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Technique of feedforward and feedback optimal vibration control and simulation for long-span cable-bridge coupled systems
is developed. Buffeting loading systems of long-span cable-bridge structure are constructed by weighted amplitude wave
superposition method. Nonlinear model of cable-bridge coupled vibration control system is established and the corresponding
systemof state space form is described. In order to reduce buffeting loading influence of thewind-induced vibration for the structure
and improve the robust performance of the vibration control, based on semiactive vibration control devices and optimal control
approach, a feedforward and feedback optimal vibration controller is designed, and an algorithm is presented for the vibration
controller. Numerical simulation results are presented to illustrate the effectiveness of the proposed technique.

1. Introduction

Bridge plays an irreplaceable role in the transportation system
and has an important value in politics, economy, culture,
and military. Influenced by winds, vehicles, pedestrians, and
seism loads, structural vibration of bridges is inevitable.
Sustained and severe vibration of bridge structures not only
shortens the service life of bridges but also reduces the
security of traffic. Combined with extreme weather situa-
tions and geological disasters, accidents and dangerous cases
happen frequently to bridge structures. Therefore, in order
to decrease bridge vibration and to improve the reliability
and safety of bridge structures, constructing vibration control
systems has become an urgent problem to be solved.

Most of the studies on bridge structure focus on dynamic
behavior [1–4], fatigue damage [4–6], and reliability analysis
[7, 8]. Using frequency and time domain methods in [1],
dynamic characteristics of a laboratory bridge model are
determined by operational modal analysis. According to
the actual project, the effects of bridge width and bridge
deck pavement thickness on dynamic characteristics of hinge
joint voided Slab bridge are researched in [2]. Considering

wind, railway, and highway loadings in [3], dynamic stress
analysis of long suspension bridges is presented. In [4], the
dynamic properties of a decommissioned timber bridge are
measured in the laboratory to observe the characteristics
of the lowest few mode shapes as the support stiffness is
varied to simulate deterioration of the pile supports, and an
evaluation method is proposed to quantitatively assess the
foundation competence of timber bridges. To avoid heavy
interventions for strengthening of bridge deck slabs, in [5],
an improved building material is used, fatigue tests for the
determination of the fatigue behavior of beams reinforced by
this building material are presented, and then a technique
is developed to reduce the use costs as well as life cycle
costs. The performance of an instrumented concrete bridge
deck that has longitudinal cracks along with the entire length
of the bridge is presented in [6], and the influence on
their fatigue life is monitored. To analyze the reliability of
Dongjiang Bridge, in [7], a new analysis method combined
with advantages of some common reliability computing
methods is put forward. The bridge is modeled as a single
span simply supported Euler-Bernoulli beam and the vehicle
is modeled as a single degree of freedom system in [8],
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and they present a reliability analysis of a simply supported
bridge deck subjected to random moving and seismic loads.
The previous studies are mostly about the vibration response,
monitor, and analysis [9–11], but few studies are about
vibration control for bridge structure, and the result about
optimal control problems [12–15] for nonlinear systems of the
bridge structure vibration control is rare.

The remainder of this paper is structured as follows.
In Section 2, first, employing weighted amplitude wave
superposition method and buffeting loading forces on long-
span cable-bridge structure are established.Then,mechanical
model and dynamical system of the long-span cable bridge
are constructed. In Section 3, optimal vibration problem
of cable-bridge systems is presented. In Section 4, first, in
order to use successive approximation approach (SAA), two
lemmas are introduced. Then, feedforward and feedback
optimal vibration controller and algorithm are designed for
the long-span cable-bridge system. In Section 5, numerical
experiments are presented. Finally, in Section 6 some conclu-
sions are drawn.

2. Cable-Bridge Structure Nonlinear
Control System

2.1. Buffeting Loading. As the span of the bridge extends, the
stiffness of the bridge structure reduces, and the bridge has
muchmore characteristics of the flexible structure.Therefore,
the influence of the wind loading on the bridge structure
cannot be neglected in engineering, and many scholars turn
their attention to the influence of the wind-induced vibration
on the structure. Bridge buffeting is a sort of random
vibration of the bridge structure influenced by the fluctuating
wind. Fluctuating wind field induced by natural wind can be
described by ergodic and stationary Gauss random process
and can be regarded as a single variable four-dimensional
random field in mathematics.

