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The switched discrete host-parasitoid model with Beverton-Holt growth concerning integrated pest management has been
proposed, and the switches are guided by the economic threshold (ET). The integrated pest management (IPM) tactics are applied
to prevent the economic injury if the density of host population exceeds the ET, and the IPM tactics are called off once the density of
host population descends below ET. To begin with, the regular and virtual equilibria of switched system has been discussed by two
or three parameter-bifurcation diagrams, which reveal the regions of different types of equilibria. Besides, numerical bifurcation
analyses about inherent growth rates show that the switched discrete system may have complicated dynamics behavior including
chaos and the coexistence of multiple attractors. Finally, numerical bifurcation analyses about killing rates indicate that the system

comply with the Volterra principle, and initial values of both host and parasitoid populations affect the host outbreaks times.

1. Introduction

In recent years, integrated pest management (IPM) has been
introduced as a long-term, more effective, and low-cost
control strategy to reduce the pest damage which integrated
with biological, cultural, and chemical tactics to control pest
populations at the tolerable level [1, 2]. Moreover, IPM has
been proved to be effective pest control strategies through
theory analysis and experiments [3]. It aims at alleviating
the pollution of plants and animals due to the excessive
use of pesticides. IPM mainly involves two important and
essential components (chemical control and biology control).
Chemical control (e.g., spaying pesticides) is an effective
strategy to reduce the pest population [4]. However, long-
term chemical tactics will lead to pest drug-resistance and
environmental pollution, while biological control tactics are
another important control strategy to overcome the defi-
ciencies of chemical control. Biological control is mainly
adopted by periodically releasing its natural enemies, such as
predators, parasitoids, or pathogen to keep pest population

below the given economic threshold (ET). The ET refers to
the population density at which control action should be
taken to prevent an increasing pest population from reaching
the economic injury level (EIL), where EIL is defined as the
lowest population density of a pest that will cause economic
damage [1, 5, 6].

Recently, many impulsive differential equation models
with fixed pulse-type actions have been proposed to model
the periodic IPM strategy by Liang and Tang [7, 8]. Neverthe-
less, these impulsive differential equation models, however,
have applied the periodic IPM strategy, but few considered
the ET. Thus, the switching systems (or Filippov systems) with
ET described by ODE model have been brought into ecology
systems with IPM [9-12]. We should spray pesticides and
release natural enemies if ET is approached but not reached
the EIL. So far, few studies are proposed on the discrete
switching model in ecology with IPM. For the reason, in
this work, we will develop switched discrete model with IPM
based on host-parasitoid model with Beverton-Holt growth.
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The main purpose of this paper is to construct the
switched discrete host-parasitoid model with Beverton-Holt
growth concerning integrated pest management (IPM), and
the economic threshold (ET) is chosen to guide the switches.
First of all, we establish a switching system to model the
process of releasing natural enemies and spraying pesticides
(or harvesting pest) guided by ET. The existence of several
types of equilibria of switched system has been discussed
briefly, and two or three parameter-bifurcation diagrams
reveal the regions of different types of equilibria including
regular and virtual equilibria. What is more, numerical
bifurcation analyses show that the switched discrete system
may have complicated dynamics behaviors including chaos
and the coexistence of multiple attractors. We further address
how the key parameters and initial values of both host and
parasitoid populations affect the host outbreaks.

2. Host-Parasitoid Model

Now we consider the individuals of host (pest) population
which undergo intraspecific competition; the well-known
Beverton-Holt model takes into account intraspecific com-
petition [13]

oH ()
Ht_'_l:m, t:1,2,..., (1)
t

where H, is the population densities in generation ¢ (t =
0,1,2,3,...), ais an inherent growth rate, and b is a constant.

