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We consider the nonlinear pseudoparabolic equation with a memory term 𝑢
𝑡
−Δ𝑢−Δ𝑢

𝑡
+∫

𝑡

0
𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏 = div (|∇𝑢|𝑝−2𝑢)+

𝑢
1+𝛼, 𝑥 ∈ Ω, 𝑡 > 0, with an initial condition andDirichlet boundary condition. Under negative initial energy and suitable conditions

on p, 𝛼, and the relaxation function 𝜆(𝑡), we prove a finite-time blow-up result by using the concavity method.

1. Introduction

In this paper, we consider the initial boundary value problem
for a class of nonlinear pseudoparabolic equations with a
memory term:

𝑢
𝑡
− 𝛽Δ𝑢 − 𝛾Δ𝑢

𝑡
+ ∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝑥, 𝜏) 𝑑𝜏

= 𝛿 div (|∇𝑢|𝑝−2∇𝑢) + 𝑓 (𝑢) , 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

𝑢(𝑥, 𝑡)|
𝜕Ω

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(1)

where Ω ⊂ R𝑛 is a bounded domain with a smooth
boundary 𝜕Ω, 𝜆 : R

+
→ R is a given continuous

function, 𝛽, 𝛾, and 𝛿 are all real constant parameters, 𝑝 > 2,
and div(|∇𝑢|𝑝−2∇𝑢) is the so-called 𝑝-Laplace operator. This
type of equations describes a variety of important physical
processes, such as the analysis of heat conduction inmaterials
withmemory, electric signals in nonlinear telegraph line with
nonlinear damping, viscous flow in materials with memory
[1], vibration of nonlinear elastic rod with viscosity [2],
nonlinear bidirectional shallow water waves [3], and the
velocity evolution of ion-acoustic waves in a collisionless
plasma when an ion viscosity is invoked [4].

Equation (1) includes many important mathematical
physics models.

In the absence of thememory term, the viscous term, and
𝑝-Laplace operator term (𝛾 = 𝛿 = 0, 𝜆(𝑠) = 0), 𝛽 = 1, the
model reduces to semilinear parabolic equation:

𝑢
𝑡
− Δ𝑢 = 𝑓 (𝑢) , 𝑥 ∈ Ω, 𝑡 > 0. (2)

On the existence, nonexistence, and the properties of solu-
tions of (2), there have been many results [5–9].

In the absence of the memory term and 𝑝-Laplace
operator term (𝛿 = 0, 𝜆(𝑠) = 0), 𝛽 = 𝛾 = 1, the model
reduces to semilinear pseudoparabolic equation:

𝑢
𝑡
− Δ𝑢 − Δ𝑢

𝑡
= 𝑓 (𝑢) , 𝑥 ∈ Ω, 𝑡 > 0. (3)

Kaikina et al. [10] discussed the periodic boundary value
problem of (3) under some assumption forms of nonlinear
function 𝑓. Cao et al. [11] investigated a class of periodic
problems of pseudoparabolic type equations with nonlinear
periodic sources. A rather complete classification of the
exponent 𝑝 was given, in terms of the existence and nonexis-
tence of nontrivial and nonnegative periodic solutions. Cao
et al. [12] dealt with the Cauchy problem for semilinear
pseudoparabolic equations. Existenceand uniqueness of local
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solutions were proved, and the large-time behavior was
investigated. Kaikina [13] and Xu and Su [14] discussed
the initial boundary value problems of pseudoparabolic
equation (3) under some classes of nonlinear function 𝑓(𝑢).
They obtained some sufficient conditions of existence and
uniqueness of local solutions and the large-time behavior of
global solutions.

