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An implementable nonlinear Lagrange algorithm for stochastic minimax problems is presented based on sample average
approximation method in this paper, in which the second step minimizes a nonlinear Lagrange function with sample average
approximation functions of original functions and the sample average approximation of the Lagrange multiplier is adopted. Under
a set of mild assumptions, it is proven that the sequences of solution andmultiplier obtained by the proposed algorithm converge to
the Kuhn-Tucker pair of the original problem with probability one as the sample size increases. At last, the numerical experiments
for five test examples are performed and the numerical results indicate that the algorithm is promising.

1. Introduction

Consider the stochastic minimax problems of the form

min-
𝑥∈R𝑛

max
𝑖∈𝐼

E [𝑓
𝑖
(𝑥, 𝜔)] , (1)

where 𝐼 = {1, . . . , 𝑚}, 𝜔 is a random vector supported on the
probability space (Ω,F,P), 𝑓

𝑖
: R𝑛 × Ω → R(𝑖 ∈ 𝐼), E

denotes expectation with respect to the distribution of 𝜔 ∈
Ω, and E[𝑓

𝑖
(𝑥, 𝜔)] (𝑖 ∈ 𝐼) is well defined. Problem (1) has

drawnmuch attention in recent years, which arises in various
situations such as inventory theory, robust optimization, and
engineering filed; for example, see [1–5].

A nonlinear Lagrange function for problem (1) can be
established based on Zhang and Tang [6]; that is,

𝐺 (𝑥, 𝑢, 𝑡) = 𝑡 ln(∑
𝑖∈𝐼

𝑢
𝑖
𝑒(1/𝑡)E[𝑓𝑖(𝑥,𝜔)]) , (2)

where 𝑢 is Lagrange multiplier and 𝑢 ∈ Γ(𝑢) = {𝑢 ∈ R𝑚 |
∑
𝑖∈𝐼

𝑢
𝑖
= 1, 𝑢

𝑖
≥ 0}, and 𝑡 > 0 is a controlling parameter.

The good properties of function (2) were investigated in [6]
and the convergence analysis of the corresponding nonlinear
Lagrange algorithm was presented in [7]. Although func-
tion (2) overcomes the nondifferentiability of the objective
function 𝐹(𝑥) = max

𝑖∈𝐼
E[𝑓
𝑖
(𝑥, 𝜔)] in problem (1), the exact

numerical evaluation of the expected valueE[𝑓
𝑖
(𝑥, 𝜔)] (𝑖 ∈ 𝐼)

in (2) is very difficult because either distribution of random
vector 𝜔 is unknown or it is too complex to compute the
multidimensional integral.

The sample average approximation (in short, SAA)
method [8–15] is a well-behaved approach for bypassing this
difficulty. The idea of SAA method is to generate a random
sample 𝜔1, . . . , 𝜔𝑁 of the random variable 𝜔 ∈ Ωwith sample
size𝑁 and approximate the involved expected value function
E[𝑓
𝑖
(𝑥, 𝜔)] (𝑖 ∈ 𝐼) by the corresponding sample average

function (1/𝑁)∑𝑁
𝑗=1

𝑓
𝑖
(𝑥, 𝜔𝑗) (𝑖 ∈ 𝐼). Inspired by the SAA

method, we present the SAA function of 𝐺(𝑥, 𝑢, 𝑡) as follows:

𝐺
𝑁
(𝑥, 𝑢, 𝑡) = 𝑡 ln(∑

𝑖∈𝐼

𝑢
𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥)) , (3)

where 𝑔
𝑁,𝑖
(𝑥) = (1/𝑁)∑𝑁

𝑗=1
𝑓
𝑖
(𝑥, 𝜔𝑗). Furthermore, we will

propose an implementable nonlinear Lagrange algorithm
based on SAA function (3), in which function (3) is min-
imized and the Lagrange multiplier is updated by its SAA
form. Under some mild assumptions on problem (1), we will
show that the sequences of solution and multiplier generated
by the SAA method-based nonlinear Lagrange algorithm
converge to the Kuhn-Tucker pair of the original problem
with probability one as the sample size𝑁 increases.
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The remainder of this paper is organized as follows.
Preliminaries are given in Section 2. The SAA method-based
nonlinear Lagrange algorithm and convergence analysis are
established in Section 3. Section 4 reports the numerical
results by using the proposed algorithm to solve five test
examples. Finally, conclusions are drawn in Section 5.

2. Preliminaries

This section serves as a preparation for the convergence anal-
ysis of the proposed SAA method-based nonlinear Lagrange
algorithm. The assumptions on problem (1) are provided
firstly. Furthermore, some results that are essential to our
discussion are listed. At last, we recall the nonlinear Lagrange
algorithm in [7].

Let (𝑥∗, 𝑢∗) denote the Kuhn-Tucker pair of problem
(1). Let 𝛿 > 0 be small enough and define 𝑆(𝑥∗, 𝛿) =
{𝑥 ∈ R𝑛 | ‖𝑥∗ − 𝑥‖ ≤ 𝛿}. The Lagrange function
for problem (1) is defined by 𝐿(𝑥, 𝑢) = ∑

𝑖∈𝐼
𝑢
𝑖
E[𝑓
𝑖
(𝑥, 𝜔)].

Set 𝐵(𝑥∗) = {𝑖 | E[𝑓
𝑖
(𝑥∗, 𝜔)] = 𝐹(𝑥∗), 𝑖 ∈ 𝐼} and

𝑓(𝑥, 𝜔) = (𝑓
1
(𝑥, 𝜔), . . . , 𝑓

𝑚
(𝑥, 𝜔))𝑇. We list the following

assumptions on problem (1), which will be used in the
subsequent theoretical analysis.

(A1) E[𝑓(𝑥, 𝜔)] is twice continuously differentiable onR𝑛.
(A2) There exists a nonnegative measurable function 𝜙(𝜔)

such that E[𝜙(𝜔)] is finite and for every 𝑥 ∈ 𝑆(𝑥∗, 𝛿)
the inequality

󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝜔)
󵄩󵄩󵄩󵄩 < 𝜙 (𝜔) (4)

holds with probability one.
(A3) The random sample 𝜔1, . . . , 𝜔𝑁 is independent and

identically distributed.
(A4) (𝑥∗, 𝑢∗) satisfies the K-T condition. That is,

∇
𝑥
𝐿 (𝑥∗, 𝑢∗) = 0, 𝑢∗ ∈ Γ (𝑢) ,

𝑢∗
𝑖
(𝐹 (𝑥∗) − E [𝑓

𝑖
(𝑥, 𝜔)]) = 0, 𝑖 ∈ 𝐼.