We employ weighted amplitude wave superposition
method to describe buffeting loading forces on long-span
cable-bridge structures. According to weighted amplitude
wave superpositionmethod, buffeting loading forces on long-
span cable-bridge structure can be simulated by superposi-
tion of weighted amplitude waves. The buffeting force of the
𝑗th composition wave on long-span cable-bridge structure is
as follows:

𝑝𝑗 = 𝐴𝑗 sin (𝜔𝑗𝑡 + 𝜑𝑗) , 𝑗 = 1, 2, . . . , 𝑟, (1)

in which 𝐴𝑗 and 𝜔𝑗 are, respectively, the amplitude and
frequency of the 𝑗th wave component and 𝜑𝑗 is the random
phase angles uniformly distributed in 0 ≤ 𝜑𝑗 < 2𝜋. Let
𝑝(𝑡) = [𝑝1, 𝑝2, . . . , 𝑝𝑟]

𝑇; we have

�̈�𝑗 = −𝜔
2
𝑗𝑝𝑗, 𝑗 = 1, 2, . . . , 𝑟,

̈̃𝑝 (𝑡) = − diag {𝜔1
2
, 𝜔2
2
, . . . , 𝜔𝑟

2
} 𝑝 (𝑡)

= −Ω
2
𝑝 (𝑡) ,

(2)

in which Ω = diag{𝜔1, 𝜔2, . . . , 𝜔𝑟}. Let 𝑤(𝑡) = [𝑝(𝑡) ̇̃𝑝(𝑡)]
𝑇
;

then

�̇� (𝑡) = [
0 𝐼𝑟

−Ω
2
0
]𝑤 (𝑡) = 𝐺𝑤 (𝑡) ,

𝑝 (𝑡) = [𝐼𝑟 0]𝑤 (𝑡) ,

𝑝 (𝑡) = [1, . . . , 1] 𝑝 (𝑡)

= [1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

]𝑤 (𝑡) = 𝐹𝑤 (𝑡) ,

(3)

where 𝐹 = [1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟

], 𝐺 = [
0 𝐼
𝑟

−Ω
2

0
], 𝐼𝑟 is the 𝑟-order

unit matrix, and 0 ∈ 𝑅𝑟×𝑟 is the zero matrix.
So, the total buffeting loading force acting on the bridge

structure can be generated by the exosystem:

�̇� (𝑡) = 𝐺𝑤 (𝑡) ,

𝑝 (𝑡) = 𝐹𝑤 (𝑡) .
(4)

2.2. Mechanical Model and Dynamical System. Considering
cable-bridge structures with semiactive tune mass damper
devices, the deck is simplified as the lumped mass influenced
by the cable end and is denoted by the parameter𝑀. And the
stiffness and damping of the deck are represented by 𝐶 and
𝐾, respectively. The cable-bridge coupled vibration induced
by the buffeting loading is decomposed into themotion along
the axial direction and the motion perpendicular to the cable
axis. The problem of the axial direction motion is studied in
this paper. The mechanical model of the cable and deck is
shown in Figure 1.

In order to simplify the problem and reflect the essence of
the vibration control for the cable-bridge structure, we make
some fundamental assumptions as follows:

(1) the flexural stiffness, torsional stiffness, and shear
stiffness are disregarded;

(2) the gravity sag curve is considered as a parabola;
(3) the constitutive relation of the deformation for the

cable satisfies Hooke’s law and is uniform for each
point;

(4) the effect of the tower vibration on the cable is disre-
garded.

