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In order to save network resources and network bandwidth, this paper proposed an event triggered mechanism based on sampled-
data information, which has some advantages over existing ones. Considering the missing sensor measurements and the network-
induced delay in the transmission, we construct a new event-based 𝐻

∞
filtering by taking the effect of sensor faults with different

failure rates. By using the Lyapunov stability theory and the stochastic analysis theory, sufficient criteria are derived for the existence
of a solution to the algorithm of the event-based filter design. Finally, an example is exploited to illustrate the effectiveness of the
proposed method.

1. Introduction

The application of network technologies is becoming increas-
ingly important inmany areas for its predominant advantages
(such as low cost, simple installation and maintenance, and
high reliability). However, it is known that implementing a
communication network can induce multiple channel trans-
mission, packet dropout, and so on. This has motivated
much attention to the research. Various techniques have
been proposed to deal with the above issues, such as time
triggered communication scheme [1, 2] and event triggered
communication scheme [3–7]. In general, under a time trig-
gered communication scheme, a fixed sampling interval
should be selected under worse conditions such as external
disturbances and time delay. However, such situation rarely
occurs. Hence, time triggered communication scheme can
lead to transmit much unnecessary information and inef-
ficient utilization of limited network resources. Comparing
with time triggered scheme, the event triggered scheme can
save the network resources such as network bandwidth while
maintaining the control performance. The adoption of the
event triggered scheme has drawn a great deal of interest to
the researchers. The authors in [3] firstly proposed a kind

of event triggered scheme which decided whether the newly
sampled signal should be transmitted to the controller and
invested the controller design problem. In [8], the authors
took the sensor and actuator faults into consideration and
studied the reliable control design for networked control
system under event triggered scheme.The authors in [9] were
concerned with the control design problem of event triggered
networked systems with both state and control input quan-
tization. In [10], the authors discussed the event-based fault
detection for the networked systems with communication
delay and nonlinear perturbation.

On the other hand, the filtering problem has been a hot
topic over the past decades. A large number of outstanding
results have been published [9, 11–18]. For example, the
researchers in [9] studied the problem of event-based 𝐻

∞

filtering for networked systems with communication delay.
Most of them are based on an assumption that sensors
are working without any flaws. However, the distortion
of the sensor usually occurs due to the internal noise or
external disturbance. Therefore, it is necessary to discuss
the situation when the filter cannot receive the value of the
process accurately. Fortunately, much effort has been put into
this issue. The authors in [19] were concerned with reliable
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Figure 1: The structure of an event triggered filter design system.

𝐻
∞

filter design for sampled-data systems with probabilistic
sensor signal distortion. In [20], the authors investigated
reliable𝐻

∞
filter design for T-S fuzzymodel based networked

control systems with random sensor failure.
To the best of our knowledge, the filter design of event

triggering network-based systems with random sensor fail-
ures is still an open problem, which motivates our present
paper. The main contributions of the obtained results are as
follows: (I) the insertion of the event triggering generator
saves the network resources and network bandwidth. (II) A
new kind of event triggering network-based systems with
probabilistic sensor failures and network induced delay,
which has not been investigated in the existing literatures, is
proposed.

This paper is outlined as follows. Section 2 presents the
modeling. Section 3 presents our main stability theorem and
develops a filter design method. In Section 4, an example is
given to illustrate the effectiveness of the proposed method.

R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of 𝑛 × 𝑚 real matrices; the superscript “𝑇”
stands for matrix transposition; 𝐼 is the identity matrix of
appropriate dimension; ‖ ⋅ ‖ stands for the Euclidean vector
norm or the induced matrix 2-norm as appropriate; the
notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for 𝑋 ∈ R𝑛×𝑛 means that the
matrix 𝑋 is real symmetric positive definite (resp., positive
semidefinite), when 𝑥 is a stochastic variable. For a matrix
𝐵 and two symmetric matrices 𝐴 and 𝐶, [

𝐴 ∗

𝐵 𝐶
] denotes a

symmetric matrix, where ∗ denotes the entries implied by
symmetry.

2. System Description

As shown in Figure 1, our aim in this paper is to investigate
an event-based reliable filtering design problem by taking the
effect of sensor faults. Suppose the plant model is governed
by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑦(𝑘) ∈ R𝑚 is the
measured output, 𝑧(𝑘) is the signal to be estimated, 𝑤(𝑘) is
the process noise belonging to L

2
(0,∞), 𝐴, 𝐵, 𝐶, and 𝐿 are

known constant matrices with appropriate dimensions.

