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By virtue of the separation theoremof convex sets, a necessary condition and a sufficient condition for 𝜀-vector equilibriumproblem
with constraints are obtained.Then, by using the Gerstewitz nonconvex separation functional, a necessary and sufficient condition
for 𝜀-vector equilibrium problem without constraints is obtained.

1. Introduction

As the unified model of vector optimization problems,
vector variational inequality problems, variational inclusion
problems, and vector complementarity problems, vector
equilibrium problems have been intensively studied. The
existence results for various kinds of vector equilibriumprob-
lems have been established, for example, see [1–5] and the
references therein. But so far, there are few papers which deal
with the properties of the solutions for vector equilibrium
problems. Giannessi [3] obtained sufficient conditions for
efficient solution and weakly efficient solution to the vector
variational inequalities in finite dimensional spaces. Gong
[6] obtained some optimality conditions for weakly efficient
solution, Henig efficient solution, globally efficient solution,
and superefficient solution to vector equilibrium problems
with constraints by using the separation theorem of convex
sets. Gong [7] the scalarization results for weakly efficient
solutions, Henig efficient solutions, and globally efficient
solutions to some vector equilibrium problems without con-
straints.

On the other hand, in some situations, it may not
be possible to find an exact solution for an optimization
problem, or such an exact solution simply does not exist,
for example, if the feasible set is not compact. Thus, it is
meaningful to look for an approximate solution instead.
There are also many papers to investigate the approximate
solution problem, such as [1, 8–11]. Kimura et al. [1] obtained

several existence results for 𝜀-vector equilibriumproblem and
the lower semicontinuity of the solution mapping of 𝜀-vector
equilibrium problem. Anh and Khanh [10] have considered
two kinds of solution sets to parametric generalized 𝜀-vector
quasiequilibrium problems and established the sufficient
conditions for the Hausdorff semicontinuity (or Berge semi-
continuity) of these solution mappings. Gupta andMehra [9]
introduced two new concepts of approximate saddle points
and investigated two types of approximate solutions for a
vector optimization problem in Banach space setting. X. B.
Li and S. J. Li [11] obtained the Berge lower semicontinuity
and Berge continuity of a approximate solution mapping for
a parametric vector equilibrium problem.

The aim of this paper is to characterize optimality
conditions for 𝜀-vector equilibrium problems. The paper is
organized as follows. In Section 2, we recall the main notions
and definitions. In Section 3, we obtain some optimality
conditions for 𝜀-vector equilibrium problems and 𝜀-vector
equilibrium problems with constraints, respectively.

2. Preliminaries

Let 𝑋 and 𝑍 be two real Hausdorff topological vector spaces
and 𝑉 be a real locally convex Hausdorff topological vector
space. Assume that 𝑆 and 𝐶 are two pointed closed convex
cones in 𝑉 and 𝑍 with nonempty interior int 𝑆 ̸= 0 and
int𝐶 ̸= 0, respectively. Let 𝑉∗ and 𝑍∗ be the topological dual
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space of 𝑉 and 𝑍. Denote the dual cone of 𝑆 by 𝑆∗ and 𝐶 by
𝐶
∗:

𝑆
∗

:= {𝑠
∗

∈ 𝑉
∗

: 𝑠
∗

(𝑠) ≥ 0, ∀𝑠 ∈ 𝑆} ,

𝐶
∗

:= {𝑐
∗

∈ 𝑍
∗

: 𝑐
∗

(𝑐) ≥ 0, ∀𝑐 ∈ 𝐶} .

(1)

Letting 𝑒 ∈ int 𝑆 be given, we have that 𝐵∗
𝑒
:= {𝑠
∗

∈ 𝑆
∗

:

𝑠
∗

(𝑒) = 1} is a weak∗ compact base of 𝑆∗.

Definition 1. Let 𝐸 be a nonempty convex subset of 𝑋, and
let 𝑓 : 𝐸 → 𝑉 be a vector-valued mapping. 𝑓 is said to be
𝑆-convex if and only if, for all 𝑦

1
, 𝑦
2
∈ 𝐸 and 𝑙 ∈ [0, 1],

𝑙𝑓 (𝑦
1
) + (1 − 𝑙) 𝑓 (𝑦

2
) ∈ 𝑓 (𝑙𝑦

1
+ (1 − 𝑙) 𝑦

2
) + 𝑆. (2)

Definition 2 (see [12]). Given 𝑒 ∈ int 𝑆, the Gerstewitz
nonconvex separation function 𝜉

𝑒
: 𝑉 → 𝑅 is defined by

𝜉
𝑒
(𝑧) = min {𝑡 ∈ 𝑅 : 𝑧 ∈ 𝑡𝑒 − 𝑆} . (3)

Next, we give some useful properties of the above scalar-
ization functions.

