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We mainly study fixed point theorem for multivalued mappings with 𝛿-distance using Wardowski’s technique on complete metric
space. Let (𝑋, 𝑑) be a metric space and let 𝐵(𝑋) be a family of all nonempty bounded subsets of 𝑋. Define 𝛿 : 𝐵(𝑋) × 𝐵(𝑋) → R

by 𝛿(𝐴, 𝐵) = sup {𝑑(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} . Considering 𝛿-distance, it is proved that if (𝑋, 𝑑) is a complete metric space and 𝑇 : 𝑋 →

𝐵(𝑋) is a multivalued certain contraction, then 𝑇 has a fixed point.

1. Introduction

Fixed point theory concern itself with a very basicmathemat-
ical setting. It is also well known that one of the fundamental
and most useful results in fixed point theory is Banach
fixed point theorem. This result has been extended in many
directions for single and multivalued cases on a metric space
𝑋 (see [1–9]). Fixed point theory for multivalued mappings
is studied by both Pompeiu-Hausdorff metric 𝐻 [10, 11],
which is defined on 𝐶𝐵(𝑋) (the family of all nonempty,
closed, and bounded subsets of 𝑋), and 𝛿-distance, which is
defined on 𝐵(𝑋) (the family of all nonempty and bounded
subsets of 𝑋). Using Pompeiu-Hausdorff metric, Nadler [12]
introduced the concept of multivalued contraction mapping
and show that such mapping has a fixed point on complete
metric space. Then many authors focused on this direction
[13–18]. On the other hand, Fisher [19] obtained different
type of multivalued fixed point theorems defining 𝛿-distance
between two bounded subsets of a metric space 𝑋. We can
find some results about this way in [20–23].

In this paper, we give some new multivalued fixed point
results by considering the 𝛿-distance. For this we use the
recent technique, which was given by Wardowski [24]. For
the sake of completeness,we will discuss its basic lines. LetF
be the set of all functions 𝐹 : (0,∞) → R satisfying the
following conditions:

(F1) 𝐹 is strictly increasing; that is, for all 𝛼, 𝛽 ∈ (0,∞)
such that 𝛼 < 𝛽, 𝐹(𝛼) < 𝐹(𝛽).

(F2) For each sequence {𝑎
𝑛
} of positive numbers

lim
𝑛→∞

𝑎
𝑛
= 0 if and only if lim

𝑛→∞
𝐹(𝑎
𝑛
) = −∞.

(F3) There exists 𝑘 ∈ (0, 1) such that lim
𝛼→0

+𝛼
𝑘

𝐹(𝛼) = 0.

Definition 1 (see [24]). Let (𝑋, 𝑑) be a metric space and let
𝑇 : 𝑋 → 𝑋 be a mapping. Given 𝐹 ∈ F, we say that 𝑇 is
𝐹-contraction, if there exists 𝜏 > 0 such that

𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) > 0 ⇒ 𝜏 + 𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) .

(1)

Taking different functions 𝐹 ∈ F in (1), one gets a variety
of 𝐹-contractions, some of them being already known in the
literature. The following examples will certify this assertion.

Example 2 (see [24]). Let 𝐹
1
: (0,∞) → R be given by the

formulae 𝐹
1
(𝛼) = ln𝛼. It is clear that 𝐹

1
∈ F. Then each

self-mapping 𝑇 on a metric space (𝑋, 𝑑) satisfying (1) is an
𝐹
1
-contraction such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑒
−𝜏

𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋, 𝑇𝑥 ̸= 𝑇𝑦. (2)

It is clear that for 𝑥, 𝑦 ∈ 𝑋 such that 𝑇𝑥 = 𝑇𝑦

the inequality 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑒−𝜏𝑑(𝑥, 𝑦) also holds. Therefore
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𝑇 satisfies Banach contraction with 𝐿 = 𝑒
−𝜏; thus 𝑇 is a

contraction.

Example 3 (see [24]). Let 𝐹
2
: (0,∞) → R be given by the

formulae 𝐹
2
(𝛼) = 𝛼 + ln𝛼. It is clear that 𝐹

2
∈ F. Then each

self-mapping 𝑇 on a metric space (𝑋, 𝑑) satisfying (1) is an
𝐹
2
-contraction such that

𝑑 (𝑇𝑥, 𝑇𝑦)

𝑑 (𝑥, 𝑦)
𝑒
𝑑(𝑇𝑥,𝑇𝑦)−𝑑(𝑥,𝑦)

≤ 𝑒
−𝜏

, ∀𝑥, 𝑦 ∈ 𝑋, 𝑇𝑥 ̸= 𝑇𝑦.