In the absence of the memory term and the viscous term
(𝜆(𝑠) = 0, 𝛾 = 0), 𝛽 = 0, 𝛿 = 1, (1) becomes nonlinear
parabolic equation with 𝑝-Laplace nonlinear term:

𝑢
𝑡
= div (|∇𝑢|𝑝−2∇𝑢) + 𝑓 (𝑢) , 𝑥 ∈ Ω, 𝑡 > 0. (4)

Tsutsumi [15] studied the initial boundary value problem of
(4) with 𝑓(𝑢) = 𝑢

1+𝛼, where 𝑝 < 2 + 𝛼. He obtained the
existence of global weak solutions by using the potential well
method. Liu and Zhao [16] considered the same problem
with critical initial conditions 𝐽(𝑢

0
) = 𝑑 or 𝐼(𝑢

0
) = 0 and

proved the existence of global solution for this problem. Xu
et al. [17] discussed (4) at the high energy level, where 𝑝 <

2 + 𝛼 < ∞ if 𝑛 ≤ 𝑝 and 𝑝 < 2 + 𝛼 ≤ 𝑛𝑝/(𝑛 − 𝑝) if
𝑛 > 𝑝.They proved the finite time blow-up of solutions by the
comparison principle and variational methods. Messaoudi in
[18] considers an initial boundary value problem related to (4)
and proves, under suitable conditions on 𝑓, a blow-up result
for solutions with vanishing or negative initial energy.

In the absence of the viscous term and𝑝-Laplace operator
(𝛾 = 0, 𝛿 = 0), 𝛽 = 0, Gripenberg [19] considered the
nonlinear parabolic equation with Volterra integral term
equation:

𝑢
𝑡
= ∫

𝑡

0

𝑘 (𝑡 − 𝑠) 𝜎(𝑢
𝑥
(𝑥, 𝑠))

𝑥
𝑑𝑠 + 𝑓 (𝑥, 𝑡) ,

𝑥 ∈ (0, 1) , 𝑡 ≥ 0.

(5)

He investigated the initial boundary value problem of (5) and
established the global existence of a strong solution of the
problem.

In the absence of the viscous term and𝑝-Laplace operator
(𝛾 = 0, 𝛿 = 0), as 𝛽 = 1, the model reduces to the equation

𝑢
𝑡
− Δ𝑢 = ∫

𝑡

0

𝑏 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏 + 𝑓 (𝑢) , 𝑥 ∈ Ω, 𝑡 > 0.

(6)

Yin [20] obtained the global existence of a classical solution
of (7) under the assumption of a one-sided growth condition.
Messaoudi [21] investigated a semilinear parabolic equation
with the viscoelastic memory term. He established the finite
time blow-up result for the solution with negative or vanish-
ing initial energy for nonlinear function 𝑓(𝑢) = |𝑢|

𝑝−2
𝑢.

To the best of our knowledge, there are few works on the
study of nonlinear pseudoparabolic equation with memory
term of Volterra integral type. Shang and Guo [22–24]
investigated the initial boundary value problem and initial

value problem of the nonlinear pseudoparabolic equations
with Volterra integral term:

𝑢
𝑡
− 𝑓(𝑢)

𝑥𝑥
− 𝑢
𝑥𝑥𝑡

+ ∫

𝑡

0

𝜆 (𝑡 − 𝑠) 𝜎(𝑢 (𝑥, 𝑠) , 𝑢
𝑥
(𝑥, 𝑠))

𝑥
𝑑𝑠

= 𝑓 (𝑥, 𝑡, 𝑢, 𝑢
𝑥
) , 𝑥 ∈ (0, 1) , 𝑡 > 0.

(7)

They proved the existence, uniqueness, and regularities of
the global strong solution and gave some conditions of the
nonexistence of global solution. In 2007, Ptashnyk [25] inves-
tigated the initial boundary value of degenerate quasilinear
pseudoparabolic equations with memory term. He obtained
some existence results of global solutions. Up to now, there
are not any research works on the multidimensional nonlin-
ear pseudoparabolic equations with memory term.

In the present work, we deal with the initial boundary
problem of the nonlinear pseudoparabolic equation with the
memory term of Volterra integral type, the damping term,
and 𝑝-Laplace operator:

𝑢
𝑡
− Δ𝑢 − Δ𝑢

𝑡
+ ∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏

= div (|∇𝑢|𝑝−2∇𝑢) + 𝑢1+𝛼, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

𝑢(𝑥, 𝑡)|
𝜕Ω

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(8)

whereΩ ⊂ R𝑛 is a bounded domain, 𝜆(𝑠) : R
+
→ R is a given

continuous function, 𝛽, 𝛾, 𝛿, > 0, and div(|∇𝑢|𝑝−2∇𝑢) is the
so-called 𝑝-Laplace operator. By using the concavity method
first introduced by Levine [5], under negative initial energy
and suitable conditions on 𝑝, 𝛼, and the relaxation function
𝜆(𝑡), we prove that there exists finite-time blow-up solution.