Remark 1. Considering the network induced delay, the trans-
mission time of measured output 𝑦(𝑘) from sensor to filt
cannot be neglected. The input of the filter is not 𝑦(𝑘), but
𝑦(𝑘), in fact, 𝑦(𝑘) = 𝑦(𝑘 + 𝜏(𝑘)). 𝜏(𝑘) is the network induced
delay, and 𝜏(𝑘) ∈ [0, 𝜏

𝑀

), where 𝜏
𝑀 is a positive real number.

For the network-based system in described in Figure 1, we
propose the following filter:

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) ,

(2)

where 𝑥
𝑓
(𝑘) is the filter state, 𝑦(𝑘) is the input of the filter,

𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
are the filter matrices of appropriate dimensions.

If we take the missing sensor measurements into consid-
eration, (2) can be described as

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
Ξ𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) ,

(3)

where Ξ = diag{Ξ
1
, Ξ
2
, . . . , Ξ

𝑚
}, Ξ
𝑖

∈ [0, 𝜃
1
] (𝑖 = 1, 2, . . .)

(𝜃
1

> 1) being 𝑚 unrelated random variables, and the
mathematical expectation and variance of Ξ

𝑖
are 𝛼
𝑖
and 𝜎

2

𝑖
,

respectively.

Remark 2. When 𝛼
𝑖
= 1, it means the sensor 𝑖 works nor-

mally. When 𝛼
𝑖
= 0, it means the sensor 𝑖 completely failed

and the signal transmitted by sensor 𝑖 is lost.WhenΞ
𝑖
∈ [0, 1],

it means the signal at the filter is smaller or greater than it
actually is [20].

In order to reduce the load of network transmission and
save the network resources such as network bandwidth, it is
necessary to introduce an event triggered mechanism. As is
shown in Figure 1, an event generator is constructed between
the sensor and filter, which is used to decide whether the
measured output should be sent to the filter. We adopt the
following judgement algorithm:

[E {Ξ𝑦 (𝑘)} − E {Ξ𝑦 (𝑠
𝑖
)}]
𝑇

Ω[E {Ξ𝑦 (𝑘)} − E {Ξ𝑦 (𝑠
𝑖
)}]

≤ 𝜎[E {Ξ𝑦 (𝑘)}]
𝑇

Ω[E {Ξ𝑦 (𝑘)}] ,

(4)

where Ω ∈ R𝑚 × 𝑚 is a symmetric positive definite matrix,
𝜎 ∈ [0, 1), Ξ = diag{Ξ

1
, Ξ
2
, . . .}, and Ξ

𝑖
∈ [0, 𝜃

1
] (𝑖 = 1, 2, . . .)
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are𝑚unrelated randomvariables. Onlywhen the expectation
of a certain function of current sampled value 𝑦(𝑘) and the
previously transmitted one 𝑦(𝑠

𝑖
) violate (4), it can be sent out

to the filter.

Remark 3. Under the event triggering (4), the release times
are assumed to be 𝑠

0
, 𝑠
1
, 𝑠
2
, . . . . Due to the delay in the

network transmission, the measured output will arrive at
the filter at the instants 𝑠

0
+ 𝜏(𝑠
0
), 𝑠
1
+ 𝜏(𝑠
1
), 𝑠
2
+ 𝜏(𝑠
2
), . . .,

respectively.

Based on the above analysis, considering the behavior of
ZOH, the input of the filter is

Ξ𝑦 (𝑘) = Ξ𝑦 (𝑠
𝑖
) , 𝑘 ∈ [𝑠

𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(5)

Similar to [4, 6, 11], for technical convenience, consider
the following two cases.

Case 1. When 𝑠
𝑖
+1+𝜏

𝑀

≥ 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

)−1, define a function
𝑑(𝑘) as

𝑑 (𝑘) = 𝑘 − 𝑠
𝑖
, 𝑘 ∈ [𝑠

𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] . (6)

Obviously,

𝜏 (𝑠
𝑖
) ≤ 𝑑 (𝑘) ≤ (𝑠

𝑖+1
− 𝑠
𝑖
) + 𝜏 (𝑠

𝑖+1
) − 1 ≤ 1 + 𝜏

𝑀

. (7)

Case 2. When 𝑠
𝑖
+ 1 + 𝜏

𝑀

≤ 𝑠
𝑖+1

+ 𝜏(𝑠
𝑖+1

) − 1, consider the
following two intervals:

[𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖
+ 𝜏
𝑀

] , [𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙, 𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙 + 1] .

