(𝐷𝑄 (𝑥, 𝑦) , 𝑡)

≥ min{𝑁(𝐷𝑄(𝑥, 𝑦) −
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎2𝑛
,
𝑡

2
) ,

𝑁 (
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎2𝑛
,
𝑡

2
)}

≥ 𝑁(
𝐷𝑓 (𝑎𝑛𝑥, 𝑎𝑛𝑦)

𝑎2𝑛
,
𝑡

2
)

≥ 𝑁󸀠 (𝜙 (𝑥, 𝑦) ,
𝑎2𝑛

2|𝑟|𝑛
𝑡) ,

(68)

for sufficiently large 𝑛, all 𝑥, 𝑦 ∈ 𝑋, and all 𝑡 > 0 or 𝑁 −
lim(𝐷𝑓(𝑎𝑛𝑥, 𝑎𝑛𝑦)/𝑎2𝑛) = 0.

Since lim
𝑛→∞

𝑁󸀠(𝜙(𝑥, 𝑦), (𝑎2𝑛/|𝑟|𝑛)𝑡) = 1, 𝑁(𝐷𝑄(𝑥, 𝑦),
𝑡) = 1 for all 𝑡 > 0, and so by (N2), 𝐷𝑄(𝑥, 𝑦) = 0 for all
𝑥, 𝑦 ∈ 𝑋. By Theorem 8, 𝑄 is quadratic.

To prove the uniqueness of𝑄, let𝑄
1
: 𝑋 → 𝑌 be another

quadratic mapping satisfying (53). Then for any 𝑥 ∈ 𝑋 and a
positive integer 𝑛, 𝑄

1
(𝑎𝑛𝑥) = 𝑎2𝑛𝑄

1
(𝑥), and so by (63),

𝑁(𝑄 (𝑥) − 𝑄
1
(𝑥) , 𝑡)

≥ min{𝑁(
𝑄 (𝑎𝑛𝑥)

𝑎2𝑛
−
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
,
𝑡

2
) ,

𝑁(
𝑄
1
(𝑎𝑛𝑥)

𝑎2𝑛
−
𝑓 (𝑎𝑛𝑥)

𝑎2𝑛
,
𝑡

2
)}

≥ 𝑁󸀠 (𝜙 (𝑎𝑛𝑥, 0) , 𝑎2𝑛 (𝑎2 − |𝑟|) 𝑡)

≥ 𝑁󸀠(𝜙 (𝑥, 0) ,
𝑎2𝑛 (𝑎2 − |𝑟|) 𝑡

|𝑟|𝑛
)

(69)

holds for all 𝑥 ∈ 𝑋, all positive integers 𝑛, and all 𝑡 > 0. Since
|𝑟| < 𝑎2, lim

𝑛→∞
𝑁󸀠(𝜙(𝑥, 0), (𝑎2𝑛(𝑎2 − |𝑟|)𝑡)/|𝑟|𝑛) = 1, and so

𝑄(𝑥) = 𝑄
1
(𝑥) for all 𝑥 ∈ 𝑋.

Nowwe consider the next two theoremswhich are similar
to Theorems 9 and 10. The proofs are straightforward and
similar to those of Theorems 9 and 10.

Theorem 11. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that |𝑎| < |𝑟| such that

𝑁󸀠 (𝜙(
𝑥

𝑎
,
𝑦

𝑎
) , 𝑡) ≥ 𝑁󸀠 (

1

𝑟
𝜙 (𝑥, 𝑦) , 𝑡) , (70)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be an odd
mapping with 𝑓(0) = 0 satisfying (34). Then there exists a
unique additive mapping 𝐴 : 𝑋 → 𝑌 such that the inequality

𝑁(𝐴 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (
𝑎𝑟𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) (71)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

Theorem 12. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that 𝑎2 < |𝑟| such that

𝑁󸀠 (𝜙(
𝑥

𝑎
,
𝑦

𝑎
) , 𝑡) ≥ 𝑁󸀠 (

1

𝑟
𝜙 (𝑥, 𝑦) , 𝑡) , (72)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be an even
mapping with 𝑓(0) = 0 satisfying (34). Then there exists a
unique additive mapping 𝑄 : 𝑋 → 𝑌 such that the inequality

𝑁(𝑄 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
󸀠 (
𝑎2𝑟𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) (73)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.