Generally, the fundamental mode is in the dominant
position; therefore we consider the first mode as the main
object to study the cable-bridge coupled vibration control
problem. The dynamical system of the cable-bridge coupled
vibration induced by the buffeting loading is as follows:

�̈� (𝑡) + (𝜔
2
1 + 𝑎3𝑌 (𝑡))𝑊 (𝑡) + 𝑎1𝑊

3
(𝑡)

+ 𝑎2𝑊
2
(𝑡) + 𝑎4𝑌 (𝑡) = 0,

𝑢 (𝑡) + 𝑝 (𝑡) = �̈� (𝑡) + 2𝜔2𝜉�̇� (𝑡)

+ 𝜔
2
2𝑌 (𝑡) + 𝑎5𝑊(𝑡) + 𝑎6𝑊

2
(𝑡) ,

(5)
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Figure 1: The mechanical model of cable and deck.

in which 𝑊(𝑡) is cable displacement from the equilibrium
position; 𝑌(𝑡) is the displacement of the cable end, namely,
the deck displacement along the axial direction of the cable;
𝑢(𝑡) is control input variable; 𝜔1 and 𝜔2 are the intrinsic
frequencies of the cable and deck, respectively; 𝜉 is the
damping ratio of the deck; 𝑎𝑖 (𝑖 = 1, 2, . . . , 6) are parameters
determined by the factors such as the mass per unit length
and the dip angle of the cable and the regular function of the
deck vibration mode.

Choose state variables and state vector for the cable-
bridge coupled vibration control system (5) as follows:

𝑥1 (𝑡) = 𝑊 (𝑡) , 𝑥2 (𝑡) = �̇� (𝑡) ,

𝑥3 (𝑡) = 𝑌 (𝑡) , 𝑥4 (𝑡) = �̇� (𝑡) ,

𝑥 (𝑡) = [𝑥1 (𝑡) , 𝑥2 (𝑡) , 𝑥3 (𝑡) , 𝑥4 (𝑡)]
𝑇
,

(6)

and the system (5) is rewritten in the state-space representa-
tion:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑥) + 𝐷𝑝 (𝑡) ,

𝑥 (0) = 𝑥0,
(7)

where 𝑝(𝑡) is external input disturbance, namely, buffeting
loading force, and

𝐴 =
[
[
[
[

[

0 1 0 0

−𝜔21 0 −𝑎4 0

0 0 0 1

−𝑎5 0 −𝜔22 −2𝜔2𝜉

]
]
]
]

]

,

𝐵 =
[
[
[

[

0
0
0
1

]
]
]

]

, 𝐷 =
[
[
[

[

0
0
0
1

]
]
]

]

,

𝑓 (𝑥)

=[0 −𝑎1𝑥
3
1 (𝑡) − 𝑎2𝑥

2
1 (𝑡) − 𝑎3𝑥3 (𝑡) 𝑥1 (𝑡) 0 −𝑎6𝑥

2
1 (𝑡)]
𝑇
.

(8)

3. Optimal Vibration Control Problem of
the Long-Span Cable-Bridge System

In order to study optimal vibration control problem for long-
span cable-bridge, we choose an average performance index
for system (7) as follows:

𝐽 = lim
𝑇→∞

1

𝑇
∫
𝑇

0

[𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) + 𝑅𝑢

2
(𝑡)] 𝑑𝑡, (9)

where𝑄 ∈ R4×4 are positive semidefinite matrices and 𝑅 ∈ R

is a positive definite matrix.
The objective of this paper is to find a control law 𝑢∗(𝑡)

for system (7) and make the value of the performance index
(9) a minimum.

Applying the maximum principle to the optimal control
problem in (7) and (9), the optimal control law is described
by

𝑢
∗
(𝑡) = −𝑅

−1
𝐵
𝑇
𝜆 (𝑡) , (10)

where 𝜆(𝑡) is the solution to the following nonlinear two-
point boundary value (TPBV) problem:

−�̇� (𝑡) = 𝑄𝑥 (𝑡) + 𝐴
𝑇
𝜆 (𝑡) + 𝑓𝑥

𝑇
(𝑥) 𝜆 (𝑡) ,

�̇� (𝑡) = 𝐴𝑥 (𝑡) − 𝑆𝜆 (𝑡) + 𝑓 (𝑥) + 𝐷𝑝 (𝑡) ,

𝑥 (0) = 𝑥0,

𝜆 (∞) = 0,

(11)

where 𝑆 = 𝐵𝑅−1𝐵𝑇 and 𝑓𝑥
𝑇
(𝑥) = 𝜕𝑓𝑇(𝑥)/𝜕𝑥 is the Jacobian

matrix of 𝑓(𝑥) with respect to vector 𝑥.
Unfortunately, for the nonlinear TPBV problem in (11),

with the exception of the simplest cases, there is no analytic
solution. Therefore, we try to find the numerical solution
to such problem. The main purpose of this paper is to
develop SAA [15] in order to find the feedforward and
feedback optimal control law for the system described by (7)
with average performance index (9). In this approach, the
optimal control law is composed of exact linear term and the
compensation of the nonlinear term. The compensation of
the nonlinear term is the limit of the costate vector iteration
sequence. The original optimal control law is approached
by the process of solving the iteration sequence, instead of
solving the nonlinear TPBV problem.

4. Optimal Vibration Control Law Design

Consider the nonlinear system

�̇� (𝑡) = 𝐺 (𝑡) 𝑧 (𝑡) + ℎ (𝑧 (𝑡) , 𝑡) + 𝐹V (𝑡) ,

𝑧 (𝑡1) = 𝜂,
(12)

where 𝑧 ∈ R𝑛 is the state vector, V ∈ R𝑚 is the input vector,
ℎ : R𝑛 × R+ → 𝑈, ℎ(0, 𝑡) ≡ 0, 𝐺 : R+ → R𝑛×𝑛, 𝐹 ∈ R𝑛×𝑚,
and 𝜂 is the initial state vector (for 𝑡1 = 𝑡0) or the terminal
state vector (for 𝑡1 = 𝑡𝑓). Assume that ℎ satisfies the Lipschitz
conditions on R𝑛 ×R+.
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In order to use the SAA, we introduce two lemmas [16].

Lemma 1. Define the vector function sequence {𝑧(𝑘)(𝑡)} as

𝑧
(0)
(𝑡) = Φ (𝑡, 𝑡0) 𝜂 + ∫

𝑡

𝑡
0

Φ (𝑡, 𝑟) 𝐹V (𝑟) 𝑑𝑟,

𝑧
(𝑘)
(𝑡) = Φ (𝑡, 𝑡0) 𝜂

+ ∫
𝑡

𝑡
0

Φ (𝑡, 𝑟) [ℎ (𝑧
(𝑘−1)

(𝑟) , 𝑟) + 𝐹V (𝑟)] 𝑑𝑟,

𝑘 = 1, 2, . . . , 𝑡 ∈ R𝑇,

(13)

where Φ(𝑡, 𝑡0) is the state transition matrix corresponding to
𝐺(𝑡); then the sequence {𝑧(𝑘)(𝑡)} uniformly converges to the
solution of (12) for 𝑡1 = 𝑡0.

Lemma 2. Define the vector function sequence {𝑧(𝑘)(𝑡)} as

𝑧
(0)
(𝑡) = Φ (𝑡, 𝑡𝑓) 𝜂 + ∫

𝑡

𝑡
𝑓

Φ (𝑡, 𝑟) 𝐹V (𝑟) 𝑑𝑟,

𝑧
(𝑘)
(𝑡) = Φ (𝑡, 𝑡𝑓) 𝜂

+ ∫
𝑡

𝑡
𝑓

Φ (𝑡, 𝑟) [ℎ (𝑧
(𝑘−1)

(𝑟) , 𝑟) + 𝐹V (𝑟)] 𝑑𝑟,

𝑘 = 1, 2, . . . , 𝑡 ∈ R𝑇.

(14)

Then the sequence {𝑧(𝑘)(𝑡)} converges uniformly to the solution
of system (12) as 𝑡1 = 𝑡𝑓.

4.1. Feedforward and Feedback Optimal Controller and Algo-
rithmDesign. Then,wedesign vibration controller for system
(7).The optimal control law can be presented in the following
theorem.