(5)

(A5) Strict complementary condition holds; that is, 𝑢∗
𝑖
> 0

for 𝑖 ∈ 𝐵(𝑥∗).
(A6) Linear independent constraint qualification holds.

That is,

{(
1

∇E [𝑓
𝑖
(𝑥∗, 𝜔)]

) | 𝑖 ∈ 𝐵 (𝑥∗)} (6)

is a set of linear independent vectors.
(A7) For all 𝑦 ∈ R𝑛 satisfying ∇E[𝑓

𝑖
(𝑥∗, 𝜔)]𝑇𝑦 = 0, 𝑖 ∈

𝐵(𝑥∗) (𝑦 ̸= 0), it holds that

𝑦𝑇∇2
𝑥
𝐿 (𝑥∗, 𝑢∗) 𝑦 ≥ 𝜆󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
2

, (7)

where 𝜆 > 0 is a constant.

Definition 1 (see [11]). For nonempty sets𝐴 and 𝐵 inR𝑛, one
denotes by dist(𝑥, 𝐴) = inf

𝑥∈𝐴
‖𝑥 − 𝑥󸀠‖ the distance from 𝑥 ∈

R𝑛 to 𝐴 and by D(𝐴, 𝐵) = sup
𝑥∈𝐴

dist(𝑥, 𝐵) the deviation of
the set 𝐴 from the set 𝐵.

Lemma 2 (Heine-Cantor theorem; see [16]). If ℎ(𝑥) : 𝑀 →
𝑁 is continuous function and 𝑀 is compact, then ℎ(𝑥) is
uniformly continuous, where𝑀 and𝑁 are two metric spaces.

Note. An important special case is that every continuous
function from a closed interval to the real numbers is
uniformly continuous.

Lemma 3. Define𝑊𝑗
𝑁
(𝑥),𝑊𝑗(𝑥) : R𝑛 → R for 𝑗 = 1, . . . , 𝑝.

Suppose that 𝑊𝑗
𝑁
(𝑥) converges to 𝑊𝑗(𝑥) with probability one

uniformly onR𝑛 for 𝑗 = 1, . . . , 𝑝. Then ∑𝑝
𝑗=1

𝑊
𝑗

𝑁
(𝑥) converges

to ∑𝑝
𝑗=1

𝑊𝑗(𝑥) with probability one uniformly onR𝑛.

Proof. From the given condition, for 𝑗 = 1, . . . , 𝑝, one has
that, for any 𝜖 > 0, there exists 𝑁𝑗 ∈ 𝑁

+
such that when

𝑁 > 𝑁𝑗, |𝑊𝑗
𝑁
(𝑥) − 𝑊𝑗(𝑥)| < 𝜖/𝑝 holds with probability one

for any 𝑥 ∈ R𝑛.
Let𝑁

0
= max

1≤𝑗≤𝑝
{𝑁𝑗}. Thus we have that, for any 𝜖 > 0,

when 𝑁 > 𝑁
0
, for any 𝑥 ∈ R𝑛, the following holds with

probability one:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

∑
𝑗=1

𝑊𝑗
𝑁
(𝑥) −

𝑝

∑
𝑗=1

𝑊𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝑝

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑊
𝑗

𝑁
(𝑥) − 𝑊𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨

< 𝑝 ⋅
𝜖

𝑝
= 𝜖,

(8)

which means that Lemma 3 is true.

Algorithm 4 is from [7].

Algorithm 4. We have the following.

Step 1. Choose 𝑡 ∈ (0, 𝑡̂), where 𝑡̂ ∈ (0, 1), 𝑢(0) ∈ Γ(𝑢), and
𝜖 ∈ (0, 1) small enough and set 𝑘 = 0.

Step 2. Solve

min
𝑥∈R𝑛

𝐺(𝑥, 𝑢(𝑘), 𝑡) (9)

and obtain the optimal solution 𝑥(𝑘).

Step 3. If | ∑
𝑖∈𝐼

𝑢(𝑘)
𝑖
(E[𝑓
𝑖
(𝑥(𝑘), 𝜔)] − 𝐹(𝑥(𝑘)))| < 𝜖, then stop.

Otherwise go to Step 4.

Step 4. Update the Lagrange multiplier 𝑢(𝑘) by

𝑢(𝑘+1)
𝑖

=
𝑢(𝑘)
𝑖
𝑒(1/𝑡)E[𝑓𝑖(𝑥

(𝑘)

]

∑
𝑗∈𝐼

𝑢(𝑘)
𝑗
𝑒(1/𝑡)E[𝑓𝑗(𝑥

(𝑘)
]

, 𝑖 = 1, . . . , 𝑚. (10)

Step 5. Set 𝑘 = 𝑘 + 1 and return to Step 2.

3. The SAA Method-Based Nonlinear Lagrange
Algorithm and Its Convergence

In view of the numerical computation difficulty in
Algorithm 4 and motivated by the SAA method, we
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provide the following implementable nonlinear Lagrange
algorithm based on the SAA method firstly. Furthermore we
establish the convergence analysis of the SAA method-based
algorithm under assumptions (A1)–(A7) in this section.

Implementable SAA method-based Algorithm 5 is pre-
sented as follows.

Algorithm 5. We have the following.

Step 1. Choose 𝑡 ∈ (0, 𝑡̂), where 𝑡̂ ∈ (0, 1), 𝜖 ∈ (0, 1) small
enough, 𝑢̂(0)

𝑁
∈ Γ(𝑢), and𝑁 is large enough. Set 𝑘 = 0.

Step 2. Solve

min
𝑥∈R𝑛

𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) (11)

and obtain the optimal solution 𝑥(𝑘)
𝑁
.