(3)

We can find some different examples for the function 𝐹
belonging to F in [24]. In addition, Wardowski concluded
that every 𝐹-contraction 𝑇 is a contractive mapping, that is,

𝑑 (𝑇𝑥, 𝑇𝑦) < 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋, 𝑇𝑥 ̸= 𝑇𝑦. (4)

Thus, every 𝐹-contraction is a continuous mapping.
Also, Wardowski concluded that if 𝐹

1
, 𝐹
2
∈ F with

𝐹
1
(𝛼) ≤ 𝐹

2
(𝛼) for all 𝛼 > 0 and 𝐺 = 𝐹

2
−𝐹
1
is nondecreasing,

then every 𝐹
1
-contraction 𝑇 is an 𝐹

2
-contraction.

He noted that, for the mappings 𝐹
1
(𝛼) = ln𝛼 and 𝐹

2
(𝛼) =

𝛼 + ln𝛼, 𝐹
1
< 𝐹
2
and a mapping 𝐹

2
− 𝐹
1
is strictly increasing.

Hence, it was obtained that every Banach contraction satisfies
the contractive condition (3). On the other side, [24, Example
2.5] shows that the mapping 𝑇 is not an 𝐹

1
-contraction

(Banach contraction) but still is an 𝐹
2
-contraction. Thus,

the following theorem, which was given by Wardowski, is a
proper generalization of Banach Contraction Principle.

Theorem 4 (see [24]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑇 : 𝑋 → 𝑋 be an 𝐹-contraction. Then 𝑇 has a unique
fixed point in 𝑋.

Following Wardowski, Mınak et al. [25] introduced the
concept of Ćirić type generalized 𝐹-contraction. Let (𝑋, 𝑑) be
a metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping. Given
𝐹 ∈ F, we say that𝑇 is a Ćirić type generalized𝐹-contraction
if there exists 𝜏 > 0 such that

𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) > 0 ⇒ 𝜏 + 𝐹 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝐹 (𝑚 (𝑥, 𝑦)) ,

(5)

where

𝑚(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]} .

(6)

Then the following theorem was given.

Theorem 5. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :
𝑋 → 𝑋 be a Ćirić type generalized 𝐹-contraction. If 𝑇 or 𝐹 is
continuous, then 𝑇 has a unique fixed point in𝑋.

Considering the Pompeiu-Hausdorff metric 𝐻, both
Theorems 4 and 5 were extended to multivalued cases in [26]

and [27], respectively (see also [28, 29]). In this work, we give
a fixed point result for multivalued mappings using the 𝛿-
distance. First recall some definitions and notationswhich are
used in this paper.

Let (𝑋, 𝑑) be a metric space. For 𝐴, 𝐵 ∈ 𝐵(𝑋) we define

𝛿 (𝐴, 𝐵) = sup {𝑑 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

𝐷 (𝑎, 𝐵) = inf {𝑑 (𝑎, 𝑏) : 𝑏 ∈ 𝐵} .
(7)

If 𝐴 = {𝑎} we write 𝛿(𝐴, 𝐵) = 𝛿(𝑎, 𝐵) and also if 𝐵 = {𝑏}, then
𝛿(𝑎, 𝐵) = 𝑑(𝑎, 𝑏). It is easy to prove that for 𝐴, 𝐵, 𝐶 ∈ 𝐵(𝑋)

𝛿 (𝐴, 𝐵) = 𝛿 (𝐵, 𝐴) ≥ 0,

𝛿 (𝐴, 𝐵) ≤ 𝛿 (𝐴, 𝐶) + 𝛿 (𝐶, 𝐵) ,

𝛿 (𝐴, 𝐴) = sup {𝑑 (𝑎, 𝑏) : 𝑎, 𝑏 ∈ 𝐴} = diam𝐴,

𝛿 (𝐴, 𝐵) = 0, implies that𝐴 = 𝐵 = {𝑎} .