Theorem 3. Consider the optimal control problem described
by system (7) with performance index (9), the feedforward and
feedback optimal control law 𝑢∗(𝑡) exists and is unique. Its form
is as follows:

𝑢
∗
(𝑡) = −𝑅

−1
𝐵
𝑇
[𝑃1𝑥 (𝑡) + 𝑃2𝑝 (𝑡)

+ 𝑃3𝑝𝜔 (𝑡) + lim
𝑘→∞

𝑔
(𝑘)
(𝑡)] ,

(15)

where 𝑃1 is the unique positive definite solution of the following
Riccati matrix equation:

𝐴
𝑇
𝑃1 + 𝑃1𝐴 − 𝑃1𝑆𝑃1 + 𝑄 = 0. (16)

𝑃2 and 𝑃3 are the unique solutions of the following Sylvester
matrix equations:

(𝐴
𝑇
− 𝑃1𝑆)

2
𝑃2𝐹 + 𝑃2𝐹Ω

2
= − (𝐴

𝑇
− 𝑃1𝑆) 𝑃1𝐷𝐹,

(𝐴
𝑇
− 𝑃1𝑆)

2
𝑃3 + 𝑃3Ω

2
= 𝑃1𝐷.

(17)

The 𝑘th adjoint vector is found from the following adjoint vector
sequences:

𝑔
(0)
(𝑡) = ∫

∞

𝑡

Φ
𝑇
(𝑟 − 𝑡) 𝑓𝑥

𝑇
(0) [𝑃2𝑝 (𝑟) + 𝑃3𝑝𝜔 (𝑟)] 𝑑𝑟,

𝑔
(𝑘)
(𝑡) = ∫

∞

𝑡

Φ
𝑇
(𝑟 − 𝑡) {𝑃1𝑓 (𝑥

(𝑘−1)
(𝑟)) + 𝑓𝑥

𝑇
(𝑥
(𝑘−1)

(𝑟))

× [𝑃1𝑥
(𝑘−1)

(𝑟) + 𝑃2𝑝 (𝑟)

+𝑃3𝑝𝜔 (𝑟) + 𝑔
(𝑘−1)

(𝑟)]} 𝑑𝑟,

𝑘 = 1, 2, . . . ,

(18)

and the 𝑘th state vectors 𝑥(𝑘)(𝑡) satisfy the following state vector
sequences:

𝑥
(0)
(𝑡) = Φ (𝑡) 𝑥0

+ ∫
𝑡

0

Φ (𝑟 − 𝑡) [ (𝐷 − 𝑆𝑃2) 𝑝 (𝑟)

−𝑆𝑃3𝑝𝜔 (𝑟) − 𝑆𝑔
(0)
(𝑟)] 𝑑𝑟,

𝑥
(𝑘)
(𝑡) = Φ (𝑡) 𝑥0

+ ∫
𝑡

0

Φ (𝑟 − 𝑡) [ (𝐷 − 𝑆𝑃2) 𝑝 (𝑟) − 𝑆𝑃3𝑝𝜔 (𝑟)

−𝑆𝑔
(𝑘)
(𝑟) + 𝑓 (𝑥

(𝑘−1)
(𝑟))] 𝑑𝑟,

𝑘 = 1, 2, . . . ,

(19)

Φ (𝑡) = 𝑒
(𝐴−𝑆𝑃

1
)𝑡
,

Ω = diag {Ω,Ω} ,

𝑝𝜔 (𝑡) = �̇� (𝑡) = 𝐹𝐺𝑤 (𝑡) .

(20)

Proof. To use the SAA to solve nonlinear TPBV problem (11),
we separate the linear part in nonlinear TPBV problem (11);
let

𝜆 (𝑡) = 𝑃1𝑥 (𝑡) + 𝑃2𝑝 (𝑡) + 𝑃3�̇� (𝑡) + 𝑔 (𝑡) , (21)

where 𝑔(𝑡) is an adjoint vector introduced to compensate for
the effect of the nonlinear term in system (7).