To take into account the effect of parasitoid interference
on the host population, the interaction between the host and
the parasitoid is governed by (2) of difference equations [14].
From the perspective of pest control, the host population is
regarded as a pest and the parasitoid population is treated as
a natural enemy of the host population. The host-parasitoid
(pest-enemy) interaction in this system does not consider the
external enemy releasing and insecticide spraying:

_aH (t) _BP,
t+1 b+H
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where H, is the host population densities and P, is the para-
sitoid population densities in generation ¢ (t = 0,1,2,3,...).
If the host population represents the pests and parasitoid pop-
ulation denotes the natural enemies, then the model describes
the pest-natural enemy interaction. Furthermore, the IPM
strategies can be taken into account when we aim to control
the pest population. Actually, the IPM tactics could only be
implemented when the density of pest population exceeds
the ET, and the control tactics must be suspended once its
density falls below the ET. As a consequence, the switching
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host-parasitoid model concerning IPM is established based
on system (2) as follows:
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where p represents the proportion of pest population (host)
which is killed or caught (0 < p < 1), and 7 represents
the releasing numbers of the natural enemies (parasitoid).
Particularly, if p = 0 and 7 > 0, then only the biological
control measures are applied, and if p > 0 and 7 = 0,
then only the chemical control tactics are applied. Moreover,
we assume pt#0, which means that at least one control
measure is applied once density of pest population exceeds
the ET. From the switching system (3), it is divided into two
subsystems. One is free subsystem when H, < ET, and we
denote it by Sg,; the other is controllable subsystem when
> ET, and we denote it by S; , where G, = {(H, P) | H, <
ET H>0,P>0},G,={HP)|H >ET, H>0, P> 0}

3. Equilibria of Two Subsystems

Although the existence and stability of equilibria of sub-
system Sz have been investigated [15], we also prove the
existence of the equilibria of two subsystems briefly, which are
useful for discussing the types of the equilibria of the whole
switching system (3).

3.1. Equilibria of the Subsystems S and Si . For subsystem
Sg,»let H, = Hy,y = Hy, and P, = P, = P,,; then the
equilibrium (H,,, P, ,) satisfies the following equations:
aH,, _gp, -BP..
Hl* :me ! N Pl* :Hl* (1—6 ! ) (4)

Notice that the P-component of an interior steady state
(H,,,P,,) must satisfy

a=0B+h@P)ef’ >b+h(P), (5)

where N = h(P) = P/(1 — e¢PP) for P > 0. Since
limp_, o+h(P) = 1/B, W' (P) > 0 for P > 0 and limp _, . h(P) =
00, we see that (5) has a positive solution P, if and only if

b+p
ﬂ b
Similarly, we can discuss the existence of equilibria of

subsystem S . Note that S; has a boundary steady state

Efro = (7,0) if T > 0, and the interior steady state E,, =
(H,,, P,,) satisfies the following equations. For subsystem S¢,

@ >

BN, > 1. (6)
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The interior steady state (H,,, P,,) must satisfy
(1-pla=@®+hP)e” >b+h(P), (8)

where H = h(P) = (P—T)/(l—eil;P) for P > 7.Since 1-e PP <
BP,let hy(P) = (P - 1)/BP, so

(1-p)a=b+hP)e’ >b+h (P). 9)

Since limp_, +h(P) = 0, h; (P) > 0for P > 7 and
limp _, 4, (P) = 1/f3, we see that (8) has a positive solution
H,, ifand onlyif P,, > Tand a > b/(1 - p).

3.2. Equilibria for the Switching System (3). The different
types of equilibria of Filippov systems or switching systems
play a key role in analyzing the dynamical behavior and dis-
cussing the biological implications, which have been widely
used in the evolution of biodiversity in multispecies systems
[16], piecewise HIV virus dynamic model with CD4"T cell
count-guided therapy [17], and nonsmooth plant disease
models with economic thresholds [18]. To show the equilibria
of switching system (3), we also need the definition of regular
equilibrium and virtual equilibrium about discrete switching
system.