(8)

From 𝜏(𝑘) ≤ 𝜏
𝑀, we can deduce that there must exist 𝑑

satisfying

𝑠
𝑖
+ 𝑑 + 𝜏

𝑀

< 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1 ≤ 𝑠
𝑖
+ 𝑑 + 1 + 𝜏

𝑀

. (9)

Moreover, 𝑦(𝑠
𝑖
) and 𝑦(𝑠

𝑖
+ 𝑙) 𝑙 = 1, 2, . . . , 𝑑 satisfy (4). Set

𝐼
0
= [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖
+ 𝜏
𝑀

+ 1) ,

𝐼
𝑙
= [𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙, 𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙 + 1) ,

𝐼
𝑑
= [𝑠
𝑖
+ 𝑑 + 𝜏

𝑀

, 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] ,

(10)

where 𝑙 = 1, 2, . . . , 𝑑 − 1. Clearly, we have

[𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] =

𝑖=𝑑

⋃

𝑖=0

𝐼
𝑖
. (11)

Define 𝑑(𝑘) as

𝑑 (𝑘) =

{
{
{

{
{
{

{

𝑘 − 𝑠
𝑖
, 𝑘 ∈ 𝐼

0
,

𝑘 − 𝑠
𝑖
− 𝑙, 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝑘 − 𝑠
𝑖
− 𝑑, 𝑘 ∈ 𝐼

𝑑
.

(12)

Then, one can easily get

𝜏 (𝑠
𝑖
) ≤ 𝑑 (𝑘) ≤ 1 + 𝜏

𝑀

≜ 𝑑
𝑀

, 𝑘 ∈ 𝐼
0
,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑑
.

(13)

Due to 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

) − 1 ≤ 𝑠
𝑖
+𝑑+1+𝜏

𝑀, the third row in (13)
holds. Obviously,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑑
. (14)

In Case 1, for 𝑘 ∈ [𝑠
𝑖
+ 𝜏(𝑠
𝑖
), 𝑠
𝑖+1

+ 𝜏(𝑠
𝑖+1

) − 1], define
𝑒
𝑖
(𝑘) = 0. When it comes to Case 2, define

Ξ𝑒
𝑖
(𝑘)

=

{
{

{
{

{

0, 𝑘 ∈ 𝐼
0
,

Ξ𝑦 (𝑠
𝑖
) − Ξ𝑦 (𝑠

𝑖
+ 𝑙) , 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

Ξ𝑦 (𝑠
𝑖
) − Ξ𝑦 (𝑠

𝑖
+ 𝑑) , 𝑘 ∈ 𝐼

𝑑
.

(15)

It can be deduced from the definition of Ξ𝑒
𝑖
(𝑘) and the

event triggering scheme (4); for 𝑘 ∈ [𝑠
𝑖
+𝜏(𝑠
𝑖
), 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

)−1],
the following inequality holds

𝑒
𝑇

𝑖
(𝑘) Ξ

𝑇

ΩΞ𝑒
𝑖
(𝑘) ≤ 𝜎𝑦

𝑇

(𝑘 − 𝑑 (𝑘)) Ξ

𝑇

ΩΞ𝑦 (𝑘 − 𝑑 (𝑘)) .

(16)

Remark 4. From (15), it can be easily obtained that

𝑒
𝑖
(𝑘)

=

{
{

{
{

{

0, 𝑘 ∈ 𝐼
0
,

𝑦 (𝑠
𝑖
) − 𝑦 (𝑠

𝑖
+ 𝑙) , 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝑦 (𝑠
𝑖
) − 𝑦 (𝑠

𝑖
+ 𝑑) , 𝑘 ∈ 𝐼

𝑑
.