Without loss of generality, we choose 𝛽 = 𝛾 = 𝛿 = 1 in
the following discussion.

2. Preliminaries and Main Results

In this section, we introduce some notations, basic defini-
tions, and important lemmas which will be needed in this
paper.

For functions 𝑢(𝑥, 𝑡), V(𝑥, 𝑡) defined on Ω, we introduce

(𝑢, V) = ∫

Ω

𝑢V 𝑑𝑥, ‖𝑢‖
2
= (∫

Ω

|𝑢|
2
𝑑𝑥)

1/2

,

‖𝑢‖
𝑝
= (∫

Ω

|𝑢|
𝑝
𝑑𝑥)

1/𝑝

, ‖𝑢‖
𝐻
𝑚 = ( ∑

|𝛼|≤𝑚





𝐷
𝛼
𝑢





2

2
)

1/2

,

‖𝑢‖
∞
= ess sup
𝑥∈Ω

|𝑢 (𝑥)| ,

Δ =

𝜕
2

𝜕𝑥
2

1

+ ⋅ ⋅ ⋅ +

𝜕
2

𝜕𝑥
2

𝑛

, ∇ = (

𝜕

𝜕𝑥
1

, . . . ,

𝜕

𝜕𝑥
𝑛

) .

(9)
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We now construct a space of functions as follows. Let
𝐻
𝑚
(Ω) denote the Sobolev space with the norm ‖𝑢‖

𝐻
𝑚 =

(∑
|𝛼|≤𝑚

‖𝐷
𝛼
𝑢‖
2

2
)

1/2

.𝐶∞
0
(Ω) denotes the class of𝐶∞ functions

with the compact support inΩ.𝐻𝑚
0
(Ω) denotes the closure in

𝐻
𝑚
(Ω) of 𝐶∞

0
(Ω). The Hilbert space𝐻𝑚

0
(Ω) is a subspace of

the Sobolev space𝐻𝑚(Ω).
The following are the basic hypotheses to establish the

main results of this paper:

(a) 2 < 𝑝 ≤ 2 + 𝛼 < ∞;

(b) 𝜆 is a 𝐶1 function satisfying

𝜆 (𝜏) ≥ 0, 𝜆

(𝜏) ≤ 0, (10)

∫

∞

0

𝜆 (𝜏) 𝑑𝜏 <

𝛼 (𝛼 + 2)

𝛼 (𝛼 + 2) + 1

. (11)

To obtain the results of this paper, we will introduce the
“modified” energy function:

𝐸 (𝑡) =

1

2

(𝜆 ∘ ∇𝑢) (𝑡)

+

1

2

(1 − ∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏) ‖∇𝑢(𝑡)‖
2

2
+

1

𝑝

‖∇𝑢(𝑡)‖
𝑝

𝑝

−

1

2 + 𝛼

∫

Ω

𝑢
2+𝛼

𝑑𝑥,

(12)

where

(𝜆 ∘ V) (𝑡) = ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ‖V(𝑡) − V(𝜏)‖2
2
𝑑𝜏. (13)

The following lemma is similar to the lemma of [21] with
slight modification.

Lemma 1. Assume that (10) hold. Let p satisfy (𝑎) and let 𝑢 be
a solution of (8). Then 𝐸(𝑡) is nonincreasing function; that is

𝐸

(𝑡) ≤ 0. (14)

Moreover, the following energy inequality holds:

𝐸 (𝑡) + ∫

𝑡

0





𝑢
𝑡
(𝜏)






2

𝐻
1𝑑𝜏 < 𝐸 (0) . (15)

Proof. By multiplying the equation in (8) by 𝑢
𝑡
, integrating

overΩ, we obtain

𝑑

𝑑𝑡

[∫

𝑡

0





𝑢
𝑡
(𝜏)






2

2
𝑑𝜏 + ∫

𝑡

0





∇𝑢
𝑡
(𝜏)






2

2
𝑑𝜏 +

1

2

∫

Ω

|∇𝑢|
2
𝑑𝑥

+

1

𝑝

‖∇𝑢‖
𝑝

𝑝
−

1

2 + 𝛼

∫

Ω

𝑢
2+𝛼

𝑑𝑥]

− ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢
𝑡
(𝑡) ∇𝑢 (𝜏) 𝑑𝑥 𝑑𝜏 = 0.