Step 3. If | ∑
𝑖∈𝐼

𝑢̂(𝑘)
𝑁,𝑖
(𝑔
𝑁,𝑖
(𝑥(𝑘)
𝑁
) − 𝐹(𝑥(𝑘)

𝑁
))| < 𝜖, then stop.

Otherwise go to Step 4.

Step 4. Update the Lagrange multiplier 𝑢̂(𝑘)
𝑁

by

𝑢̂(𝑘+1)
𝑁,𝑖

=
𝑢̂(𝑘)
𝑁,𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥

(𝑘)

𝑁
)

∑
𝑗∈𝐼

𝑢̂(𝑘)
𝑁,𝑗

𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑘)

𝑁
)

, 𝑖 = 1, . . . , 𝑚. (12)

Step 5. Set 𝑘 = 𝑘 + 1 and return to Step 2.
Taking into account the local convergence analysis of

Algorithm 4 given in [7], next we will study the convergence
of the sequence pair (𝑥(𝑘)

𝑁
, 𝑢̂(𝑘)
𝑁
) obtained by Algorithm 5 on

𝑆(𝑥∗, 𝛿) × 𝑆(𝑢∗, 𝛿). Let V(𝑘) and 𝑆(𝑘) denote the optimal value
and the set of optimal solutions of min

𝑥∈𝑆(𝑥
∗
,𝛿)
𝐺(𝑥, 𝑢(𝑘), 𝑡)

and V̂(𝑘)
𝑁

and 𝑆(𝑘)
𝑁

denote the optimal value and the set of
optimal solutions of min

𝑥∈𝑆(𝑥
∗
,𝛿)
𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡), respectively.

Set 𝑔
𝑖
(𝑥) = E[𝑓

𝑖
(𝑥, 𝜔)].

Theorem 6. If assumptions (A1)–(A3) hold and 𝑢̂(𝑘)
𝑁,𝑖

converges
to 𝑢(𝑘)
𝑖

(𝑖 = 1, . . . , 𝑚) with probability one for some 𝑘, then the
following statements hold:

(i) 𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) converges to𝐺(𝑥, 𝑢(𝑘), 𝑡) with probability

one uniformly on 𝑆(𝑥∗, 𝛿);

(ii) V̂(𝑘)
𝑁

converges to V(𝑘) and D(𝑆(𝑘)
𝑁
, 𝑆(𝑘)) tends to 0 with

probability one as𝑁 → ∞.

Proof. (i) Let 𝜑(𝑎, 𝑏) = 𝑏𝑒𝑎/𝑡, where 𝑎, 𝑏 ∈ R. Then one has

𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) = 𝑡 ln∑

𝑖∈𝐼

𝜑 (𝑔
𝑁,𝑖

(𝑥) , 𝑢̂(𝑘)
𝑁,𝑖
) . (13)

Now we prove that 𝜑(𝑔
𝑁,𝑖
(𝑥), 𝑢̂(𝑘)
𝑁,𝑖
) converges to 𝜑(𝑔

𝑖
(𝑥), 𝑢(𝑘)
𝑖
)

with probability one uniformly on 𝑆(𝑥∗, 𝛿). Considering the
definition of 𝜑(𝑎, 𝑏), we have
󵄨󵄨󵄨󵄨󵄨𝜑 (𝑔𝑁,𝑖 (𝑥) , 𝑢̂

(𝑘)

𝑁,𝑖
) − 𝜑 (𝑔

𝑖
(𝑥) , 𝑢(𝑘)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨𝜑 (𝑔𝑁,𝑖 (𝑥) , 𝑢̂

(𝑘)

𝑁,𝑖
) − 𝜑 (𝑔

𝑁,𝑖
(𝑥) , 𝑢(𝑘)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨𝜑 (𝑔𝑁,𝑖 (𝑥) , 𝑢

(𝑘)

𝑖
) − 𝜑 (𝑔

𝑖
(𝑥) , 𝑢(𝑘)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨𝑢̂
(𝑘)

𝑁,𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥) − 𝑢(𝑘)

𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨𝑢
(𝑘)

𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥) − 𝑢(𝑘)

𝑖
𝑒(1/𝑡)𝑔𝑖(𝑥)

󵄨󵄨󵄨󵄨󵄨

= 𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥)
󵄨󵄨󵄨󵄨󵄨𝑢̂
(𝑘)

𝑁,𝑖
− 𝑢(𝑘)
𝑖

󵄨󵄨󵄨󵄨󵄨 + 𝑢
(𝑘)

𝑖

󵄨󵄨󵄨󵄨󵄨𝑒
(1/𝑡)𝑔

𝑁,𝑖
(𝑥) − 𝑒(1/𝑡)𝑔𝑖(𝑥)

󵄨󵄨󵄨󵄨󵄨 .

(14)

It follows from assumption (A1) andTheorem 7.48 in [11]
that both 𝑔

𝑁,𝑖
(𝑥) and 𝑔

𝑖
(𝑥) (𝑖 = 1, . . . , 𝑚) are continuous

at 𝑥 on 𝑆(𝑥∗, 𝛿). Consequently, for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿), there
exist constants 𝑎

1
and 𝑎

2
such that 𝑔

𝑁,𝑖
(𝑥) ∈ [𝑎

1
, 𝑎
2
] and

𝑔
𝑖
(𝑥) ∈ [𝑎

1
, 𝑎
2
] for 𝑖 = 1, . . . , 𝑚. Since 𝜑(𝑎, 1) is continuous at

𝑎 onR and from Lemma 2, we have that 𝜑(𝑎, 1) is uniformly
continuous on [𝑎

1
, 𝑎
2
]; that is, for any 𝜖 > 0 and𝑥, 𝑦 ∈ [𝑎

1
, 𝑎
2
],

there exists 𝛿 > 0 such that, for |𝑥 − 𝑦| < 𝛿, it holds that
󵄨󵄨󵄨󵄨𝜑 (𝑥, 1) − 𝜑 (𝑦, 1)

󵄨󵄨󵄨󵄨 < 𝜖. (15)