Substituting the first equation of (7) and (10) into the
derivative of (21), we get

�̇� (𝑡) = 𝑃1�̇� (𝑡) + 𝑃2�̇� (𝑡) + 𝑃3�̈� (𝑡) + ̇𝑔 (𝑡)

= (𝑃1𝐴 − 𝑃1𝑆𝑃1) 𝑥 (𝑡) + (𝑃1𝐷 − 𝑃1𝑆𝑃2) 𝑝 (𝑡)

+ (𝑃2 − 𝑃1𝑆𝑃3) �̇� (𝑡) + 𝑃3�̈� (𝑡)

− 𝑃1𝑆𝑔 (𝑡) + 𝑃1𝑓 (𝑥) + ̇𝑔 (𝑡) .

(22)
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Note that

𝑝𝜔 (𝑡) = �̇� (𝑡) ,

�̈� (𝑡) = 𝐹𝐺
2
𝑤 (𝑡) = −𝐹Ω

2
𝑤 (𝑡) .

(23)

From (11) and (21), we obtain

�̇� (𝑡) = − (𝑄 + 𝐴
𝑇
𝑃1) 𝑥 (𝑡) − 𝐴

𝑇
𝑃2𝑝 (𝑡)

− 𝐴
𝑇
𝑃3𝑝𝜔 (𝑡) − 𝐴

𝑇
𝑔 (𝑡) − 𝑓

𝑇
𝑥 (𝑥) 𝜆 (𝑡) .

(24)

Substituting (23) into (22) and comparing the coefficients of
(22) and (24), we obtain matrix equations:

𝐴
𝑇
𝑃1 + 𝑃1𝐴 − 𝑃1𝑆𝑃1 + 𝑄 = 0,

𝐴
𝑇
𝑃2𝐹 + 𝑃1𝐷𝐹 − 𝑃3𝐹Ω

2
− 𝑃1𝑆𝑃2𝐹 = 0,

𝐴
𝑇
𝑃3 + 𝑃2 − 𝑃1𝑆𝑃3 = 0,

(25)

and the adjoint vector differential equations:

̇𝑔 (𝑡) = −(𝐴 − 𝑆𝑃1)
𝑇
𝑔 (𝑡) − 𝑃1𝑓 (𝑥) − 𝑓𝑥

𝑇
(𝑥) 𝜆 (𝑡) ,

𝑔 (∞) = 0.
(26)

From the matrix equations in (25), we obtain

𝐴
𝑇
𝑃1 + 𝑃1𝐴 − 𝑃1𝑆𝑃1 + 𝑄 = 0,

(𝐴
𝑇
− 𝑃1𝑆)

2
𝑃2𝐹 + 𝑃2𝐹Ω

2
= − (𝐴

𝑇
− 𝑃1𝑆) 𝑃1𝐷𝐹,

(𝐴
𝑇
− 𝑃1𝑆)

2
𝑃3 + 𝑃3Ω

2
= 𝑃1𝐷.

(27)

Substituting (21) into the second equation of TPBV problem
(11), we have

�̇� (𝑡) = (𝐴 − 𝑆𝑃1) 𝑥 (𝑡) + (𝐷 − 𝑆𝑃2) 𝑝 (𝑡)

− 𝑆𝑃3𝑝𝜔 (𝑡) − 𝑆𝑔 (𝑡) + 𝑓 (𝑥) ,

𝑥 (𝑡0) = 𝑥0.

(28)

In order to obtain the solution of TPBV problem (11) from the
SAA, according to (28) and (26), we construct the following
state equation sequences:

�̇�
(0)
(𝑡) = (𝐴 − 𝑆𝑃1) 𝑥

(0)
(𝑡) + (𝐷 − 𝑆𝑃2) 𝑝 (𝑡)

− 𝑆𝑃3𝑝𝜔 (𝑡) − 𝑆𝑔
(0)
(𝑡) ,

𝑥
(0)
(𝑡0) = 𝑥0,

�̇�
(𝑘)
(𝑡) = (𝐴 − 𝑆𝑃1) 𝑥

(𝑘)
(𝑡) + (𝐷 − 𝑆𝑃2) 𝑝 (𝑡)

− 𝑆𝑃3𝑝𝜔 (𝑡) − 𝑆𝑔
(𝑘)
(𝑡) + 𝑓 (𝑥

(𝑘−1)
) ,

𝑥
(𝑘)
(𝑡0) = 𝑥0, 𝑘 = 1, 2, . . . ,

(29)