(8)

If {𝐴
𝑛
} is a sequence in 𝐵(𝑋), we say that {𝐴

𝑛
} converges to

𝐴 ⊆ 𝑋 and write 𝐴
𝑛
→ 𝐴 if and only if

(i) 𝑎 ∈ 𝐴 implies that 𝑎
𝑛
→ 𝑎 for some sequence {𝑎

𝑛
}

with 𝑎
𝑛
∈ 𝐴
𝑛
for 𝑛 ∈ N,

(ii) for any 𝜀 > 0, ∃𝑚 ∈ N such that 𝐴
𝑛
⊆ 𝐴
𝜀
for 𝑛 > 𝑚,

where

𝐴
𝜀
= {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝑎) < 𝜀 for some 𝑎 ∈ 𝐴} . (9)

Lemma 6 (see [20]). Suppose {𝐴
𝑛
} and {𝐵

𝑛
} are sequences in

𝐵(𝑋) and (𝑋, 𝑑) is a completemetric space. If𝐴
𝑛
→ 𝐴 ∈ 𝐵(𝑋)

and 𝐵
𝑛
→ 𝐵 ∈ 𝐵(𝑋) then 𝛿(𝐴

𝑛
, 𝐵
𝑛
) → 𝛿(𝐴, 𝐵).

Lemma 7 (see [20]). If {𝐴
𝑛
} is a sequence of nonempty

bounded subsets in the complete metric space (𝑋, 𝑑) and if
𝛿(𝐴
𝑛
, 𝑦) → 0 for some 𝑦 ∈ 𝑋, then 𝐴

𝑛
→ {𝑦}.

2. Main Result

In this section, we prove a fixed point theorem for mul-
tivalued mappings with 𝛿-distance and give an illustrative
example.

Definition 8. Let (𝑋, 𝑑) be a metric space and let 𝑇 : 𝑋 →

𝐵(𝑋) be a mapping. Then 𝑇 is said to be a generalized
multivalued 𝐹-contraction if 𝐹 ∈ F and there exists 𝜏 > 0
such that

𝜏 + 𝐹 (𝛿 (𝑇𝑥, 𝑇𝑦)) ≤ 𝐹 (𝑀(𝑥, 𝑦)) , (10)

for all 𝑥, 𝑦 ∈ 𝑋 with min{𝛿(𝑇𝑥, 𝑇𝑦), 𝑑(𝑥, 𝑦)} > 0, where

𝑀(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝐷 (𝑥, 𝑇𝑥) , 𝐷 (𝑦, 𝑇𝑦) ,

1

2
[𝐷 (𝑥, 𝑇𝑦) + 𝐷 (𝑦, 𝑇𝑥)]} .

(11)

Theorem 9. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :
𝑋 → 𝐵(𝑋) be a multivalued 𝐹-contraction. If 𝐹 is continuous
and 𝑇𝑥 is closed for all 𝑥 ∈ 𝑋, then 𝑇 has a fixed point in𝑋.



Abstract and Applied Analysis 3

Proof. Let 𝑥
0
∈ 𝑋 be an arbitrary point and define a sequence

{𝑥
𝑛
} in𝑋 as 𝑥

𝑛+1
∈ 𝑇𝑥
𝑛
for all 𝑛 ≥ 0. If there exists 𝑛

0
∈ N∪{0}

for which 𝑥
𝑛
0

= 𝑥
𝑛
0
+1
, then 𝑥

𝑛
0

is a fixed point of 𝑇 and so the
proof is completed. Thus, suppose that, for every 𝑛 ∈ N ∪ {0},
𝑥
𝑛
̸= 𝑥
𝑛+1

. So 𝑑(𝑥
𝑛
, 𝑥
𝑛+1
) > 0 and 𝛿(𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) > 0 for all

𝑛 ∈ N. Then, we have from (10)

𝜏 + 𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
))

≤ 𝜏 + 𝐹 (𝛿 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
))

≤ 𝐹 (𝑀 (𝑥
𝑛−1
, 𝑥
𝑛
))

= 𝐹(max{
𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝐷 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1
) , 𝐷 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

1

2
[𝐷 (𝑥

𝑛−1
, 𝑇𝑥
𝑛
) + 𝐷 (𝑥

𝑛
, 𝑇𝑥
𝑛−1
)]

})

≤ 𝐹 (max {𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
)})

= 𝐹 (𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)) ,

(12)

and so

𝐹 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)) ≤ 𝐹 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) − 𝜏

≤ 𝐹 (𝑑 (𝑥
𝑛−2
, 𝑥
𝑛−1
)) − 2𝜏

...