Definition 1. A point Z, = (H,,P,) is called a regular
equilibrium of system (3) if Z,, is an equilibrium of subsystem
S,»and F(H,) < ET or if Z, is an equilibrium of subsystem
86, and F(H,) > ET, denoted by EgGl and EgGZ , respectively.
A point Z, is called a virtual equilibrium of system (3) if Z,
is an equilibrium of subsystem S , and F(H,) > ET orif Z,
is an equilibrium of subsystem S ,and F(H, ) < ET, denoted
by E¢_and Eg_, respectively.
1 G2

Since the system (3) is a transcendental equation and
the interior equilibria of two subsystems cannot be solved
analytically, we turn to employ the numerical methods to
simulate the existence of different types of equilibria and
coexistence. In what follows, we first choose « and ET
as bifurcation parameters and fix all others as those in
Figure 1(a). The results show that the parameter space has
been divided into four regions. For example, when « €
[1.61.85] and ET € [1.3, 3], there does not exist any interior
equilibria, as indicated in region I. Region II is marked
in red, and there only exists Sle; if « € [1.852.9], there
exist two regions divided into region III (purple) and region
IV (yellow). Moreover, in the purple regions EgGl and Egcz

coexist. In the yellow region, Eg and Eg_ coexist. Note
1

that the parameter regions (existences of equzilibria) depend
on the different values of . In order to design the optimal
control strategy and to keep the density of pest population
below ET, we should choose the appropriate parameters a and
ET such that the interior equilibrium of S subsystem and
Sg, subsystem become virtual. Therefore, from the point of
the IPM, region IV is the ideal region to design the optimal
control strategy.

From the above discussion, we know that the equilibria
are related to parameters o and ET. Moreover, the parameter

B has an effect on the equilibria. To show this, we let the
parameter f3 vary with the parameter « at the same time and
the other parameters are shown in Figure 1(b). The results
show that the area of four regions has great changes. For
example, the area of region I (green) is enlarged several times
and region III shrinks to a triangular area compared with
regions I and IIT in Figure 1(a). Thus, in order to prevent the
pest outbreak, parameters o and 8 should be carefully chosen
to keep the interior equilibria of two subsystems in region IV.

4. Numerical Analysis

4.1. Bifurcation Analysis about Inherent Growth Rate . To
study the dynamics of the switching ecological model (3) with
IPM, the bifurcation diagram about « provides a summary
of essential dynamical behavior of system. We discuss the
system through numerical simulation as the system cannot
be solved explicitly.

The bifurcation diagrams of the system about parameter
a in the range 8 < « < 34 are shown in Figure 2.
We observed that the system has more complex behavior,
including many chaotic bands, chaotic crises, and period
windows. As the parameter « increases form 8 to 9.1, we have
one-period attractors of host and parasitoid populations.
When « increased from 9.1 to 10.9, the system experiences
quasiperiodicity attractors. As « further increases, 5-piece
attractors generate at « = 11, and we see pitchfork bifurcation
with period-doubling cascade to 10-piece attractors at o =
13.1. When « is between 15 and 17.5, the system goes through
very complicated behavior, including chaos bands, narrow
and wide period windows, and chaos crises. The range when
18 < « < 21.2 represents the periodic attractors with period-
16. Subsequently, the system experiences a wide chaotic
bands, periodic windows, narrow chaotic bands, and Hopf
bifurcation between 21.3 and 26. In particular, there exists a
wide multiattractors coexistence region when « € (24.8,26),
and the details on multiattractors coexistence are discussed
in the following section. Finally, the system goes through
periodic attractors with period-5 in the range (26, 30).

We know that the different initial densities of both host
and parasitoid populations can result in different dynamics
behaviors, especially different outbreak patterns (here out-
break means that the density of host population is larger
than ET), which help us to design control strategies and to
make management decisions. For example, the bifurcation
diagrams have several different attractors which can coexist
for a wide range of parameters as shown in Figure 2 (¢ €
(24.8, 26)). Therefore, we will focus on how the initial densi-
ties affect the final states or host outbreaks and consequently
successful pest control. To know how the initial densities of
host and parasitoid populations affect the pest outbreak and
control strategies, we fix all parameters as those in Figure 3
and choose different initial densities. For example, four dif-
ferent host-outbreak attractors coexist at « = 25, from which
we can find that the four host-outbreak attractors have the
different amplitudes and frequencies. Let the initial density of
host and parasitoid be (H,, P,) = (7.4, 0.6); then the outbreak
patterns for host population are quite complex, as shown in