(17)

Employing 𝑑(𝑘) 𝑒
𝑖
(𝑘), the input of the filter Ξ𝑦(𝑘) can be

rewritten as

Ξ𝑦 (𝑘) = Ξ𝑦 (𝑠
𝑖
) = Ξ (𝑦 (𝑘 − 𝑑 (𝑘)) + Ξ𝑒

𝑖
(𝑘)) ,

𝑘 ∈ [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(18)

Obviously,

𝑦 (𝑘) = 𝑦 (𝑠
𝑖
) = (𝑦 (𝑘 − 𝑑 (𝑘)) + 𝑒

𝑖
(𝑘)) ,

𝑘 ∈ [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(19)

Combining (19) and (3), we can get

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
Ξ (𝐶𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑒

𝑖
(𝑘)) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) .

(20)
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Define 𝜂(𝑘) = [
𝑥(𝑘)

𝑥𝑓(𝑘)
], 𝑒(𝑘) = 𝑧(𝑘) − 𝑧

𝑓
(𝑘); the following

filtering-error system based on (1) and (20) can be obtained
as

𝜂 (𝑘 + 1) = 𝐴𝜂 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷
𝑘
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐵𝑒
𝑖
(𝑘) + 𝐵

𝑘
𝑒
𝑖
(𝑘) + 𝐵

1
𝑤 (𝑘) ,

𝑒 (𝑘) = 𝐿𝜂 (𝑘) ,

(21)

where𝐴 = [
𝐴 0

0 𝐴𝑓
],𝐷 = [

0

𝐵𝑓Ξ𝐶
],𝐷
𝑘
= [

0

𝐵𝑓(Ξ−Ξ)𝐶
],𝐵 = [

0

𝐵𝑓Ξ
],

𝐵
𝑘
= [

0

𝐵𝑓(Ξ−Ξ)
], 𝐵
1
= [
𝐵

0
], 𝐿 = [𝐿 −𝐶

𝑓
].

Remark 5. The event triggering scheme (4) can be applied to
the situation when the sensor have failures. Besides, the effect
of the network environment is also taken into consideration.
From the modeling process, we can see that the system (21) is
more general.

Before giving the main results in the next section, the
following lemmas will be introduced, which will be helpful
in deriving the main results.

Lemma 6 (see [21]). For any vectors 𝑥, 𝑦 ∈ R𝑛, and positive
definite matrix 𝑄 ∈ R𝑛×𝑛, the following inequality holds:

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄𝑥 + 𝑦
𝑇

𝑄
−1

𝑦. (22)

Lemma 7 (see [22]). Ω
1
, Ω
2
, and Ω are matrices with appro-

priate dimensions, 𝑑(𝑘) ∈ [0, 𝑑
𝑀

]; then

𝑑 (𝑘)Ω
1
+ (𝑑
𝑀

− 𝑑 (𝑘))Ω
2
+ Ω < 0, (23)

if and only if the following two inequalities hold

𝑑
𝑀

Ω
1
+ Ω < 0,

𝑑
𝑀

Ω
2
+ Ω < 0.

(24)

3. Main Results

In this section, we will invest a new approach to guarantee the
filter error system (21) to be globally asymptotically stable. A
sufficient condition is established for (21). Then, the explicit
filter design method in (20) is given.

Theorem 8. For given scalars 𝛼
𝑖
, 𝜇
𝑖
(𝑖 = 1, . . . , 𝑚), 𝜌 ∈ [0, 1),

0 ≤ 𝑑(𝑘) ≤ 𝑑
𝑀, and 𝛾, under the event triggered communica-

tion scheme (4), the augmented system (21) is asymptotically
stable with an 𝐻

∞
performance index 𝛾 for the disturbance

attention, if there exist positive definite matrices 𝑃, 𝑄, 𝑅 and
matrices 𝑁, 𝑀 with appropriate dimensions, such that

Ω (𝑠) =

[

[

[

[

[

Ω
11

+ Γ + Γ
𝑇

∗ ∗ ∗

Ω
21

Ω
22

∗ ∗

Ω
31

0 Ω
33

∗

Ω
41

(𝑠) 0 0 −𝑅

]

]

]

]

]

< 0, 𝑠 = 1, 2,

(25)

where

Ω
11

=

[

[

[

[

[

[

[

[

[

[

[

𝑃𝐴 + 𝐴

𝑃

− 2𝑃 + 𝐻
𝑇

𝑄𝐻 ∗ ∗ ∗ ∗

𝐷
𝑇

𝑃 0 ∗ ∗ ∗

0 0 −𝑄 ∗ ∗

𝐵

𝑇

𝑃 0 0 −Ξ

𝑇

ΩΞ ∗

𝐵

𝑇

1
𝑃 0 0 0 −𝛾

2

𝐼

]