(16)

For the last term on the left side of (16),

∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢
𝑡
(𝑡) ∇𝑢 (𝜏) 𝑑𝑥 𝑑𝜏

= ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢
𝑡
(𝑡) [∇𝑢 (𝜏) − ∇𝑢 (𝑡)] 𝑑𝑥 𝑑𝜏

+ ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢
𝑡
(𝑡) ∇𝑢 (𝑡) 𝑑𝑥 𝑑𝜏

= −

1

2

∫

𝑡

0

𝜆 (𝑡 − 𝜏) [

𝑑

𝑑𝑡

∫

Ω

|∇𝑢 (𝜏) − ∇𝑢 (𝑡)|
2
𝑑𝑥] 𝑑𝜏

+

1

2

∫

𝑡

0

𝜆 (𝜏) [

𝑑

𝑑𝑡

∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥] 𝑑𝜏

= −

1

2

𝑑

𝑑𝑡

[∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

|∇𝑢 (𝜏) − ∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏]

+

1

2

𝑑

𝑑𝑡

[∫

𝑡

0

𝜆 (𝜏) ∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏]

+

1

2

∫

𝑡

0

𝜆

(𝑡 − 𝜏) ∫

Ω

|∇𝑢 (𝜏) − ∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏

−

1

2

𝜆 (𝑡) ∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥.

(17)

Inserting (17) into (16), we have

𝑑

𝑑𝑡

[∫

𝑡

0





𝑢
𝑡
(𝜏)






2

2
𝑑𝜏 + ∫

𝑡

0





∇𝑢
𝑡
(𝜏)






2

2
𝑑𝜏 +

1

2

∫

Ω

|∇𝑢|
2
𝑑𝑥

+

1

𝑝

‖∇𝑢‖
𝑝

𝑝
−

1

2 + 𝛼

∫

Ω

𝑢
2+𝛼

𝑑𝑥]

+

1

2

𝑑

𝑑𝑡

[∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

|∇𝑢 (𝜏) − ∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏]

−

1

2

𝑑

𝑑𝑡

[∫

𝑡

0

𝜆 (𝜏) ∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏]

=

1

2

∫

𝑡

0

𝜆

(𝑡 − 𝜏) ∫

Ω

|∇𝑢 (𝜏) − ∇𝑢 (𝑡)|
2
𝑑𝑥 𝑑𝜏

−

1

2

𝜆 (𝑡) ∫

Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥 ≤ 0,

(18)

for regular solution. The proof of Lemma 1 is completed.
This result is valid for weak solutions by a simple density
argument.

Nowwe consider the finite time blow-up of solutionswith
𝐸(0) < 0 for the problem (8).

Theorem 2. Let 𝑝 satisfy (a) and let the relaxation function
𝜆(𝑠) be a 𝐶

1 function satisfying (10) and (11). Assume that
𝑢
0
∈ 𝐻
1

0
(Ω) such that 𝐸(0) < 0. Then the solutions 𝑢(𝑥, 𝑡)

of the problem (8) blow up in finite time; that is, the maximum
existence time 𝑇max of 𝑢(𝑥, 𝑡) is finite and

lim
𝑡→𝑇max

‖𝑢(𝑥, 𝑡)‖
2

𝐻
1 = +∞. (19)
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Proof. The proof makes use of the so-called “concavity”
arguments. For any 𝑇

0
> 0, let

𝑀(𝑡) = ∫

𝑡

0

‖𝑢(𝜏)‖
2

2
𝑑𝜏

+ ∫

𝑡

0

‖∇𝑢(𝜏)‖
2

2
𝑑𝜏 + (𝑇

0
− 𝑡) (





∇𝑢
0






2

2
+




𝑢
0






2

2
) ,

(20)

for 𝑡 ∈ [0, 𝑇
0
].