By combining Theorems 9 and 10, we can have the
following theorem which is the main theorem of the paper.

Theorem 13. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that |𝑟| < min{|𝑎|, 𝑎2} such that

𝑁󸀠 (𝜙 (𝑎𝑥, 𝑎𝑦) , 𝑡) ≥ 𝑁󸀠 (𝑟𝜙 (𝑥, 𝑦) , 𝑡) , (74)
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for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be a
mapping with 𝑓(0) = 0 satisfying (34). Then there exists a
unique additive-quadratic mapping 𝐹 : 𝑋 → 𝑌 such that the
inequality

𝑁(𝐹 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
1
(𝑥, 𝑡) (75)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, where

𝑁
1
(𝑥, 𝑡)

= min{𝑁󸀠 (
𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡)} .

(76)

Proof. By (34), we have

𝑁(𝐷𝑓
𝑜
(𝑥, 𝑦) , 𝑡)

≥ min {𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) ,𝑁󸀠 (𝜙 (−𝑥, −𝑦) , 𝑡)} ,
(77)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. By Theorem 9, there is a unique
additive mapping 𝐴 : 𝑋 → 𝑌 such that

𝑁(𝑓
𝑜
(𝑥) − 𝐴 (𝑥) , 𝑡)

≥ min{𝑁󸀠 (
𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝑎𝑟𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎𝑟𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡)}

(78)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0.
By (34), we have

𝑁(𝐷𝑓
𝑒
(𝑥, 𝑦) , 𝑡)

≥ min {𝑁󸀠 (𝜙 (𝑥, 𝑦) , 𝑡) ,𝑁󸀠 (𝜙 (−𝑥, −𝑦) , 𝑡)} ,
(79)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. By Theorem 10, there is a unique
quadratic mapping 𝑄 : 𝑋 → 𝑌 such that

𝑁(𝑓
𝑒
(𝑥) − 𝑄 (𝑥) , 𝑡)

≥ min{𝑁󸀠 (
𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝑎2𝑟𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎2𝑟𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡)}

(80)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0. Let 𝐹(𝑥) = 𝐴(𝑥) + 𝑄(𝑥).
Then by (78) and (80), we have (75).

The uniqueness of 𝐹 satisfying (75) is trivial.

Also, if we combine Theorems 11 and 12, we have the
following theorem.

Theorem 14. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that |𝑟| > max{|𝑎|, 𝑎2} such that

𝑁󸀠 (𝜙(
𝑥

𝑎
,
𝑦

𝑎
) , 𝑡) ≥ 𝑁󸀠 (

1

𝑟
𝜙 (𝑥, 𝑦) , 𝑡) , (81)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be a
mapping with 𝑓(0) = 0 satisfying (34). Then there exists a
unique additive-quadratic mapping 𝐹 : 𝑋 → 𝑌 such that the
inequality

𝑁(𝐹 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
2
(𝑥, 𝑡) (82)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, where

𝑁
2
(𝑥, 𝑡)

= min{𝑁󸀠 (
𝑎𝑟𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎𝑟𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝑎2𝑟𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎2𝑟𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡)} .

(83)

Among the examples of the function𝜙(𝑥, 𝑦), there are lots
of meaningful ones satisfying 𝜙(𝑐𝑥, 𝑐𝑦) = 𝑘(𝑐)𝜙(𝑥, 𝑦) for all
real numbers 𝑐 and for some real number 𝑘(𝑐). The following
theorem says that a strong and useful result can be obtained
in such cases.