]

]

]

]

]

]

]

]

]

]

,

Γ = [𝑁𝐻 𝑀 − 𝑁 −𝑀 0 0] ,

Ω
21

=

[

[

[

[

[

𝑃(𝐴 − 𝐼) 𝑃𝐷 0 𝑃𝐵 𝑃𝐵
1

√𝑑
𝑀
𝑅𝐻(𝐴 − 𝐼) √𝑑

𝑀
𝑅𝐻𝐷 0 √𝑑

𝑀
𝑅𝐻𝐵 √𝑑

𝑀
𝑅𝐻𝐵
1

𝐿 0 0 0 0

0 √𝜎ΩΞ𝐶 0 0 0

]

]

]

]

]

,

Ω
22

= diag {−𝑃, −𝑅, −𝐼, −Ω} ,

Ω
31

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 𝛿
1
𝑃𝐷
1

0 0 0

0

... 0 0 0

0 𝛿
𝑚
𝑃𝐷
𝑚

0 0 0

0 0 0 𝛿
1
𝑃𝐵
1

0

0 0 0

... 0

0 0 0 𝛿
𝑚
𝑃𝐵
𝑚

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ω
41

(1) =
√

𝑑
𝑀
𝑁
𝑇

, Ω
41

(2) =
√

𝑑
𝑀
𝑀
𝑇

,

𝑁
𝑇

= [𝑁
𝑇

1
𝑁
𝑇

2
𝑁
𝑇

3
𝑁
𝑇

4
𝑁
𝑇

5
] ,

𝑀
𝑇

= [𝑀
𝑇

1
𝑀
𝑇

2
𝑀
𝑇

3
𝑀
𝑇

4
𝑀
𝑇

5
] ,

𝐷
𝑖
= [

0

𝐵
𝑓
𝐸
𝑖
𝐶

] , 𝐵
𝑖
= [

0

𝐵
𝑓
𝐸
𝑖

] , (𝑖 = 1, 2, . . . , 𝑚) ,

𝐸
𝑖
= diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑖

} , 𝐻 = [𝐼 0] .

(26)

Proof. Set 𝛿(𝑘) = 𝑥(𝑘+1)−𝑥(𝑘), 𝜂(𝑘) = 𝜂(𝑘+1)−𝜂(𝑘); choose
the Lyapunov functional candidate

𝑉 (𝑘) = 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) +

𝑘−1

∑

𝑘−𝑑
𝑀

𝑥
𝑇

(𝑖) 𝑄𝑥 (𝑖)

+

−1

∑

𝑖=−𝑑
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝛿
𝑇

(𝑗) 𝑅𝛿 (𝑗) .

(27)
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Calculating the difference of 𝑉(𝑘) along the solution of
(27) and taking the mathematical expectation, we obtain

E {Δ𝑉 (𝑘)} = 2𝜂
𝑇

(𝑘) 𝑃 [(𝐴 − 𝐼) 𝜂 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘))

+𝐵𝑒
𝑖
(𝑘) + 𝐵

1
𝑤 (𝑘)] + A

𝑇

𝑃A

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) [

0

𝐵
𝑓
𝐸
𝑖
𝐶
]

𝑇

× 𝑃[

0

𝐵
𝑓
𝐸
𝑖
𝐶
]𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑒
𝑇

𝑖
(𝑘) [

0

𝐵
𝑓
𝐸
𝑖

]

𝑇

𝑃[

0

𝐵
𝑓
𝐸
𝑖

] 𝑒
𝑖
(𝑘)

+ 𝜂
𝑇

(𝑘)𝐻
𝑇

𝑄𝐻𝜂 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑
𝑀

)𝑄𝑥 (𝑘 − 𝑑
𝑀

)

+ E {𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘)} −

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘) ,

(28)

whereA = (𝐴− 𝐼)𝜂(𝑘) +𝐷𝑥(𝑘 − 𝑑(𝑘)) + 𝐵𝑒
𝑖
(𝑘) + 𝐵

1
𝑤(𝑘) and

E {𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘)} = E {𝑑
𝑀

𝜂
𝑇

(𝑘)𝐻
𝑇

𝑅𝐻𝜂 (𝑘)}

= 𝑑
𝑀

A
𝑇

𝐻
𝑇

𝑅𝐻A.