Furthermore, fromTheorem 7.48 in [11] we know that 𝑔
𝑁,𝑖
(𝑥)

converges to𝑔
𝑖
(𝑥)with probability one uniformly on 𝑆(𝑥∗, 𝛿),

whichmeans that, for the above given 𝛿, there exists𝑁
0
∈ 𝑁
+

such that when𝑁 > 𝑁
0
, the inequality

󵄨󵄨󵄨󵄨𝑔𝑁,𝑖 (𝑥) − 𝑔𝑖 (𝑥)
󵄨󵄨󵄨󵄨 < 𝛿 (16)

holds with probability one for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿). In view of
formula (15) and formula (16), one draws the conclusion that,
for any 𝜖 > 0, there exists𝑁

0
∈ 𝑁
+
such that when𝑁 > 𝑁

0
,

it holds that
󵄨󵄨󵄨󵄨𝜑 (𝑔𝑁,𝑖 (𝑥) , 1) − 𝜑 (𝑔𝑖 (𝑥) , 1)

󵄨󵄨󵄨󵄨 < 𝜖 (17)

with probability one for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿). That is, 𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥)

converges to 𝑒(1/𝑡)𝑔𝑖(𝑥) with probability one uniformly on
𝑆(𝑥∗, 𝛿).

In view of 𝑢̂(𝑘)
𝑁,𝑖

converging to 𝑢(𝑘)
𝑖

with probability
one, 𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥) being bounded on 𝑆(𝑥∗, 𝛿) with probabil-
ity one, 𝑢(𝑘)

𝑖
∈ Γ(𝑢), and formula (14), we obtain that

𝜑(𝑔
𝑁,𝑖
(𝑥), 𝑢̂(𝑘)
𝑁,𝑖
) converges to 𝜑(𝑔

𝑖
(𝑥), 𝑢(𝑘)
𝑖
) with probability

one uniformly on 𝑆(𝑥∗, 𝛿) as 𝑁 → ∞. Moreover, one gets
that∑

𝑖∈𝐼
𝜑(𝑔
𝑁,𝑖
(𝑥), 𝑢̂(𝑘)
𝑁,𝑖
) converges to∑

𝑖∈𝐼
𝜑(𝑔
𝑖
(𝑥), 𝑢(𝑘)
𝑖
) with

probability one uniformly on 𝑆(𝑥∗, 𝛿) as 𝑁 → ∞ from
Lemma 3.

Next we prove that𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) converges to𝐺(𝑥, 𝑢(𝑘), 𝑡)

with probability one uniformly on 𝑆(𝑥∗, 𝛿). Let Φ
𝑁
(𝑥) =

∑
𝑖∈𝐼

𝜑(𝑔
𝑁,𝑖
(𝑥), 𝑢̂(𝑘)
𝑁,𝑖
) and Φ(𝑥) = ∑

𝑖∈𝐼
𝜑(𝑔
𝑖
(𝑥), 𝑢(𝑘)
𝑖
). Hence,

one has
󵄨󵄨󵄨󵄨󵄨𝐺𝑁 (𝑥, 𝑢̂

(𝑘)

𝑁
, 𝑡) − 𝐺 (𝑥, 𝑢(𝑘), 𝑡)

󵄨󵄨󵄨󵄨󵄨 = 𝑡 󵄨󵄨󵄨󵄨lnΦ𝑁 (𝑥) − lnΦ (𝑥)󵄨󵄨󵄨󵄨 .

(18)
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From the above discussion, we know that Φ
𝑁
(𝑥), Φ(𝑥) ∈

[𝑒𝑎1/𝑡, 𝑒𝑎2/𝑡] for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿). Since 𝜙(𝑦) = ln𝑦 is
continuous at 𝑦 onR

++
and by Lemma 2, we obtain that 𝜙(𝑦)

is uniformly continuous on the interval [𝑒𝑎1/𝑡, 𝑒𝑎2/𝑡]. That is,
for any 𝜖

0
> 0 and 𝑥󸀠, 𝑦󸀠 ∈ [𝑒𝑎1/𝑡, 𝑒𝑎2/𝑡], there exists 𝛿 > 0 such

that, for |𝑥󸀠 − 𝑦󸀠| < 𝛿, it holds that
󵄨󵄨󵄨󵄨󵄨ln𝑥
󸀠 − ln𝑦󸀠󵄨󵄨󵄨󵄨󵄨 < 𝜖

0
. (19)

Moreover, for the given 𝛿, there exists𝑁
0
∈ 𝑁
+
such that, for

𝑁 > 𝑁
0
, it holds that

󵄨󵄨󵄨󵄨Φ𝑁 (𝑥) − Φ (𝑥)󵄨󵄨󵄨󵄨 < 𝛿 (20)

with probability one for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿). From formulas (19)
and (20), it follows that, for any 𝜖

0
> 0, there exists𝑁

0
∈ 𝑁
+

such that, for𝑁 > 𝑁
0
, the following inequality holds:

󵄨󵄨󵄨󵄨lnΦ𝑁 (𝑥) − lnΦ (𝑥)󵄨󵄨󵄨󵄨 < 𝜖
0

(21)

with probability one for any 𝑥 ∈ 𝑆(𝑥∗, 𝛿). Combined with
formula (18), statement (i) is true.

(ii) From statement (i) andTheorem 5.3 in [11], statement
(ii) is obtained.The proof ofTheorem 6 is completed.

Theorem7. If assumptions (A1)–(A3) hold, letting 𝑢̂(0)
𝑁,𝑖

= 𝑢(0)
𝑖
,

𝑖 = 1, . . . , 𝑚, then, for any 𝑘 ≥ 1, the following statements hold:

(i) 𝑢̂(𝑘)
𝑁,𝑖

converges to 𝑢(𝑘)
𝑖

with probability one for 𝑖 =
1, . . . , 𝑚;

(ii) 𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) converges to𝐺(𝑥, 𝑢(𝑘), 𝑡) with probability

one uniformly on 𝑆(𝑥∗, 𝛿);
(iii) V̂(𝑘)

𝑁
tends to V̂(𝑘), and D(𝑆(𝑘)

𝑁
, 𝑆(𝑘)) tends to 0 with

probability one as𝑁 → ∞.

Proof. (i) We use the mathematical induction method to
show that statement (i) is true below.