≤ 𝐹 (𝑑 (𝑥
0
, 𝑥
1
)) − 𝑛𝜏.

(13)

Denote 𝑎
𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
), for 𝑛 = 0, 1, 2, . . .. Then, 𝑎

𝑛
> 0

for all 𝑛 and, using (10), the following holds:

𝐹 (𝑎
𝑛
) ≤ 𝐹 (𝑎

𝑛−1
) − 𝜏 ≤ 𝐹 (𝑎

𝑛−2
) − 2𝜏 ≤ ⋅ ⋅ ⋅ ≤ 𝐹 (𝑎

0
) − 𝑛𝜏.

(14)

From (14), we get lim
𝑛→∞

𝐹(𝑎
𝑛
) = −∞. Thus, from (F2), we

have

lim
𝑛→∞

𝑎
𝑛
= 0. (15)

From (F3) there exists 𝑘 ∈ (0, 1) such that

lim
𝑛→∞

𝑎
𝑘

𝑛
𝐹 (𝑎
𝑛
) = 0. (16)

By (14), the following holds for all 𝑛 ∈ N:

𝑎
𝑘

𝑛
𝐹 (𝑎
𝑛
) − 𝑎
𝑘

𝑛
𝐹 (𝑎
0
) ≤ −𝑎

𝑘

𝑛
𝑛𝜏 ≤ 0. (17)

Letting 𝑛 → ∞ in (17), we obtain that

lim
𝑛→∞

𝑛𝑎
𝑘

𝑛
= 0. (18)

From (18), there exits 𝑛
1
∈ N such that 𝑛𝑎𝑘

𝑛
≤ 1 for all 𝑛 ≥ 𝑛

1
.

So we have

𝑎
𝑛
≤
1

𝑛1/𝑘
, (19)

for all 𝑛 ≥ 𝑛
1
. In order to show that {𝑥

𝑛
} is a Cauchy sequence

consider𝑚, 𝑛 ∈ N such that𝑚 > 𝑛 ≥ 𝑛
1
. Using the triangular

inequality for the metric and from (19), we have

𝑑 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛+1
, 𝑥
𝑛+2
) + ⋅ ⋅ ⋅ + 𝑑 (𝑥

𝑚−1
, 𝑥
𝑚
)

= 𝑎
𝑛
+ 𝑎
𝑛+1
+ ⋅ ⋅ ⋅ + 𝑎

𝑚−1

=

𝑚−1

∑

𝑖=𝑛

𝑎
𝑖

≤

∞

∑

𝑖=𝑛

𝑎
𝑖

≤

∞

∑

𝑖=𝑛

1

𝑖1/𝑘
.

(20)

By the convergence of the series ∑∞
𝑖=1
(1/𝑖
1/𝑘

), we get
𝑑(𝑥
𝑛
, 𝑥
𝑚
) → 0 as 𝑛 → ∞.This yields that {𝑥

𝑛
} is a Cauchy

sequence in (𝑋, 𝑑). Since (𝑋, 𝑑) is a complete metric space,
the sequence {𝑥

𝑛
} converges to some point 𝑧 ∈ 𝑋; that is,

lim
𝑛→∞

𝑥
𝑛
= 𝑧. Now, suppose 𝐹 is continuous. In this case,

we claim that 𝑧 ∈ 𝑇𝑧. Assume the contrary; that is, 𝑧 ∉ 𝑇𝑧.
In this case, there exist an 𝑛

0
∈ N and a subsequence {𝑥

𝑛
𝑘

} of
{𝑥
𝑛
} such that 𝐷(𝑥

𝑛
𝑘
+1
, 𝑇𝑧) > 0 for all 𝑛

𝑘
≥ 𝑛
0
. (Otherwise,

there exists 𝑛
1
∈ N such that 𝑥

𝑛
∈ 𝑇𝑧 for all 𝑛 ≥ 𝑛

1
, which

implies that 𝑧 ∈ 𝑇𝑧. This is a contradiction, since 𝑧 ∉ 𝑇𝑧.)
Since𝐷(𝑥

𝑛
𝑘
+1
, 𝑇𝑧) > 0 for all 𝑛

𝑘
≥ 𝑛
0
, then we have

𝜏 + 𝐹 (𝐷 (𝑥
𝑛
𝑘
+1
, 𝑇𝑧))