Theorem 15. Let 𝜙 : 𝑋2 → 𝑍 be a function and let 𝑟 be a real
number such that |𝑟| ̸= 𝑎2, |𝑎| such that

𝑁󸀠 (𝜙 (𝑎𝑥, 𝑎𝑦) , 𝑡) = 𝑁󸀠 (𝑟𝜙 (𝑥, 𝑦) , 𝑡) , (84)

for all 𝑥, 𝑦 ∈ 𝑋 and all 𝑡 > 0. Let 𝑓 : 𝑋 → 𝑌 be a
mapping with 𝑓(0) = 0 satisfying (34). Then there exists a
unique additive-quadratic mapping 𝐹 : 𝑋 → 𝑌 such that the
inequality

𝑁(𝐹 (𝑥) − 𝑓 (𝑥) , 𝑡) ≥ 𝑁
3
(𝑥, 𝑡) (85)

holds for all 𝑥 ∈ 𝑋 and all 𝑡 > 0, where

𝑁
3
(𝑥, 𝑡)

= min{𝑁󸀠 (
𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝑎𝑟𝜙 (𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎𝑟𝜙 (−𝑥, 0)

2 (|𝑎| − |𝑟|)
, 𝑡) ,

𝑁󸀠 (
𝑎2𝑟𝜙 (𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡) ,𝑁󸀠 (

𝑎2𝑟𝜙 (−𝑥, 0)

2 (𝑎2 − |𝑟|)
, 𝑡)} .

(86)

We can use Theorem 15 to get a classical result in the
framework of normed spaces. For example, it is well known
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that for any normed space (𝑋, ‖ ⋅ ‖), mappings 𝑁
𝑋
, 𝑁󸀠
𝑋
:

𝑋 ×R → [0, 1], defined by

𝑁
𝑋
(𝑥, 𝑡) =

{
{
{

0, if 𝑡 ≤ 0,
𝑡

𝑡 + ‖𝑥‖
, if 𝑡 > 0,

𝑁󸀠
𝑋
(𝑥, 𝑡) = {

0, if 𝑡 < ‖𝑥‖ ,
1, if 𝑡 ≥ ‖𝑥‖ ,

(87)

are fuzzy norms on X. In [12, 13, 22], some examples are
provided for the fuzzy norms𝑁

𝑋
,𝑁󸀠
𝑋
and other fuzzy norms.

Here especially using the fuzzy norm𝑁
𝑋
and taking𝜙(𝑥, 𝑦) =

‖𝑥‖𝑝‖𝑦‖𝑝 + ‖𝑥‖2𝑝 + ‖𝑦‖2𝑝, we have the following example.

Example 16. Let 𝑓 : 𝑋 → 𝑌 be a mapping such that𝑓(0) = 0
and

󵄩󵄩󵄩󵄩𝐷𝑓 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ ‖𝑥‖

𝑝󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

+ ‖𝑥‖
2𝑝 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2𝑝

, (88)

for all 𝑥, 𝑦 ∈ 𝑋, a fixed rational number 𝑎 ̸= − 1, 0, 1, and a
fixed positive number𝑝 such that𝑝 ̸= 1/2, 1.Then there exists
a unique additive-quadratic mapping 𝐹 : 𝑋 → 𝑌 such that
the inequality

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝑓 (𝑥)
󵄩󵄩󵄩󵄩

≤ min{ ‖𝑥‖2𝑝

2
󵄨󵄨󵄨󵄨𝑎
2𝑝 − |𝑎|

󵄨󵄨󵄨󵄨
,
𝑎2𝑝+1‖𝑥‖2𝑝

2
󵄨󵄨󵄨󵄨𝑎
2𝑝 − |𝑎|

󵄨󵄨󵄨󵄨
,

‖𝑥‖2𝑝

2
󵄨󵄨󵄨󵄨𝑎
2𝑝 − 𝑎2

󵄨󵄨󵄨󵄨
,
𝑎2𝑝+2‖𝑥‖2𝑝

2
󵄨󵄨󵄨󵄨𝑎
2𝑝 − 𝑎2

󵄨󵄨󵄨󵄨
}

(89)

holds for all 𝑥 ∈ 𝑋.

The condition 𝑝 ̸= 1/2, 1 in Example 16 is indispensable.
The following example shows that the inequality (88) is not
stable for 𝑝 = 1/2, 1, especially in the case of 𝑎 = 2. We will
give the proof when 𝑝 = 1/2, and the proof when 𝑝 = 1 is
similar.