(a) Let 𝑘 = 1; then for 𝑖 = 1, . . . , 𝑚 we have

𝑢̂(1)
𝑁,𝑖

=
𝑢̂(0)
𝑁,𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥

(0)

𝑁
)

∑
𝑗∈𝐼

𝑢̂(0)
𝑁,𝑗

𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(0)

𝑁
)

,

𝑢(1)
𝑖

=
𝑢(0)
𝑖
𝑒(1/𝑡)𝑔𝑖(𝑥

(0)

)

∑
𝑗∈𝐼

𝑢(0)
𝑗
𝑒(1/𝑡)𝑔𝑗(𝑥

(0)
)

.

(22)

Considering 𝑢̂(0)
𝑁,𝑖

= 𝑢(0)
𝑖
, we have that 𝑥(0)

𝑁
converges to

𝑥(0) with probability one from Theorem 6. For 𝑗 = 1, . . . , 𝑚,
it holds that

󵄨󵄨󵄨󵄨󵄨𝑔𝑁,𝑗 (𝑥
(0)

𝑁
) − 𝑔
𝑗
(𝑥(0))

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨𝑔𝑁,𝑗 (𝑥

(0)

𝑁
) − 𝑔
𝑗
(𝑥(0)
𝑁
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨𝑔𝑗 (𝑥

(0)

𝑁
) − 𝑔
𝑗
(𝑥(0))

󵄨󵄨󵄨󵄨󵄨 .

(23)

Noting that the first term in the right-hand side of formula
(23) converges to 0 with probability one by Theorem 7.48
in [11] and the second term converges to 0 with probability
one for 𝑔

𝑗
(𝑥) being continuous, we obtain that 𝑔

𝑁,𝑗
(𝑥(0)
𝑁
)

converges to 𝑔
𝑗
(𝑥(0)) with probability one. Moreover, since

𝑚(𝑦) = 𝑒𝑦/𝑡 is continuous at 𝑦 on R, one gets that
𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(0)

𝑁
) converges to 𝑒(1/𝑡)𝑔𝑗(𝑥

(0)

) with probability one.
Then it follows from the properties of convergent sequence
that 𝑢̂(1)

𝑁,𝑖
converges to 𝑢(1)

𝑖
with probability one for 𝑖 =

1, . . . , 𝑚.

(b) When 𝑘 = 𝑝, we assume that 𝑢̂(𝑝)
𝑁,𝑖

converges to 𝑢(𝑝)
𝑖

with probability one for 𝑖 = 1, . . . , 𝑚. Then, when 𝑘 =
𝑝 + 1, next we prove that 𝑢̂(𝑝+1)

𝑁,𝑖
converges to 𝑢(𝑝+1)

𝑖

with probability one for 𝑖 = 1, . . . , 𝑚.

Let 𝑘 = 𝑝 + 1; then for 𝑖 = 1, . . . , 𝑚 one has

𝑢̂(𝑝+1)
𝑁,𝑖

=
𝑢(𝑝)
𝑖
𝑒(1/𝑡)𝑔𝑁,𝑖(𝑥

(𝑝)

𝑁
)

∑
𝑗∈𝐼

𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(𝑝)

𝑁
)

,

𝑢(𝑝+1)
𝑖

=
𝑢(𝑝)
𝑖
𝑒(1/𝑡)𝑔𝑖(𝑥

(𝑝)

)

∑
𝑗∈𝐼

𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)
)

.

(24)

FromTheorem 6,we know that𝑥(𝑝)
𝑁

converges to𝑥(𝑝)with
probability one as𝑁 → ∞. By a similar proof process to that
in (a), we have that 𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(𝑝)

𝑁
) converges to 𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)

) with
probability one for 𝑗 = 1, . . . , 𝑚. For 𝑗 = 1, . . . , 𝑚, one has
that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢̂(𝑝)
𝑁,𝑗

𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑝)

𝑁
) − 𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢̂(𝑝)
𝑁,𝑗

𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑝)

𝑁
) − 𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(𝑝)

𝑁
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(𝑝)

𝑁
) − 𝑢(𝑝)
𝑗
𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑝)

𝑁
)
󵄨󵄨󵄨󵄨󵄨𝑢̂
(𝑝)

𝑁,𝑗
− 𝑢(𝑝)
𝑗

󵄨󵄨󵄨󵄨󵄨

+ 𝑢(𝑝)
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥

(𝑝)

𝑁
) − 𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(25)

Noting that the first term of (25) tends to 0 with proba-
bility one as 𝑁 → ∞ for 𝑢̂(𝑝)

𝑁,𝑗
converging to 𝑢(𝑝)

𝑗
with

probability one and 𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑝)

𝑁
) being bounded on 𝑆(𝑥∗, 𝛿)

with probability one and the second term tends to 0 with
probability one as 𝑁 → ∞ for 𝑢(𝑝)

𝑗
∈ (0, 1), we obtain that

𝑢̂(𝑝)
𝑁,𝑗

𝑒(1/𝑡)𝑔𝑁,𝑗(𝑥
(𝑝)

𝑁
) converges to 𝑢(𝑝)

𝑗
𝑒(1/𝑡)𝑔𝑗(𝑥

(𝑝)

) with probability
one. Then it follows from properties of convergent sequence
that 𝑢̂(𝑝+1)

𝑁,𝑖
converges to 𝑢(𝑝)

𝑖
with probability one for 𝑖 =

1, . . . , 𝑚.
According to (a) and (b), we have that statement (i) holds.

(ii) From statement (i) and Theorem 6, we obtain that
statement (ii) is true.
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(iii) From statement (ii) and Theorem 5.3 in [11], one has
that statement (iii) holds.

The above theorem shows that the sample average
approximation Lagrange multiplier 𝑢̂(𝑘)

𝑁
converges

to its counterpart 𝑢(𝑘) with probability one, and the
optimal value and optimal solutions of the subproblem
min
𝑥∈𝑆(𝑥

∗
,𝛿)
𝐺
𝑁
(𝑥, 𝑢̂(𝑘)
𝑁
, 𝑡) converge to their counterparts of

the subproblem min
𝑥∈𝑆(𝑥

∗
,𝛿)
𝐺(𝑥, 𝑢(𝑘), 𝑡) with probability

one under some mild conditions. Next we will analyze the
convergence of Algorithm 5 under some mild conditions.