(29)

Then by employing free weight matrix method [23, 24],
we have

2𝜉
𝑇

(𝑘)𝑀 [𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)] −

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) = 0,

2𝜉
𝑇

(𝑘)𝑁 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑 (𝑘))] −

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) = 0,

(30)

where 𝜉
𝑇

(𝑘) = [𝜂
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑(𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑀

) 𝑒
𝑇

𝑖
(𝑘)

𝑤
𝑇

(𝑘)]
𝑇.

By Lemma 6, we can easily get

−2𝜉
𝑇

(𝑘)𝑀

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) ≤ (𝑑
𝑀

− 𝑑 (𝑘)) 𝜉
𝑇

(𝑘)𝑀𝑅
−1

𝑀
𝑇

𝜉 (𝑘)

+

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿
𝑇

(𝑖) 𝑅𝛿 (𝑖) ,

(31)

−2𝜉
𝑇

(𝑘)𝑁

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) ≤ 𝑑 (𝑘) 𝜉
𝑇

(𝑘)𝑁𝑅
−1

𝑁
𝑇

𝜉 (𝑘)

+

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝛿
𝑇

(𝑖) 𝑅𝛿 (𝑖) .

(32)

Combine (28)–(31) and (16), we have

E {Δ𝑉 (𝑘)} − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + 𝑒
𝑇

(𝑘) 𝑒 (𝑘)

≤ 𝜉
𝑇

(𝑘) [Ω
11

+ Γ + Γ
𝑇

] 𝜉 (𝑘)

+ (𝑑
𝑀

− 𝑑 (𝑘)) 𝜉
𝑇

(𝑘)𝑀𝑅
−1

𝑀
𝑇

𝜉 (𝑘)

+ 𝑑 (𝑘) 𝜉
𝑇

(𝑘)𝑁𝑅
−1

𝑁
𝑇

𝜉 (𝑘)

+ A
𝑇

𝑃A +

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) [

0

𝐵
𝑓
𝐸
𝑖
𝐶
]

𝑇

× 𝑃[

0

𝐵
𝑓
𝐸
𝑖
𝐶
]𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑒
𝑇

𝑖
(𝑘) [

0

𝐵
𝑓
𝐸
𝑖

]

𝑇

𝑃[

0

𝐵
𝑓
𝐸
𝑖

] 𝑒
𝑖
(𝑘)

+ 𝜎𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐶
𝑇

Ξ

𝑇

ΩΞ𝐶𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑑
𝑀

A
𝑇

𝐻
𝑇

𝑅𝐻A + 𝜂
𝑇

(𝑘) 𝐿

𝑇

𝐿𝜂 (𝑘) .

(33)

Subsequently, by the well known Schur complement and
Lemma 7, from (25), we can deduce

E {Δ𝑉 (𝑘)} − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + 𝑒
𝑇

(𝑘) 𝑒 (𝑘) ≤ 0. (34)

Similar to the method in [25], the filter error system (21) is
asymptotically stable.

Based onTheorem 8, a designmethod of the reliable filter
in the form of (20) is given inTheorem 9.

Theorem 9. For given parameters 𝛼, 𝜎
𝑖
(𝑖 = 1, 2, . . . , 𝑚),

𝜌 ∈ [0, 1), and 0 ≤ 𝑑(𝑘) ≤ 𝑑
𝑀, the filter error system (21)

is asymptotically stable with 𝐻
∞

performance level 𝛾, if there
exist positive definite matrices 𝑋, 𝑄, �̂�, and 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, 𝑁
10
,

𝑁
11
, 𝑀
10
, 𝑀
11
, 𝑀
𝑖
, and 𝑁

𝑖
(𝑖 = 2, 3, 4, 5) with appropriate

dimensions, such that

Ω̂ (𝑠) =

[

[

[

[

[

[

[

[

[

Ω̂
11

+ Γ̂ + Γ̂
𝑇

∗ ∗ ∗ ∗

Ω̂
21

Ω̂
22

∗ ∗ ∗

Ω̂
31

0 Ω̂
33

∗ ∗

Ω̂
41

0 0 Ω̂
44

∗

Ω̂
51

(𝑠) 𝐵
𝑤

0 0 −𝑅

]

]

]

]

]

]

]

]

]

< 0, 𝑠 = 1, 2,

(35)