Lemma 3 (see [13]). Let 𝑒 ∈ int 𝑆. The following properties
hold:

(i) 𝜉
𝑒
(𝑧) < 𝑟 ⇔ 𝑧 ∈ 𝑟𝑒 − int 𝑆;

(ii) 𝜉
𝑒𝑎
(𝑧) ≥ 𝑟 ⇔ 𝑧 ∉ 𝑎 + 𝑟𝑒 − int 𝑆;

(iii) 𝜉
𝑒
(⋅) is a continuous function;

(iv) 𝜉
𝑒
is strictlymonotonically increasing, that is, if 𝑧

1
−𝑧
2
∈

int 𝑆 ⇒ 𝜉
𝑒
(𝑧
1
) > 𝜉
𝑒
(𝑧
2
).

3. Optimality Conditions

In this section, we first deal with the following 𝜀-vector
equilibrium problem with constraints (for short 𝜀-VEPC):
find 𝑥 ∈ 𝐾 such that

𝑓 (𝑥, 𝑦) + 𝜀𝑒 ∉ − int 𝑆, ∀𝑦 ∈ 𝐾, (4)

and the constraint set

𝐾 = {𝑥 ∈ 𝐸 : 𝑔 (𝑥) ∈ −𝐶} , (5)

where𝐸 is a nonempty subset of𝑋,𝑓 : 𝐸×𝐸 → 𝑉 is a vector-
valued mapping, 𝑔 : 𝐸 → 𝑍 is a vector-valued mapping,
𝑒 ∈ int 𝑆, and 𝜀 is a positive real number.

If 𝑓(𝑥, 𝑦) = 𝑔(𝑦) − 𝑔(𝑥), 𝑥, 𝑦 ∈ 𝐾, and if 𝑥 ∈ 𝐾 is
a solution of 𝜀-VEP, then 𝑥 ∈ 𝐾 is a solution of 𝜀-efficient
solution of vector optimization problem of 𝑔, where 𝑔 is a
vector-valued mapping.

First, we give some necessary and sufficient conditions for
𝜀-vector equilibrium problem with constraints by using the
separation theorem of convex sets.

(H) Convexity Assumption: for all 𝑦
1
, 𝑦
2
∈ 𝐸 and 𝑙 ∈

[0, 1], there exists 𝑦 ∈ 𝐸 such that

𝑙𝑓 (𝑥, 𝑦
1
) + (1 − 𝑙) 𝑓 (𝑥, 𝑦

2
) ∈ 𝑓 (𝑥, 𝑦) + 𝑆, ∀𝑥 ∈ 𝐸, (6)

𝑙𝑔 (𝑦
1
) + (1 − 𝑙) 𝑔 (𝑦

2
) ∈ 𝑔 (𝑦) + 𝐶. (7)

Remark 4. (i) Assumption (H) does not require that 𝐸 be a
convex set.

(ii) We say that 𝑓 is 𝑆-convex-like in 𝑦 if 𝑓 satisfies (6)
and that 𝑔 is 𝐶-convex-like if 𝑔 satisfies (7).

(iii) If 𝐸 is a convex set, 𝑓 is 𝑆-convex in 𝑦, and 𝑔 is 𝐶-
convex, then Assumption (H) is satisfied.

Theorem5. Let 𝑒 ∈ int 𝑆 and𝐸 be a nonempty subset of𝑋. Let
𝑓 : 𝐸 × 𝐸 → 𝑉 be a vector-valued mapping with 𝑓(𝑥, 𝑥) = 0,
for all 𝑥 ∈ 𝐸 and let 𝑔 : 𝐸 → 𝑍 be a vector-valued mapping.
Assume that (𝐻) is satisfied and there exists 𝑥

0
∈ 𝐸 such that

𝑔(𝑥
0
) ∈ − int𝐶. If 𝑥 ∈ 𝐾 is a solution of 𝜀-VEPC, then there

exists 𝑠∗ ∈ 𝐵
∗

𝑒
and 𝑐∗ ∈ 𝐶

∗ such that

𝑠
∗

(𝑓 (𝑥, 𝑦)) + 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀, ∀𝑦 ∈ 𝐸

0 ≥ 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀,

(8)

where 𝜀 is a positive real number.