Theorem 8. If assumptions (A1)–(A7) hold, letting 𝑢̂(0)
𝑁,𝑖

=

𝑢(0)
𝑖

(𝑖 = 1, . . . , 𝑚), then there exist 𝛿 > 0 and 𝑡̂ ∈ (0, 1)

such that, for any (𝑢(0), 𝑡) ∈ 𝑆(𝑢∗, 𝛿) × (0, 𝑡̂), it holds that the
sequence pair (𝑥(𝑘)

𝑁
, 𝑢̂(𝑘)
𝑁
) converge to the K-T pair (𝑥∗, 𝑢∗) with

probability one.

Proof. Under assumptions (A1) and (A4)–(A7),
from Theorem 3.1 in [7], we have that there exist
𝛿 > 0 and 𝑡̂ ∈ (0, 1) such that, for any 𝑘 ≥ 1 and
(𝑢(0), 𝑡) ∈ 𝑆(𝑢∗, 𝛿) × (0, 𝑡̂), the following inequality holds:

max {󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘) − 𝑥∗

󵄩󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩󵄩𝑢
(𝑘) − 𝑢∗

󵄩󵄩󵄩󵄩󵄩} ≤ 𝑐𝑘𝑡𝑘
󵄩󵄩󵄩󵄩󵄩𝑢
(0) − 𝑢∗

󵄩󵄩󵄩󵄩󵄩 , (26)

where 𝑐 > 0 is a constant, which implies that the pair
(𝑥(𝑘), 𝑢(𝑘)) tend to the K-T pair (𝑥∗, 𝑢∗) of the original
problem (1) as 𝑘 → ∞.

Since assumptions (A1)–(A3) hold and 𝑢̂(0)
𝑁,𝑖

= 𝑢(0)
𝑖

(𝑖 =

1, . . . , 𝑚), it follows by Theorem 7 that the pair (𝑥(𝑘)
𝑁
, 𝑢̂(𝑘)
𝑁
)

converge to the pair (𝑥(𝑘), 𝑢(𝑘)) with probability one as𝑁 →
∞.

Furthermore, since
󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘)

𝑁
− 𝑥∗

󵄩󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘)

𝑁
− 𝑥(𝑘)

󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘) − 𝑥∗

󵄩󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩󵄩𝑢̂
(𝑘)

𝑁
− 𝑢∗

󵄩󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩𝑢̂
(𝑘)

𝑁
− 𝑢(𝑘)

󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩𝑢
(𝑘) − 𝑢∗

󵄩󵄩󵄩󵄩󵄩 ,
(27)

the conclusion is obtained.

Remark 9. Theorem 8 shows that, under some mild assump-
tions, the sequence pair (𝑥(𝑘)

𝑁
, 𝑢̂(𝑘)
𝑁
) generated by Algorithm 5

locally tend to the K-T pair (𝑥∗, 𝑢∗) of the original problem
(1) with probability one as 𝑁 → ∞ and 𝑘 → ∞ when the
controlling parameter 𝑡 is less than the threshold 𝑡̂.

4. Numerical Results

The numerical results for five test examples by using
Algorithm 5 are presented in this section, where the five
test problems are compiled based on the deterministic opti-
mization problems in the literature [17, 18]. The numerical
experiments are implemented in Matlab 7.1 runtime environ-
ment on the same computer, whose basic parameters are Intel
CORE i3-2310M@2.10GHz and memory 2Gb.

Table 1: The numerical results for Example 1.

𝑁 1/𝑡 Iter. ‖𝑥∗ − 𝑥(𝑘)
𝑁
‖ ‖V̂(𝑘)

𝑁
− V∗‖

102 10 3 1.904585𝑒 − 001 1.929105𝑒 − 001

103 10 2 5.976346𝑒 − 002 2.127908𝑒 − 002

104 10 1 3.668249𝑒 − 002 8.282325𝑒 − 002

105 10 1 5.525511𝑒 − 003 3.098093𝑒 − 003

106 10 1 1.319634𝑒 − 003 1.279392𝑒 − 003

107 10 1 5.493409𝑒 − 004 9.275895𝑒 − 004

In the experiments, the sample 𝜔1, . . . , 𝜔𝑁 with sample
size 𝑁 is generated by 𝑢𝑛𝑖𝑓𝑟𝑛𝑑 in Matlab 7.1. For each
problem, we choose 𝑁 = 102, 𝑁 = 103, 𝑁 = 104,
𝑁 = 105, 𝑁 = 106, and 𝑁 = 107, respectively, to make
comparison. The initial value 𝑢(0)

𝑁
= (1/𝑚, . . . , 1/𝑚)𝑇 for

each example. Unconstrained minimization problem in Step
2 of Algorithm 5 is solved by BFGS quasi-Newton method
combined with Wolf nonexact linear search rule, and the
control precision is 10−6 in this step. The stopping criterion
in Step 3 is

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∑
𝑖∈𝐼

𝑢̂(𝑘)
𝑁,𝑖

(𝑔
𝑁,𝑖

(𝑥(𝑘)
𝑁
) − 𝐹 (𝑥(𝑘)

𝑁
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀, (28)

where 𝜀 = 10−8.
The obtained numerical results are reported in Tables 1–5,

in which𝑁, 1/𝑡, iter., ‖𝑥∗ −𝑥(𝑘)
𝑁
‖, and ‖V̂(𝑘)

𝑁
−V∗‖ represent the

sample size, the value of controlling parameter, the number
of iterations, the error between the solution sequence 𝑥(𝑘)

𝑁
by

Algorithm 5 and the optimal solution 𝑥∗ of problem (1), and
the error between the optimal value V̂(𝑘)

𝑁
by Algorithm 5 and

the optimal value V∗ of problem (1), respectively.

Example 1 (Hald-Madson [17]). Consider the unconstrained
min-max stochastic problem (1), in which 𝜔 is uniformly
distributed onΩ = [0, 1] and 𝑓

𝑖
: R2 × Ω → R(𝑖 = 1, . . . , 4)

are given by

𝑓
1
(𝑥, 𝜔) = 10 (2𝜔𝑥

2
− 3𝜔2𝑥2

1
) ,

𝑓
2
(𝑥, 𝜔) = −𝑓

1
(𝑥, 𝜔) ,

𝑓
3
(𝑥, 𝜔) = 4𝜔3 − 2𝜔𝑥

1
,

𝑓
4
(𝑥, 𝜔) = −𝑓

3
(𝑥, 𝜔) .