Example 17. Let 𝑝 be a real number with 𝑝 = 1/2. Define
mappings 𝑡, 𝑠 : R → R by

𝑡 (𝑥) =
{{
{{
{

𝑥, if |𝑥| < 1,
−1, if 𝑥 ≤ −1,
1, if 1 ≤ 𝑥,

𝑠 (𝑥) = {
𝑥2, if |𝑥| < 1,
1, ortherwise,

(90)

and a mapping 𝑓 : R → R by

𝑓 (𝑥) =
∞

∑
𝑛=0

[
𝑡 (2𝑛𝑥)

2𝑛
+
𝑠 (2𝑛𝑥)

4𝑛
] . (91)

We will show that 𝑓 satisfies the following inequality:

󵄨󵄨󵄨󵄨𝐷2𝑓 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤
200

3
(|𝑥|
1/2󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) , (92)

for all 𝑥, 𝑦 ∈ R. Here,

𝐷
2
𝑓 (𝑥, 𝑦) = 𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)

−4𝑓 (𝑥) − 2𝑓 (−𝑥) − 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 − 𝑦) .

(93)

But there do not exist an additive-quadratic mapping 𝐹 :
R → R and a nonnegative constant𝐾 such that

󵄨󵄨󵄨󵄨𝐹 (𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐾 |𝑥| , (94)

for all 𝑥 ∈ R.

Proof. Note that |𝑓
𝑜
(𝑥)| ≤ 2, 𝑠

𝑜
(𝑥) = 0, and 𝑡

𝑜
(𝑥) = 𝑡(𝑥) for

all 𝑥 ∈ R. First, suppose that (1/2) ≤ |𝑥|1/2|𝑦|1/2 + |𝑥| + |𝑦|.
Then |𝐷

2
𝑓
𝑜
(𝑥, 𝑦)| ≤ 40(|𝑥|1/2|𝑦|1/2 + |𝑥| + |𝑦|). Now suppose

that (1/2) > |𝑥|1/2|𝑦|1/2 + |𝑥| + |𝑦|. Then there is a positive
integer𝑚 such that

1

2𝑚+2
≤ |𝑥|
1/2󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 <

1

2𝑚+1
(95)

and so

2𝑚 |𝑥| <
1

2
, 2𝑚

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 <
1

2
. (96)

Hence, we have

{2𝑚−1 (2𝑥 ± 𝑦) , 2𝑚−1 (𝑥 ± 𝑦) , 2𝑚−1𝑥, 2𝑚−1𝑦} ⊆ (−1, 1) ,

(97)

and so for any 𝑛 = 0, 1, 2, . . . , 𝑚 − 1,

𝐷
2
𝑡
0
(2𝑛𝑥, 2𝑛𝑦) = 0, (98)

for all 𝑥, 𝑦 ∈ 𝑋. Thus,

𝐷
2
𝑓
𝑜
(𝑥, 𝑦) =

∞

∑
𝑛=0

1

2𝑛
𝐷
2
𝑡 (2𝑛𝑥, 2𝑛𝑦)

=
∞

∑
𝑛=𝑚

1

2𝑛
𝐷
2
𝑡 (2𝑛𝑥, 2𝑛𝑦)

≤
1

2𝑚−1
≤ 8 (|𝑥|

1/2󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) .

(99)

Note that |𝑓
𝑒
(𝑥)| ≤ 4/3 for all 𝑥 ∈ R, 𝑡

𝑒
(𝑥) = 0, and

𝑠
𝑒
(𝑥) = 𝑠(𝑥). First, suppose that (1/2) ≤ |𝑥|1/2|𝑦|1/2+|𝑥|+ |𝑦|.

Then |𝐷
2
𝑓
𝑒
(𝑥, 𝑦)| ≤ (80/3)(|𝑥|1/2|𝑦|1/2+|𝑥|+|𝑦|) for all𝑥, 𝑦 ∈

R. Now suppose that (1/2) > |𝑥|1/2|𝑦|1/2+|𝑥|+|𝑦|.Then there
is a positive integer 𝑘 such that

1

22𝑘+4
≤ |𝑥|
1/2󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 <

1

22𝑘+2
, (100)