Proof. Let 𝑥 ∈ 𝐾 be a solution of 𝜀-VEPC. We consider the
set

𝑀
𝑥
= {(𝑦, 𝑧) ∈ 𝑉 × 𝑍 : 𝑦 − 𝑓 (𝑥, 𝑦



) − 𝜀𝑒 ∈ int 𝑆,

𝑧 − 𝑔 (𝑦


) ∈ int𝐶, for some 𝑦 ∈ 𝐸} .

(9)

By assumptions, it is clear that𝑀
𝑥

̸= 0 and𝑀
𝑥
is an open set.

Now, we show that (0
𝑉
, 0
𝑍
) ∉ 𝑀

𝑥
. If not, by the definition of

𝑀
𝑥
, then there exists 𝑦

0
∈ 𝐸 such that

𝑓 (𝑥, 𝑦
0
) + 𝜀𝑒 ∈ − int 𝑆, 𝑔 (𝑦

0
) ∈ − int𝐶. (10)

Thus, 𝑦
0
∈ 𝐾. This contradicts that 𝑥 is a solution of 𝜀-VEPC.

Hence, (0
𝑉
, 0
𝑍
) ∉ 𝑀

𝑥
.

Next, we show that 𝑀
𝑥
is a convex set. Let (𝑦

1
, 𝑧
1
),

(𝑦
2
, 𝑧
2
) ∈ 𝑀

𝑥
and 𝑙 ∈ [0, 1]. By the definition of 𝑀

𝑥
, there

exist 𝑦
1
, 𝑦


2
∈ 𝐸 such that

𝑦
1
− 𝑓 (𝑥, 𝑦



1
) − 𝜀𝑒 ∈ int 𝑆, 𝑦

2
− 𝑓 (𝑥, 𝑦



2
) − 𝜀𝑒 ∈ int 𝑆,

𝑧
1
− 𝑔 (𝑦



1
) ∈ int𝐶, 𝑧

2
− 𝑔 (𝑦



2
) ∈ int𝐶.

(11)

Then, by (11), we have

𝑙𝑦
1
+ (1 − 𝑙) 𝑦

2
− 𝜀𝑒 − (𝑙𝑓 (𝑥, 𝑦



1
) + (1 − 𝑙) 𝑓 (𝑥, 𝑦



2
)) ∈ int 𝑆,

𝑙𝑧
1
+ (1 − 𝑙) 𝑧

2
− (𝑙𝑔 (𝑦



1
+ (1 − 𝑙) 𝑔 (𝑦



2
))) ∈ int𝐶.

(12)

By assumptions, there exists 𝑦 ∈ 𝐸 satisfying 𝑙𝑦
1
+ (1 − 𝑙)𝑦

2
−

𝜀𝑒 −𝑓(𝑥, 𝑦) ∈ int 𝑆 and 𝑙𝑧
1
+ (1 − 𝑙)𝑧

2
−𝑔(𝑦) ∈ int𝐶. Namely,

𝑀
𝑥
is a convex set.
Thus, by the separation theorem of convex sets, there

exists (0, 0) ̸= (𝑠
∗

1
, 𝑐
∗

1
) ∈ (𝑆

∗

× 𝐶
∗

) such that

𝑠
∗

1
(𝑦) + 𝑐

∗

1
(𝑧) > 0, ∀ (𝑦, 𝑧) ∈ 𝑀

𝑥
. (13)

Let (𝑦, 𝑧) ∈ 𝑀
𝑥
, there exists 𝑦 ∈ 𝐸 such that 𝑦 − 𝑓(𝑥, 𝑦



) −

𝜀𝑒 ∈ int 𝑆 and 𝑧 − 𝑔(𝑦


) ∈ int𝐶. Hence, for every 𝑠 ∈ int 𝑆,
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𝑐 ∈ int𝐶, 𝑡
1
> 0 and 𝑡