(29)

This problem has the optimal solution 𝑥∗ = (1, 1)𝑇 and the
optimal value V∗ = 0. The numerical results for this example
obtained by Algorithm 5 are shown in Table 1.

Example 2 (Beale [18]). Consider the unconstrained min-
max stochastic problem (1), in which 𝜔 is uniformly dis-
tributed onΩ = [0, 1] and 𝑓

𝑖
: R3 ×Ω → R(𝑖 = 1, . . . , 5) are

given by



6 Journal of Applied Mathematics

Table 2: The numerical results for Example 2.

𝑁 1/𝑡 Iter. ‖𝑥∗ − 𝑥(𝑘)
𝑁
‖ ‖V̂(𝑘)

𝑁
− V∗‖

102 5 2 4.503171𝑒 − 001 1.050617𝑒 − 001

103 5 2 1.604489𝑒 − 001 1.028518𝑒 − 001

104 5 2 4.014238𝑒 − 002 1.801205𝑒 − 002

105 5 2 6.732682𝑒 − 003 4.511915𝑒 − 003

106 5 4 4.870377𝑒 − 003 1.690755𝑒 − 003

107 5 4 3.176635𝑒 − 004 1.530397𝑒 − 004

𝑓
1
(𝑥, 𝜔) = 4𝜔𝑥2

1
+ 2𝑥2
2
+ 𝑥2
3
+ 6𝜔2𝑥

1
𝑥
2

+ 2𝑥
1
𝑥
3
− 8𝑥
1
− 18𝜔2𝑥

2
− 8𝜔𝑥

3
+ 9,

𝑓
2
(𝑥, 𝜔) = 𝑓

1
(𝑥, 𝜔) + 10 (𝑥

1
+ 3𝜔2𝑥

2
+ 2𝑥
3
− 6𝜔) ,

𝑓
3
(𝑥, 𝜔) = 𝑓

1
(𝑥, 𝜔) − 10𝑥

1
,

𝑓
4
(𝑥, 𝜔) = 𝑓

1
(𝑥, 𝜔) − 30𝜔2𝑥

2
,

𝑓
5
(𝑥, 𝜔) = 𝑓

1
(𝑥, 𝜔) − 20𝜔𝑥

3
.

(30)

This problem has the optimal solution 𝑥∗ = (4/3, 7/9, 4/9)𝑇

and the optimal value V∗ = 1/9.The numerical results for this
example obtained by Algorithm 5 are shown in Table 2.

Example 3 (Rosen Suzuki [18]). Consider the unconstrained
min-max stochastic problem (1), in which 𝜔 is uniformly
distributed onΩ = [0, 1] and 𝑓

𝑖
: R4 × Ω → R(𝑖 = 1, . . . , 4)

are given by

𝑓
1
(𝑥, 𝜔) = 3𝜔2𝑥2

1
+ 𝑥2
2
+ 6𝜔2𝑥2

3

+ 2𝜔𝑥2
4
− 5𝑥
1
− 20𝜔3𝑥

2
− 23𝑥

3
+ 7𝑥
4
,

𝑓
2
(𝑥, 𝜔) = 11𝑥2

1
+ 22𝜔𝑥2

2
+ 12𝑥2

3

+ 44𝜔3𝑥2
4
+ 5𝑥
1
− 15𝑥

2
− 11𝑥

3
− 3𝑥
4
− 160𝜔,

𝑓
3
(𝑥, 𝜔) = 11𝑥2

1
+ 21𝑥2

2
+ 36𝜔2𝑥2

3
+ 21𝑥2

4

− 15𝑥
1
− 10𝜔𝑥

2
− 21𝑥

3
− 9𝜔2𝑥

4
− 100,

𝑓
4
(𝑥, 𝜔) = 11𝑥2

1
+ 11𝑥2

2
+ 12𝑥2

3
+ 3𝜔2𝑥2

4

+ 15𝑥
1
− 15𝑥

2
− 21𝑥

3
− 3𝑥
4
− 150𝜔2.

(31)

This problem has the optimal solution 𝑥∗ = (0, 1, 2, −1)𝑇 and
the optimal value V∗ = −44. The numerical results for this
example obtained by Algorithm 5 are shown in Table 3.

Example 4 (Wong 1 [17]). Consider the unconstrained min-
max stochastic problem (1), in which 𝜔 is uniformly dis-
tributed onΩ = [0, 1] and 𝑓

𝑖
: R7 ×Ω → R(𝑖 = 1, . . . , 5) are

given by

Table 3: The numerical results for Example 3.

𝑁 1/𝑡 Iter. ‖𝑥∗ − 𝑥(𝑘)
𝑁
‖ ‖V̂(𝑘)

𝑁
− V∗‖

102 11 4 8.816640𝑒 − 002 2.888003𝑒 − 001

103 11 4 2.816097𝑒 − 002 1.355825𝑒 − 001

104 11 4 2.859081𝑒 − 003 1.536729𝑒 − 003

105 11 3 4.731965𝑒 − 003 1.960690𝑒 − 003

106 11 4 4.279962𝑒 − 004 8.171314𝑒 − 004

107 11 4 2.830422𝑒 − 004 1.131960𝑒 − 004

Table 4: The numerical results for Example 4.

𝑁 1/𝑡 Iter. ‖𝑥∗ − 𝑥(𝑘)
𝑁
‖ ‖V̂(𝑘)

𝑁
− V∗‖

102 3.63 2 8.258801𝑒 − 002 3.835420𝑒 + 000

103 3.63 2 5.495890𝑒 − 002 2.518867𝑒 + 000

104 3.63 2 3.114568𝑒 − 002 1.552539𝑒 + 000

105 3.63 2 7.241573𝑒 − 003 4.854735𝑒 − 002

106 3.63 3 6.411032𝑒 − 005 6.869434𝑒 − 004

107 3.63 3 4.752318𝑒 − 005 1.734132𝑒 − 004

𝑓 (𝑥, 𝜔) = (𝑥
1
− 10)
2

+ 5(𝑥
2
− 12)
2

+ 2𝜔𝑥4
3
+ 3(𝑥
4
− 11)
2

+ 10𝑥6
5
+ 7𝑥2
6

+ 3𝜔2𝑥4
7
− 4𝑥
6
𝑥
7
− 10𝑥

6
− 8𝑥
7
.