𝑃
1
− 𝑃
3
> 0, (36)
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where

Ω̂
11

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑃
1
𝐴 + 𝐴

𝑇

𝑃
1
− 2𝑃
1
+ 𝑄 ∗ ∗ ∗ ∗ ∗

𝑃
3
𝐴 + 𝐴

𝑇

𝑓
− 2𝑃
3

𝐴
𝑓
+ 𝐴
𝑇

𝑓
− 2𝑃
3

∗ ∗ ∗ ∗

𝐶
𝑇

Ξ

𝑇

𝐵

𝑇

𝑓
𝐶
𝑇

Ξ

𝑇

𝐵

𝑇

𝑓
0 ∗ ∗ ∗

0 0 0 −𝑄 ∗ ∗

Ξ

𝑇

𝐵

𝑇

𝑓
Ξ

𝑇

𝐵

𝑇

𝑓
0 0 −Ξ

𝑇

ΩΞ ∗

𝐵
𝑇

𝑃
1

𝐵
𝑇

𝑃
3

0 0 0 −𝛾
2

𝐼

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ω̂
21

= [

𝑃
1
(𝐴 − 𝐼) 𝐴

𝑓
− 𝑃
3

𝐵
𝑓
Ξ𝐶 0 𝐵

𝑓
Ξ 𝑃
1
𝐵

𝑃
3
(𝐴 − 𝐼) 𝐴

𝑓
− 𝑃
3

𝐵
𝑓
Ξ𝐶 0 𝐵

𝑓
Ξ 𝑃
3
𝐵

] , Ω̂
22

= [

−𝑃
1

∗

−𝑃
3

−𝑃
3

] ,

Ω̂
31

=

[

[

[

[

√𝑑
𝑀
𝑅 (𝐴 − 𝐼) 0 0 0 0 √𝑑

𝑀
𝑅𝐵

𝐿 −𝐶
𝑓

0 0 0 0

0 √𝜎ΩΞ𝐶 0 0 0 0

]

]

]

]

,

Ω̂
41

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 𝛿
1
𝐵
𝑓
𝐸
1
𝐶 0 0 0

0 0 𝛿
1
𝐵
𝑓
𝐸
1
𝐶 0 0 0

0 0

... 0 0 0

0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚
𝐶 0 0 0

0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚
𝐶 0 0 0

0 0 0 0 𝛿
1
𝐵
𝑓
𝐸
1

0

0 0 0 0 𝛿
1
𝐵
𝑓
𝐸
1

0

0 0 0 0

... 0

0 0 0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚

0

0 0 0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚

0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Γ̂ =

[

[

[

[

[

[

[

[

[

[

𝑁
10

0 𝑀
10

− 𝑁
10

−𝑀
10

0 0

𝑁
11

0 𝑀
11

− 𝑁
11

−𝑀
11

0 0

𝑁
2

0 𝑀
2
− 𝑁
2

−𝑀
2

0 0

𝑁
3

0 𝑀
3
− 𝑁
3

−𝑀
3

0 0

𝑁
4

0 𝑀
4
− 𝑁
4

−𝑀
4

0 0

𝑁
5

0 𝑀
5
− 𝑁
5

−𝑀
5

0 0

]

]

]

]

]

]

]

]

]

]

,

Ω̂
33

= diag {−𝑅, −𝐼, −Ω} , Ω̂
44

= diag{Ω̂
22
, . . . , Ω̂

22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

} ,

Ω
51

(1) =
√

𝑑
𝑀
𝑁

𝑇

, Ω
51

(2) =
√

𝑑
𝑀
𝑀

𝑇

,

𝑁

𝑇

= [𝑁
𝑇

10
𝑁
𝑇

11
𝑁
𝑇

2
𝑁
𝑇

3
𝑁
𝑇

4
𝑁
𝑇

5
] ,

𝑀

𝑇

= [𝑀
𝑇

10
𝑀
𝑇

11
𝑀
𝑇

2
𝑀
𝑇

3
𝑀
𝑇

4
𝑀
𝑇

5
] .

(37)

The filter parameters are given by

𝐴
𝑓

= 𝐴
𝑓
𝑃

−1

3
,

𝐵
𝑓

= 𝐵
𝑓
,

𝐶
𝑓

= 𝐶
𝑓
𝑃

−1

3
.

(38)

Proof. Since 𝑃
3

> 0, there exist nonsingular matrix 𝑃
2
and

symmetrical matrix 𝑃
3
> 0 satisfying 𝑃

3
= 𝑃
𝑇

2
𝑃
−1

3
𝑃
2
.