2
> 0, we have (𝑦 + 𝑡

1
𝑠, 𝑧) ∈ 𝑀

𝑥
and

(𝑦, 𝑧 + 𝑡
2
𝑐) ∈ 𝑀

𝑥
. By (13),

𝑠
∗

1
(𝑦 + 𝑡𝑠) + 𝑐

∗

1
(𝑧) > 0, ∀𝑠 ∈ int 𝑆, 𝑡 > 0. (14)

Letting 𝑡 → ∞, we get 𝑠∗
1
(𝑠) ≥ 0, for all 𝑠 ∈ int 𝑆. Since 𝑆 is

closed convex cone, by the continuity of 𝑠∗
1
, 𝑠∗
1
(𝑠) ≥ 0, for all

𝑠 ∈ 𝑆; that is, 𝑠∗
1
∈ 𝑆
∗. Similarly, 𝑐∗

1
∈ 𝐶
∗. We next show 𝑠

∗

1
̸= 0.

In fact, if 𝑠∗
1
= 0, by (13), we have

𝑐
∗

1
(𝑧) > 0, ∀ (𝑦, 𝑧) ∈ 𝑀

𝑥
. (15)

By assumptions, there exists 𝑥
0
∈ 𝐸 such that 𝑔(𝑥

0
) ∈ − int𝐶.

Then, we get 𝑐∗
1
(𝑔(𝑥
0
)) ≤ 0. For the above 𝑥

0
, we have

(𝑓 (𝑥, 𝑥
0
) + 𝜀𝑒 + 𝑠, 𝑔 (𝑥

0
) + 𝑐) ∈ 𝑀

𝑥
,

∀𝑠 ∈ int 𝑆, 𝑐 ∈ int𝐶.
(16)

By (15), 𝑐∗
1
(𝑔(𝑥
0
)) > 0.This is a contradiction. Namely, 𝑠∗

1
̸= 0.

It is clear that (𝑓(𝑥, 𝑥) + 𝜀𝑒 + 𝑡𝑠, 𝑔(𝑥) + 𝑡𝑐) ∈ 𝑀
𝑥
, for all

𝑡 > 0, 𝑠 ∈ int 𝑆 and 𝑐 ∈ int𝐶. Thus, by (13), we have that

𝑠
∗

1
(𝑓 (𝑥, 𝑥) + 𝜀𝑒 + 𝑡𝑠) + 𝑐

∗

1
(𝑔 (𝑥) + 𝑡𝑐) > 0. (17)

Letting 𝑡 → 0,

𝑐
∗

1
(𝑔 (𝑥)) ≥ −𝜀𝑠

∗

1
(𝑒) . (18)

Since 𝑠∗
1
(𝑒) > 0, 𝑐∗

1
/𝑠
∗

1
(𝑒) ∈ 𝐶

∗. Thus, letting 𝑐∗ = 𝑐
∗

1
/𝑠
∗

1
(𝑒),

𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀. (19)

By assumptions, it is clear that 𝑐∗(𝑔(𝑥)) ≤ 0.
Since (𝑓(𝑥, 𝑦) + 𝜀𝑒 + 𝑡𝑠, 𝑔(𝑦) + 𝑡𝑐) ∈ 𝑀

𝑥
, for all 𝑦 ∈ 𝐸,

𝑡 > 0, 𝑠 ∈ int 𝑆 and 𝑐 ∈ int𝐶, by (13) and letting 𝑡 → 0, we
have

𝑠
∗

1
(𝑓 (𝑥, 𝑦)) + 𝑐

∗

1
(𝑔 (𝑦))

𝑠
∗

1
(𝑒)

≥ −𝜀, ∀𝑦 ∈ 𝐸. (20)

Let 𝑠∗ = 𝑠
∗

1
/𝑠
∗

1
(𝑒) ∈ 𝐵

∗

𝑒
. Then,

𝑠
∗

(𝑓 (𝑥, 𝑦)) + 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀, ∀𝑦 ∈ 𝐸. (21)

This completes the proof.