𝑓
1
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔) ,

𝑓
2
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (−2𝑥2
1
− 9𝜔2𝑥4

2
− 𝑥
3

−4𝑥2
4
− 5𝑥
5
+ 120 + 21𝜔2) ,

𝑓
3
(𝑥, 𝜔)

= 𝑓 (𝑥, 𝜔)

− 10 (−7𝑥
1
− 6𝜔𝑥

2
− 10𝑥2

3
− 2𝜔𝑥

4
+ 𝑥
5
+ 282) ,

𝑓
4
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (−23𝑥
1
− 3𝜔2𝑥2

2
− 6𝑥2
6
+ 8𝑥
7
+ 196) ,

𝑓
5
(𝑥, 𝜔)

= 𝑓 (𝑥, 𝜔)

− 10 (−4𝑥2
1
− 2𝜔𝑥2

2
+ 3𝑥
1
𝑥
2
− 6𝜔2𝑥2

3
− 5𝑥
6
+ 11𝑥

7
) ,

(32)

This problem has the optimal solution 𝑥∗ = (2.3305, 1.9514,
−0.47754, 4.3657, −0.62449, 1.0381, 1.5942)𝑇 and the optimal
value V∗ = 680.6301. The numerical results for this example
obtained by Algorithm 5 are shown in Table 4.
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Example 5 (Wong 2 [18]). Consider the unconstrained min-
max stochastic problem (1), in which 𝜔 is uniformly dis-
tributed on Ω = [0, 1] and 𝑓

𝑖
: R10 × Ω → R(𝑖 = 1, . . . , 9)

are given by

𝑓 (𝑥, 𝜔) = 𝑥2
1
+ 2𝜔𝑥2

2
+ 𝑥
1
𝑥
2

− 14𝑥
1
− 48𝜔2𝑥

2
+ (𝑥
3
− 10)
2

+ 4(𝑥
4
− 5)
2

+ (𝑥
5
− 3)
2

+ 4𝜔(𝑥
6
− 1)
2

+ 5𝑥2
7

+ 7(𝑥
8
− 11)
2

+ 2(𝑥
9
− 10)
2

+ (𝑥
10
− 7)
2

+ 45,

𝑓
1
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔) ,

𝑓
2
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔) − 10 (−6𝜔(𝑥

1
− 2)
2

−4(𝑥
2
− 3)
2

− 2𝑥2
3
+ 7𝑥
4
+ 120) ,

𝑓
3
(𝑥, 𝜔)

= 𝑓 (𝑥, 𝜔)

− 10 (−15𝜔2𝑥2
1
− 8𝑥
2
− (𝑥
3
− 6)
2

+ 4𝜔𝑥
4
+ 40) ,

𝑓
4
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (−2𝜔3(𝑥
1
− 8)
2

−2(𝑥
2
− 2)
2

− 3𝑥2
5
+ 2𝜔𝑥

6
+ 30) ,

𝑓
5
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (−𝑥2
1
− 2(𝑥
2
− 2)
2

+ 2𝑥
1
𝑥
2
− 14𝑥

5
+ 6𝑥
6
) ,

𝑓
6
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (−4𝑥
1
− 10𝜔𝑥

2
+ 3𝑥
7
− 9𝑥
8
+ 105) ,

𝑓
7
(𝑥, 𝜔)

= 𝑓 (𝑥, 𝜔) − 10 (−10𝑥
1
+ 8𝑥
2
+ 17𝑥

7
− 6𝜔2𝑥

8
) ,

𝑓
8
(𝑥, 𝜔) = 𝑓 (𝑥, 𝜔)

− 10 (3𝑥
1
− 12𝜔𝑥

2
− 12(𝑥

9
− 8)
2

+ 7𝑥
10
) ,

𝑓
9
(𝑥, 𝜔)

= 𝑓 (𝑥, 𝜔) − 10 (8𝑥
1
− 2𝑥
2
− 5𝑥
9
+ 2𝑥
10
+ 24𝜔) .

(33)

This problem has the optimal solution

𝑥∗ = (2.171996, 2.363683,

8.773926, 5.095985, 0.990655, 1.430574,

Table 5: The numerical results for Example 5.

𝑁 1/𝑡 Iter. ‖𝑥∗ − 𝑥(𝑘)
𝑁
‖ ‖V̂(𝑘)

𝑁
− V∗‖

102 1.26 5 2.210460𝑒 − 001 3.206412𝑒 + 000

103 1.26 5 1.040470𝑒 − 002 1.698143𝑒 − 001

104 1.26 6 3.016663𝑒 − 003 2.977730𝑒 − 002

105 1.26 6 2.854231𝑒 − 003 2.331369𝑒 − 002

106 1.26 6 6.241527𝑒 − 004 5.987215𝑒 − 003

107 1.26 6 1.796381𝑒 − 004 1.225449𝑒 − 003

1.321644, 9.828726,

8.280092, 8.375927)𝑇

(34)

and the optimal value V∗ = 24.306209. The numerical
results for this example obtained by Algorithm 5 are shown
in Table 5.

From the above numerical results, the following remarks
are proposed.

Remark 10. The preliminary numerical results show that
Algorithm 5 is feasible and promising.

Remark 11. Compared with the numerical results for the
same test example with the different sample size 𝑁, the
above numerical results show that, with the sample size
being chosen larger, the precision of the optimal solution
and the optimal value by Algorithm 5 become higher, which
coincides with the theoretical analysis in Section 3.

5. Conclusions

This paper investigates a nonlinear Lagrange algorithm for
solving stochastic minimax problems based on the sample
average approximation method. And the convergence the-
ory of the proposed algorithm is established under some
assumptions. Furthermore, the preliminary numerical results
are reported to demonstrate the feasibility and effectiveness of
the algorithm.The future works on improving the numerical
experiments to obtain the solutions with higher precision
and performing the numerical experiments for large-scale
test examples deserve our further attention. And applying
this proposed algorithm to some practical problems is also
interesting.
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