≤ 𝜏 + 𝐹 (𝛿 (𝑇𝑥
𝑛
𝑘

, 𝑇𝑧))

≤ 𝐹 (𝑀(𝑥
𝑛
𝑘

, 𝑧))

≤ 𝐹(max {𝑑 (𝑥
𝑛
𝑘

, 𝑧) , 𝑑 (𝑥
𝑛
𝑘

, 𝑥
𝑛
𝑘
+1
) , 𝐷 (𝑧, 𝑇𝑧) ,

1

2
[𝐷 (𝑥

𝑛
𝑘

, 𝑇𝑧) + 𝑑 (𝑧, 𝑥
𝑛
𝑘
+1
)]}) .

(21)

Taking the limit 𝑘 → ∞ and using the continuity of 𝐹, we
have 𝜏+𝐹(𝐷(𝑧, 𝑇𝑧)) ≤ 𝐹(𝐷(𝑧, 𝑇𝑧)), which is a contradiction.
Thus, we get 𝑧 ∈ 𝑇𝑧 = 𝑇𝑧. This completes the proof.

Example 10. Let 𝑋 = {0, 1, 2, 3, . . .} and 𝑑(𝑥, 𝑦) = { 0; 𝑥=𝑦
𝑥+𝑦; 𝑥 ̸=𝑦

.
Then (𝑋, 𝑑) is a completemetric space.Define𝑇 : 𝑋 → 𝐵(𝑋)

by

𝑇𝑥 = {
{0} ; 𝑥 = 0

{0, 1, 2, 3, . . . , 𝑥 − 1} ; 𝑥 ̸= 0.
(22)

We claim that 𝑇 is multivalued 𝐹-contraction with respect to
𝐹(𝛼) = 𝛼 + ln𝛼 and 𝜏 = 1. Because of the min{𝛿(𝑇𝑥, 𝑇𝑦),
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𝑑(𝑥, 𝑦)} > 0, we can consider the following cases while 𝑥 ̸= 𝑦

and {𝑥, 𝑦} ∩ {0, 1} is empty or singleton.

Case 1. For 𝑦 = 0 and 𝑥 > 1, we have

𝛿 (𝑇𝑥, 𝑇𝑦)

𝑀 (𝑥, 𝑦)
𝑒
𝛿(𝑇𝑥,𝑇𝑦)−𝑀(𝑥,𝑦)

=
𝑥 − 1

𝑥
𝑒
𝑥−1−𝑥

=
𝑥 − 1

𝑥
𝑒
−1

< 𝑒
−1

.

(23)

Case 2. For 𝑦 = 1 and 𝑥 > 1, we have

𝛿 (𝑇𝑥, 𝑇𝑦)

𝑀 (𝑥, 𝑦)
𝑒
𝛿(𝑇𝑥,𝑇𝑦)−𝑀(𝑥,𝑦)

=
𝑥 − 1

𝑥
𝑒
𝑥−1−𝑥

=
𝑥 − 1

𝑥
𝑒
−1

< 𝑒
−1

.

(24)

Case 3. For 𝑥 > 𝑦 > 1, we have

𝛿 (𝑇𝑥, 𝑇𝑦)

𝑀 (𝑥, 𝑦)
𝑒
𝛿(𝑇𝑥,𝑇𝑦)−𝑀(𝑥,𝑦)

=
𝑥 + 𝑦 − 2

𝑥 + 𝑦
𝑒
𝑥+𝑦−2−𝑥−𝑦

=
𝑥 + 𝑦 − 2

𝑥 + 𝑦
𝑒
−2

< 𝑒
−1

.

(25)

This shows that 𝑇 is multivalued 𝐹-contraction; therefore, all
conditions of theorem are satisfied and so 𝑇 has a fixed point
in𝑋.

On the other hand, for 𝑦 = 0 and 𝑥 ̸= 0, since 𝛿(𝑇𝑥, 𝑇𝑦) =
𝑥 − 1 and 𝑑(𝑥, 𝑦) = 𝑥, we get

lim
𝑛→∞

𝛿 (𝑇𝑥, 𝑇𝑦)

𝑀 (𝑥, 𝑦)
= lim
𝑛→∞

𝑥 − 1

𝑥
= 1; (26)

then 𝑇 does not satisfy

𝛿 (𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑀(𝑥, 𝑦) , (27)

for 𝜆 ∈ [0, 1).
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