Theorem 6. Let 𝑒 ∈ int 𝑆 and let 𝐸 be a nonempty subset of𝑋.
Let 𝑓 : 𝐸×𝐸 → 𝑉 be a vector-valued mapping with 𝑓(𝑥, 𝑥) =
0, for all 𝑥 ∈ 𝐸 and let 𝑔 : 𝐸 → 𝑍 be a vector-valuedmapping.
If there exist 𝑥 ∈ 𝐾, 𝑠∗ ∈ 𝐵

∗

𝑒
, and 𝑐∗ ∈ 𝐶

∗ such that

𝑠
∗

(𝑓 (𝑥, 𝑦)) + 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀, ∀𝑦 ∈ 𝐸

0 ≥ 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀,

(22)

then𝑥 is a solution of 𝜀-VEPC, where 𝜀 is a positive real number.

Proof. Let 𝑥 ∈ 𝐾, and suppose that there exist 𝑠∗ ∈ 𝐵
∗

𝑒
and

𝑐
∗

∈ 𝐶
∗ such that

𝑠
∗

(𝑓 (𝑥, 𝑦)) + 𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀, ∀𝑦 ∈ 𝐸, (23)

𝑐
∗

(𝑔 (𝑥)) ≥ −𝜀. (24)

We next will show that 𝑥 ∈ 𝐾 is a solution of 𝜀-VEPC. If not,
then there exists 𝑦 ∈ 𝐾 such that

𝑓 (𝑥, 𝑦) + 𝜀𝑒 ∈ − int 𝑆. (25)

Since 𝑠∗ ∈ 𝐵
∗

𝑒
and 𝑦 ∈ 𝐾, we have

𝑠
∗

(𝑓 (𝑥, 𝑦)) < −𝜀, 𝑐
∗

(𝑔 (𝑦)) ≤ 0. (26)

Thus, by (23),

−𝜀 ≤ 𝑠
∗

(𝑓 (𝑥, 𝑦)) + 𝑐
∗

(𝑔 (𝑥)) < −𝜀 + 0 = −𝜀. (27)

This is a contradiction. Hence, 𝑥 ∈ 𝐾 is a solution of 𝜀-VEPC.
This completes the proof.

Next, we consider the following 𝜀-vector equilibrium
problem without constraints (for short 𝜀-VEP): find 𝑥 ∈ 𝐸

such that

𝑓 (𝑥, 𝑦) + 𝜀𝑒 ∉ − int 𝑆, ∀𝑦 ∈ 𝐸, (28)

where𝐸 is a nonempty subset of𝑋,𝑓 : 𝐸×𝐸 → 𝑉 is a vector-
valued mapping, 𝑒 ∈ int 𝑆, and 𝜀 is a positive real number.

If𝑓(𝑥, 𝑦) = 𝑔(𝑦)−𝑔(𝑥),𝑥, 𝑦 ∈ 𝐸, and if𝑥 ∈ 𝐸 is a solution
of 𝜀-VEP, then 𝑥 ∈ 𝐸 is a solution of 𝜀-efficient solution of
vector optimization problem of 𝑔, where 𝑔 is a vector-valued
mapping.

Theorem7. Let 𝑒 ∈ int 𝑆 and𝐸 be a nonempty subset of𝑋. Let
𝑓 : 𝐸 × 𝐸 → 𝑉 be a vector-valued mapping with 𝑓(𝑥, 𝑥) = 0,
for all 𝑥 ∈ 𝐸. Then 𝑥 ∈ 𝐸 is a solution of 𝜀-VEP if and only if

𝜉
𝑒
(𝑓 (𝑥, 𝑦)) ≥ −𝜀, ∀𝑦 ∈ 𝐸, (29)

where 𝜀 is a positive real number.

Proof. If 𝑥 ∈ 𝐸 is a solution of 𝜀-VEP, then

(𝑓 (𝑥, 𝐸) + 𝜀𝑒)⋂ (− int 𝑆) = 0. (30)

By Lemma 3(ii), we have

𝜉
𝑒
(𝑓 (𝑥, 𝑦)) ≥ −𝜀, ∀𝑦 ∈ 𝐸. (31)

On the other hand, suppose that 𝑥 ∈ 𝐸 is not a solution
of 𝜀-VEP. Then, there exists 𝑦 ∈ 𝐸 such that

𝑓 (𝑥, 𝑦) + 𝜀𝑒 ∈ − int 𝑆. (32)

By Lemma 3(i), we have

𝜉
𝑒
(𝑓 (𝑥, 𝑦)) < −𝜀. (33)

This is a contradiction. This completes the proof.
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