and so

2𝑘 |𝑥| <
1

2
, 2𝑘

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 <
1

2
. (101)
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Hence, we have

{2𝑘−1 (2𝑥 ± 𝑦) , 2𝑘−1 (𝑥 ± 𝑦) , 2𝑘−1𝑥, 2𝑘−1𝑦}

⊆ (−1, 1) ,
(102)

and so for any 𝑛 = 0, 1, 2, . . . , 𝑘 − 1,

𝐷
2
𝑠
𝑒
(2𝑛𝑥, 2𝑛𝑦) = 0, (103)

for all 𝑥, 𝑦 ∈ 𝑋. Thus,

𝐷
2
𝑓
𝑒
(𝑥, 𝑦) =

∞

∑
𝑛=0

1

4𝑛
𝐷
2
𝑠
𝑒
(2𝑛𝑥, 2𝑛𝑦)

=
∞

∑
𝑛=𝑘

1

4𝑛
𝐷
2
𝑠
𝑒
(2𝑛𝑥, 2𝑛𝑦)

≤
64

3
(|𝑥|
1/2󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) .

(104)

Hence, we have

󵄨󵄨󵄨󵄨𝐷2𝑓𝑜 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 40 (|𝑥|

1/2󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨𝐷2𝑓𝑒 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤
80

3
(|𝑥|
1/2󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
1/2

+ |𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨) ,

(105)

for all 𝑥, 𝑦 ∈ 𝑋, and so we have (92).
Suppose that there exist an additive mapping 𝐴 : R →

R, a quadratic mapping 𝑄 : R → R, and a nonnegative
constant 𝐾 such that 𝐴 + 𝑄 satisfies (94). Since |𝑓(𝑥)| ≤
(10/3), by (94), we have

−
10

3𝑛
− 𝐾

|𝑥|

𝑛
≤
𝐴 (𝑥)

𝑛
+ 𝑄 (𝑥) ≤

10

3𝑛
+ 𝐾

|𝑥|

𝑛
, (106)

for all 𝑥 ∈ 𝑋 and all positive integers 𝑛, and so 𝑄(𝑥) = 0 for
all 𝑥 ∈ 𝑋. Since 𝐴 is additive,

󵄨󵄨󵄨󵄨𝑓𝑒 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐾 |𝑥| , (107)

for all 𝑥 ∈ 𝑋. Take a positive integer 𝑙 such that 𝑙 > 𝑀, and
pick 𝑥 ∈ R with 0 < 2𝑙𝑥 < 1. Then

𝑓
𝑒
(𝑥) =

∞

∑
𝑛=0

𝑠 (2𝑛𝑥)

4𝑛
≥
𝑙−1

∑
𝑛=0

𝑠 (2𝑛𝑥)

4𝑛
≥ 𝑙𝑥2 > 𝑀𝑥2, (108)

which is in contradiction with (107).
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[16] I. Kramosil and J. Michálek, “Fuzzy metrics and statistical
metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336–344, 1975.

[17] T. Bag and S. K. Samanta, “Finite dimensional fuzzy normed
linear spaces,” Journal of Fuzzy Mathematics, vol. 11, no. 3, pp.
687–705, 2003.

[18] H. Drygas, “Quasi-inner products and their applications,” in
Advances in Multivariate Statistical Analysis, A. K. Gupta, Ed.,
pp. 13–30, Reidel, Dordrecht, The Netherlands, 1987.

[19] V. A. Faiziev and P. K. Sahoo, “On the stability of Drygas
functional equation on groups,”Banach Journal ofMathematical
Analysis, vol. 1, no. 1, pp. 43–55, 2007.

[20] A. Najati andM. B.Moghimi, “Stability of a functional equation
deriving fromquadratic and additive functions in quasi-Banach
spaces,” Journal of Mathematical Analysis and Applications, vol.
337, no. 1, pp. 399–415, 2008.



Journal of Applied Mathematics 11

[21] C. I. Kim, G. Han, and S.-A. Shim, “Hyers-Ulam stability for
a class of quadratic functional equations via a typical form,”
Abstract and Applied Analysis, vol. 2013, Article ID 283173, 8
pages, 2013.

[22] A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian,
“Fuzzy stability of the Jensen functional equation,” Fuzzy Sets
and Systems, vol. 159, no. 6, pp. 730–738, 2008.