A direct computation yields

𝑀

(𝑡) = ‖𝑢(𝑡)‖

2

2
+ ‖∇𝑢(𝑡)‖

2

2

− (




∇𝑢
0






2

2
+




𝑢
0






2

2
)

= 2∫

𝑡

0

(𝑢, 𝑢
𝑡
) 𝑑𝜏 + 2∫

𝑡

0

(∇𝑢, ∇𝑢
𝑡
) 𝑑𝜏,

𝑀

(𝑡) = 2 (𝑢, 𝑢

𝑡
) + 2 (∇𝑢, ∇𝑢

𝑡
) .

(21)

By multiplying (8) with 𝑢 and integrating overΩ,

(𝑢, 𝑢
𝑡
) + (∇𝑢, ∇𝑢

𝑡
)

= −‖∇𝑢(𝑡)‖
2

2
− ∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

− ‖∇𝑢(𝑡)‖
𝑝

𝑝
+ ∫

Ω

𝑢
2+𝛼

𝑑𝑥.

(22)

This implies that

𝑀

(𝑡) = −2‖∇𝑢 (𝑡)‖

2

2

− 2∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

− 2‖∇𝑢(𝑡)‖
𝑝

𝑝
+ ∫

Ω

𝑢
2+𝛼

𝑑𝑥,

(23)

and we have

𝑀

(𝑡)𝑀 (𝑡) −

𝛼 + 4

4

𝑀

(𝑡)
2

= 2𝑀 (𝑡) [−‖∇𝑢(𝑡)‖
2

2
− ∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

− ‖∇𝑢(𝑡)‖
𝑝

𝑝
+ ∫

Ω

𝑢
2+𝛼

𝑑𝑥]

−

𝛼 + 4

4

[2∫

𝑡

0

(𝑢, 𝑢
𝑡
) 𝑑𝜏 + 2∫

𝑡

0

(∇𝑢, ∇𝑢
𝑡
) 𝑑𝜏]

2

= 2𝑀 (𝑡) [−‖∇𝑢(𝑡)‖
2

2
− ∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

− ‖∇𝑢 (𝑡)‖
𝑝

𝑝
+ ∫

Ω

𝑢
2+𝛼

𝑑𝑥] + (𝛼 + 4)

× {𝐻 (𝑡) − [𝑀 (𝑡) − (𝑇
0
− 𝑡) (





∇𝑢
0






2

2
+




𝑢
0






2

2
)]

× [∫

𝑡

0

(𝑢
𝑡
, 𝑢
𝑡
) 𝑑𝜏 + ∫

𝑡

0

(∇𝑢
𝑡
, ∇𝑢
𝑡
) 𝑑𝜏]} ,

(24)

where

𝐻(𝑡) = [∫

𝑡

0

(𝑢, 𝑢) 𝑑𝜏 + ∫

𝑡

0

(∇𝑢, ∇𝑢) 𝑑𝜏]

× [∫

𝑡

0

(𝑢
𝑡
, 𝑢
𝑡
) 𝑑𝜏 + ∫

𝑡

0

(∇𝑢
𝑡
, ∇𝑢
𝑡
) 𝑑𝜏]

− [∫

𝑡

0

(𝑢, 𝑢
𝑡
) 𝑑𝜏 + ∫

𝑡

0

(∇𝑢, ∇𝑢
𝑡
) 𝑑𝜏]

2

.

(25)

Using Schwartz’s inequality, we have

(∫

𝑡

0
(𝑢, 𝑢
𝑡
)𝑑𝜏)

2

≤ ∫

𝑡

0

‖𝑢‖
2

2
𝑑𝜏∫

𝑡

0





𝑢
𝑡






2

2
𝑑𝜏,

(∫

𝑡

0
(∇𝑢, ∇𝑢

𝑡
)𝑑𝜏)

2

≤ ∫

𝑡

0

‖∇𝑢‖
2

2
𝑑𝜏∫

𝑡

0





∇𝑢
𝑡






2

2
𝑑𝜏,

∫

𝑡

0

(𝑢, 𝑢
𝑡
) 𝑑𝜏∫

𝑡

0

(∇𝑢, ∇𝑢
𝑡
) 𝑑𝜏

≤

1

2

∫

𝑡

0

‖𝑢‖
2

2
𝑑𝜏∫

𝑡

0





∇𝑢
𝑡






2

2
𝑑𝜏

+

1

2

∫

𝑡

0





𝑢
𝑡






2

2
𝑑𝜏∫

𝑡

0

‖∇𝑢‖
2

2
𝑑𝜏.