PlantD

B

P2

P3

P1

p𝜔(t)

−R−1BT

−R−1BT

−R−1BT

−R−1BT

p(t)

u(t)

x(t)

lim
t→∞

g(k)(t)

Figure 2: Control block diagram of the system.

and the adjoint vector differential equation sequences:

̇𝑔
(0)
(𝑡) = −(𝐴 − 𝑆𝑃1)

𝑇
𝑔
(0)
(𝑡) − 𝑓𝑥

𝑇
(0) [𝑃2𝑝 (𝑡) + 𝑃3𝑝𝜔 (𝑡)] ,

lim
𝑇→∞

𝑔
(0)
(𝑇) = 0,

̇𝑔
(𝑘)
(𝑡) = −(𝐴 − 𝑆𝑃1)

𝑇
𝑔
(𝑘)
(𝑡) − 𝑃1𝑓 (𝑥

(𝑘−1)
(𝑡))

− 𝑓𝑥
𝑇
(𝑥
(𝑘−1)

(𝑡)) 𝜆
(𝑘−1)

(𝑡) ,

lim
𝑇→∞

𝑔
(0)
(𝑇) = 0, 𝑘 = 1, 2, . . . ,

(30)

where

𝜆
(𝑘)
(𝑡) = 𝑃1𝑥

(𝑘)
(𝑡) + 𝑃2𝑝 (𝑡) + 𝑃3𝑝𝜔 (𝑡) + 𝑔

(𝑘)
(𝑡) ,

𝑘 = 1, 2, . . . .
(31)

According to Lemmas 1 and 2, the adjoint vector sequence in
(18) and the state vector sequences in (19) uniformly converge
to the solution of (26) and (28), respectively.

Correspondingly, the control sequence is given in the
following form:

𝑢
(𝑘)
(𝑡) = −𝑅

−1
𝐵
𝑇
𝜆
(𝑘)
(𝑡)

= −𝑅
−1
𝐵
𝑇
[𝑃1𝑥
(𝑘)
(𝑡) + 𝑃2𝑝 (𝑡) + 𝑃3𝑝𝜔 (𝑡) + 𝑔

(𝑘)
(𝑡)] .

(32)

When 𝑘 → ∞, we obtain the feedforward and feedback
optimal control law 𝑢∗(𝑡) in (15).

From (15), we can see that the feedforward and feedback
optimal control law 𝑢∗(𝑡) is composed of the state feedback
term, the disturbance and its derivative, and the compen-
sation of the nonlinear term of the cable-bridge vibration
control system. In order to explain the work of the control
law, the control block diagram of the system is drawn simply
in Figure 2.

Remark 4. In fact, it is impossible to calculate feedforward
and feedback optimal control law in (15). We can find the
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feedforward and feedback optimal control law by replacing
∞ with𝑁 in (15):

𝑢𝑁 (𝑡) = −𝑅
−1
𝐵
𝑇
[𝑃1𝑥 (𝑡) + 𝑃2𝑝 (𝑡) + 𝑃3𝑝𝜔 (𝑡) + 𝑔

(𝑁)
(𝑡)] .

(33)

In order to implement the feedforward and feedback
control law described in Theorem 3, we design an algorithm
in the following.

Algorithm 5. Consider the following.

Step 1. Calculate the matrices 𝑃1, 𝑃2, and 𝑃3 from the matrix
equations (16) and (17).

Step 2. Establish the buffeting loading force 𝑝(𝑡) by the model
(4) and relevant data from (23).

Step 3. Choose an allowable error 𝜎.

Step 4. Calculate 𝑔(0)(𝑡) and 𝑥(0)(𝑡) by the first equations of
(18) and (19), respectively, and let 𝑖 = 1.

Step 5. Calculate 𝑔(𝑖)(𝑡) and 𝑥(𝑖)(𝑡) by the second equations of
(18) and (19), respectively.

Step 6. Calculate the 𝑖th feedforward and feedback optimal
controller 𝑢(𝑖)(𝑡) by (32).