Define

𝑃 = [

𝑃
1

𝑃
𝑇

2

𝑃
2

𝑃
3

] , 𝐽 = [

𝐼 0

0 𝑃
𝑇

2
𝑃
−1

3

] . (39)
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Now premultiply and postmultiply Equation (25) with
Υ = diag{𝐽, 𝐼, 𝐼, . . . , 𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4

, 𝐽, 𝐼, 𝐼, 𝐼, 𝐽, 𝐽, . . . , 𝐽⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

, 𝐼} and Υ
𝑇, and

define new variables as
𝐴
𝑓

= 𝐴
𝑓
𝑃
3
, 𝐴

𝑓
= 𝑃
𝑇

2
𝐴
𝑓
𝑃
−𝑇

2
,

𝐵
𝑓

= 𝑃
𝑇

2
𝐵
𝑓
,

𝐶
𝑓

= 𝐶
𝑓
𝑃
3
, 𝐶

𝑓
= 𝐶
𝑓
𝑃
−𝑇

2
,

𝑁
𝑇

1
𝐽
𝑇

= [𝑁

𝑇

10
𝑁

𝑇

11

] , 𝑀
𝑇

1
𝐽
𝑇

= [𝑀

𝑇

10
𝑀

𝑇

11

] .

(40)

We can obtain (35). Therefore, (35) holds, only if (25) holds.
From Theorem 8, the filter error system (21) is asymptotic
stable with 𝐻

∞
performance level 𝛾.

Similar to the analysis of [25], the filter parameters in (20)
can be obtained as (38).

4. Simulation Examples

Consider a specific network controlled system of Equation
(21) under a structure:

𝐴 = [

0.1 0.4

−0.4 0.1

] , 𝐵 = [

−0.7

0.2

] ,

𝐶 = [0 1] , 𝐿 = [1 1] .

(41)

Assume 0 ≤ 𝑑(𝑘) ≤ 4 and the failure rates of the sensors are
𝛼
1
= 0.8 and 𝜎

1
= 0.05.

According to Theorem 9, when 𝐻
∞

performance level
𝛾 = 0.8, the following parameters can be obtained from the
solution of (35) and (36) by using the LMI technique:

𝑃
3
= [

0.7521 0.5801

0.5801 1.4216

] , 𝐴
𝑓

= [

−0.0837 0.3567

−0.3238 0.2977

] ,

𝐵
𝑓

= [

−0.0036

−0.0019

] , 𝐶
𝑓

= [−0.6268 −0.6181] .

(42)

From (38), the corresponding filter parameters can be
obtained as

𝐴
𝑓

= [

−0.4448 0.4325

−0.8641 0.5620

] , 𝐵
𝑓

= [

−0.0036

−0.0019

] ,

𝐶
𝑓

= [−0.7268 −0.1382]

(43)

and the parameter in the event triggering scheme (4) is Ω =

0.0239.
Suppose the initial condition 𝑥(0) = [0.2 0.1]

𝑇 and
external disturbance

𝑤 (𝑘) = {

0.05 5𝑠 ≤ 𝑘 ≤ 15𝑠

0 else.
(44)

Based on the designed filter above, the response of the
error 𝑒(𝑘) and the probabilistic failure Ξ are given in Figures
2 and 3, respectively. Figure 4 describes the release instants
and release interval. It is easy to see from Figures 2–4 that the
filter design method in this paper is effectiveness.
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Figure 2: The response of the error 𝑒(𝑘).
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Figure 3: The probabilistic failure Ξ.

5. Conclusion

This paper investigates a 𝐻
∞

filter design for a class of
network-based systems under an event triggeredmechanism.
In particular, the system under study is a more general sensor
failure model. Considering the uncertain time delay, the
uncertain network environment and probabilistic missing
sensormeasurements, we introduce an event triggeredmech-
anism into the system. By using the free-weighting matrix
method and the LMI techniques, the fundamental stability
conditions are obtained and the filter design methods are
developed. Finally, a numerical example is given to demon-
strate the effectiveness of the proposed designed method.

We would like to point out that it is possible to extend
our main results to the nonlinear systems such as T-S fuzzy
systems, and complex network systems. This will also be one
of our future research issues.
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Figure 4: The release instants and release interval.
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