(26)

By (26), we have

𝐻(𝑡) ≥ 0, 𝑡 ∈ [0, 𝑇
0
] . (27)

Thus,

𝑀

(𝑡)𝑀 (𝑡) −

𝛼 + 4

4

𝑀

(𝑡)
2
≥ 𝑀(𝑡) 𝜂 (𝑡) , (28)

where

𝜂 (𝑡) = − (𝛼 + 4) [∫

𝑡

0

(𝑢
𝑡
, 𝑢
𝑡
) 𝑑𝜏 + ∫

𝑡

0

(∇𝑢
𝑡
, ∇𝑢
𝑡
) 𝑑𝜏]

− 2‖∇𝑢(𝑡)‖
2

2
− 2∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

− 2‖∇𝑢(𝑡)‖
𝑝

𝑝
+ 2∫

Ω

𝑢
2+𝛼

𝑑𝑥.

(29)
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For the third term on the left of (29), we have

− ∫

Ω

∫

𝑡

0

𝜆 (𝑡 − 𝜏) Δ𝑢 (𝜏) 𝑑𝜏𝑢 (𝑡) 𝑑𝑥

= ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢 (𝜏) ∇𝑢 (𝑡) 𝑑𝑥 𝑑𝜏

= ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢 (𝑡) ∇ [𝑢 (𝜏) − 𝑢 (𝑡)] 𝑑𝑥 𝑑𝜏

+ ∫

𝑡

0

𝜆 (𝑡 − 𝜏) ‖∇𝑢(𝑡)‖
2

2
𝑑𝜏.

(30)

By (29) and (30), we have

𝜂 (𝑡) = − (𝛼 + 4) ∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏

− 2(1 − ∫

𝑡

0

𝜆 (𝑡 − 𝜏) 𝑑𝜏) ‖∇𝑢(𝑡)‖
2

2

+ 2∫

𝑡

0

𝜆 (𝑡 − 𝜏) ∫

Ω

∇𝑢 (𝑡) [∇𝑢 (𝜏) − ∇𝑢 (𝑡)] 𝑑𝑥 𝑑𝜏

− 2‖∇𝑢‖
𝑝

𝑝
+ 2∫

Ω

𝑢
2+𝛼

𝑑𝑥

≥ − (𝛼 + 4) ∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏

− 2(1 − ∫

𝑡

0

𝜆 (𝑡 − 𝜏) 𝑑𝜏) ‖∇𝑢(𝑡)‖
2

2
− 2‖∇𝑢‖

𝑝

𝑝

+ 2∫

Ω

𝑢
2+𝛼

𝑑𝑥

− 2 [

𝛼 + 2

2

∫

𝑡

0

𝜆 (𝑡 − 𝜏) ‖∇𝑢(𝜏) − ∇𝑢(𝑡)‖
2

2
𝑑𝜏

+

1

2 (𝛼 + 2)

∫

𝑡

0

𝜆 (𝑡 − 𝜏) ‖∇𝑢 (𝑡)‖
2

2
𝑑𝜏]

= −2 (𝛼 + 2) 𝐸 (𝑡) + (𝛼 + 2) (1 − ∫

𝑡

0

𝜆 (𝑡 − 𝜏) 𝑑𝜏)

× ‖∇𝑢 (𝑡)‖
2

2
+

2 (𝛼 + 2)

𝑝

‖∇𝑢‖
𝑝

𝑝

− (𝛼 + 4) ∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏 −

1

𝛼 + 2

∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏‖∇𝑢 (𝑡)‖
2

2

− 2(1 − ∫

𝑡

0

𝜆 (𝑡 − 𝜏) 𝑑𝜏) ‖∇𝑢(𝑡)‖
2

2
− 2‖∇𝑢‖

𝑝

𝑝

= −2 (𝛼 + 2) 𝐸 (𝑡) + 𝛼(1 − ∫

𝑡

0

𝜆 (𝑡 − 𝜏) 𝑑𝜏) ‖∇𝑢 (𝑡)‖
2

2

−

1

𝛼 + 2

∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏‖∇𝑢 (𝑡)‖
2

2

− (𝛼 + 4) ∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏 +

2𝛼 − 2𝑝 + 4

𝑝

‖∇𝑢‖
𝑝

𝑝
.