Step 7. Calculate 𝐽(𝑖):

𝐽
(𝑖)
= lim
𝑇→∞

1

𝑇
∫
𝑇

0

[𝑥
(𝑖)𝑇

(𝑡) 𝑄𝑥
(𝑖)
(𝑡) + 𝑅𝑢

(𝑖)2
(𝑡)] 𝑑𝑡. (34)

If |𝐽(𝑗) − 𝐽(𝑗−1)|/𝐽(𝑗) ≤ 𝜎, 𝑗 = 𝑖, 𝑖 − 1, 𝑖 − 2, 𝑖 − 3, and 𝑖 ≥ 4,
stop calculating, and𝑁 can be chosen from [𝑖−3, 𝑖]. The𝑁th
order feedforward and feedback optimal controller 𝑢𝑁(𝑡) is
obtained by (33); else let 𝑖 = 𝑖 + 1 and go to Step 5.

5. Numerical Simulations

In this section, we apply the proposed feedforward and
feedback optimal vibration controller to a road suspension
cable-bridge. The cable-bridge with three towers located in
Yangtze River, whose span arrangement is 360m + 1080m
+ 1080m + 360m = 2880m, whose stiffening beam of 3.5m
height and 38.5m width with a tuyere consisting of a top and
a bottom inclined plates is closed flat steel box beam, whose
cable bent towers are 178.3m high, whose two main cables
crosswise space between is 35.8m, whose main part of tower
is filled by concrete and is𝐻model, and whose middle tower
is supported by expanded triangle. The values of system (7)
and performance index (9) are as follows: 𝜔1 = 0.470Hz,
𝜔2 = 0.793Hz, 𝜉 = 0.02, 𝑎𝑖 = 1.15 (𝑖 = 1, 2, . . . , 6), 𝑄 = 𝐼,
and 𝑅 = 1.

Employing Matlab software, numerical experiments are
carried out for the proposed optimal vibration controller.
Figure 3 shows the buffeting loading force curve.
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Figure 3: Buffeting loading force curve.
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Themain purpose of vibration control of long-span cable-
bridge is to reduce the deck displacement which indicates
the limit of the deck motion and to reduce the deck velocity
which ensures the road holding ability for vehicles and
pedestrians. So, to evaluate effectiveness of the proposed
control strategy, the deck displacement and velocity are
considered. Then, the corresponding curves of open loop
system, feedback optimal control system, and the system
controlled by the proposed optimal vibration controller are
compared and shown in Figures 4 and 5. Then, in Figure 6,
the control forces of the feedback controller represented by
the red line and proposed controller denoted by the green line
are shown.

The curves of displacement are shown in Figure 4 and
velocities are in Figure 5, in which blue lines represent the
open loop results of the deck of long-span bridge systems,
red lines denote the results controlled by feedback optimal
controller, and green lines describe the results of the long-
span bridge systems controlled by the proposed control
strategy. It can be seen from Figures 4 and 5 that the proposed
optimal controller is efficient, real-time, and robust in reduc-
ing displacement and velocity of the deck, thereby ensures
safety of the long-span bridge, and enhances passing vehicle
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Figure 6: Control force curves.

ride comfort. Moreover, in Figure 6, it is demonstrated that
it needs less control forces than feedback optimal vibration
control and therefore it needs less energy. In Figure 5, the
system controlled by the proposed controller (green line)
responds much quicker than that controlled by feedback
controller (red line), but, as it is shown in Figure 6, the output
of two controllers is synchronous in terms of changing time;
this is the trait and merit of optimal control. In fact, we can
change the weighting matrix 𝑄 and the weighting coefficient
𝑅 to balance the control effect and control energy.

6. Conclusions

The effect of the wind-induced vibration on the long-span
cable-bridge structure cannot be neglected in construction
phase or in operation stage. The influence of buffeting
loading and nonlinear factor for long-span cable-bridge
structures is considered in this paper. Based on the semiactive
vibration control devices, optimal vibration controller and
control algorithm are designed for the long-span cable-
bridge. Numerical simulation results show that the proposed
strategy is efficient, real-time, and robust in reducing the
vibration induced by buffeting loading.
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