(31)

Using Lemma 1, we have

𝐸 (𝑡) + ∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏 < 𝐸 (0) , (32)

and then

𝜂 (𝑡) ≥ −2 (𝛼 + 2) 𝐸 (0) + 𝛼∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏

+ [𝛼(1 − ∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏) −

1

𝛼 + 2

∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏] ‖∇𝑢(𝑡)‖
2

2

= −2 (𝛼 + 2) 𝐸 (0) + 𝛼∫

𝑡

0





𝑢
𝑡






2

𝐻
1𝑑𝜏

+ [𝛼 −

𝛼 (𝛼 + 2) + 1

𝛼 + 2

∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏] ‖∇𝑢 (𝑡)‖
2

2
.

(33)

Since

∫

∞

0

𝜆 (𝜏) 𝑑𝜏 <

𝛼 (𝛼 + 2)

𝛼 (𝛼 + 2) + 1

, (34)

this implies that

𝜂 (𝑡) > 𝛿, 0 ≤ 𝑡 < ∞, (35)

where 𝛿 is a positive constant.
From the discussion above, we see that

𝑀

(𝑡)𝑀 (𝑡) −

𝛼 + 4

4

𝑀

(𝑡)
2
≥ 𝑀(𝑡) 𝛿. (36)

From the definition of𝑀(𝑡), there exists 𝜌 > 0, such that

𝑀(𝑡) ≥ 𝜌, for 𝑡 ∈ [0, 𝑇) , (37)

and we have

𝑀

(𝑡)𝑀 (𝑡) −

𝛼 + 4

4

𝑀

(𝑡)
2
≥ 𝜌𝛿. (38)

Thus,

(𝑀(𝑡)
−𝛼/4

)



= (−

𝛼

4

)𝑀(𝑡)
−𝛼/4−2

[𝑀

(𝑡)𝑀 (𝑡) −

𝛼 + 4

4

𝑀

(𝑡)
2
]

≤ (−

𝛼

4

) 𝜌𝛿𝑀(𝑇)
−(𝛼+8)/4

< 0.

(39)

Hence, this proves that 𝑀(𝑡)
−𝛼/4 reaches 0 in finite time as

𝑡 → 𝑇
−

1
. Since 𝑇

1
is independent of 𝑇, we may assume that

𝑇
1
< 𝑇.
This means

lim
𝑡→𝑇

−

1

𝑀(𝑡) = +∞ (40)
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or

lim
𝑡→𝑇

−

1

(∫

𝑡

0

‖𝑢(𝜏)‖
2

2
𝑑𝜏 + ∫

𝑡

0

‖∇𝑢(𝜏)‖
2

2
𝑑𝜏

+ (𝑇
0
− 𝑡) (





∇𝑢
0






2

2
+




𝑢
0






2

2
)) = +∞.

(41)

This implies that

lim
𝑡→𝑇

−

1

∫

𝑡

0

‖𝑢(𝜏)‖
2

𝐻
1

𝑑𝜏 = +∞. (42)

Then, the desired assertion immediately follows.

Remark 1. In the absence of the viscous term (Δ𝑢
𝑡
) or 𝑝-

Laplace operator (div(|∇𝑢|𝑝−2∇𝑢)) for the problem (8), the
equation reduced to

(1) 𝑢
𝑡
− Δ𝑢 + ∫

𝑡

0
𝜆(𝑡 − 𝜏)Δ𝑢(𝜏)𝑑𝜏 = 𝑢

1+𝛼,

(2) 𝑢
𝑡
− Δ𝑢 − Δ𝑢

𝑡
+ ∫

𝑡

0
𝜆(𝑡 − 𝜏)Δ𝑢(𝜏)𝑑𝜏 = 𝑢

1+𝛼,

(3) 𝑢
𝑡
−Δ𝑢+∫

𝑡

0
𝜆(𝑡−𝜏)Δ𝑢(𝜏)𝑑𝜏 = div(|∇𝑢|𝑝−2∇𝑢)+𝑢1+𝛼,

and from the process of the proof, we can see that the results
of Theorem 2 still hold.
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