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A class of shunting inhibitory cellular neural networks of neutral type with time-varying delays in the leakage term on time scales
is proposed. Based on the exponential dichotomy of linear dynamic equations on time scales, fixed point theorems, and calculus
on time scales we obtain some sufficient conditions for the existence and global exponential stability of periodic solutions for that
class of neural networks. The results of this paper are completely new and complementary to the previously known results even if
the time scale T = R or Z. Moreover, we present illustrative numerical examples to show the feasibility of our results.

1. Introduction

As we know, shunting inhibitory cellular neural networks
(SCINNSs) have been applied in a wide range of practical fields
such as psychophysics, speech, perception, robotics, adaptive
pattern recognition, and image processing. Hence, they have
been the object of intensive analysis by numerous authors
in recent years. In particular, there have been extensive
results on the problem of the existence and stability of
periodic solutions and almost periodic solutions for SCINNs
in the literature. For example, in [1-3], authors consider
the existence and stability of almost periodic solutions for
SCINNS; in [4, 5], authors consider the existence and sta-
bility of periodic solutions for SCINNS; in [5], authors by
using the continuation theorem of coincidence degree theory
and constructing suitable Lyapunov functions consider the
periodic solution for SCINNs; in [6, 7], authors obtained
some sufficient conditions for the existence and stability of
an equilibrium point.

Recently, another type of time delays, namely, neutral type
time delays, which always appears in the study of automatic
control, population dynamics, and vibrating masses attached

to an elastic bar, and so forth, has recently drawn much
research attention. There are some results on the stability and
the existence of periodic solutions to delayed neural networks
of neutral type, for example in [8-13], by using the Lyapunov
functions and the linear matrix inequality approach, authors
studied the asymptotic stability or exponential stability of the
equilibrium point for delayed neural networks of neutral type
and in [14, 15], by using the theory of abstract continuation
theorem of k-set contractive operator, authors studied the
existence of periodic solutions for delayed cellular neural
networks of neutral type and Hopfield neural networks
with neutral delays, respectively. In a recent paper [16],
authors studied the existence and exponential stability for
the following SICNN with continuously distributed delays of
neutral type:
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1

where C;; is the cell at the (i, j) position of the lattice, the r
neighborhood N, (i, j) of C;; is defined as follows:

N, (i) = {Cu s max {lk il - jf} <,
(2)

1<k<m,1<l<n},

where x;; represents the state of the cell C;j, the coeflicient
a;;(t) > 0 means the passive decay rate of the passive decay

rate of the cell activity, and ijl (t) and Df.‘jl(t) describe the
connection or coupling strength of postsynaptic activity of
the cell Cy; transmitted to the cell C;;.

Very recently, a leakage delay, which is the time delay
in the leakage term of the systems and a considerable factor
affecting dynamics for the worse in the systems, is being put
to use in the problem of stability for neural networks [17, 18].
However, so far, very little attention has been paid to neural
networks with time delay in the leakage (or “forgetting”) term
[19-25]. Such time delays in the leakage term are difficult to
handle but have great impact on the dynamical behavior of
neural networks.

Also, it is well known that both continuous time and
discrete time neural networks have equal importance in
various applications. Moreover, the theory of calculus on time
scales was initiated by Stefan Hilger [26] in his Ph.D. thesis
in order to unify continuous and discrete analysis, and it
has a tremendous potential for applications and has recently
received much attention since his foundational work. For
instance, in [27], the authors studied antiperiodic solutions to
impulsive SICNNs with distributed delays on time scales. In
[28], the authors studied almost periodic solutions of SCINNs
on time scales. However, to the best of our knowledge, there is
no paper published on the existence and stability of periodic
solutions for SCINNs of neutral type with the time delay in
the leakage term.

Motivated by the above discussions, in this paper, we are
concerned with the following SCINNSs of neutral type with
time-varying delays in the leakage term on time scale T:
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where T is a periodic time scale and T+ = T n [0, +co), G is
the cell at the (i, j) position of the lattice, the  neighborhood
N, (i, j) of Cj; is defined as follows:

N, (i, j) = {Cyq : max {lk —i| ,|I - j|} <,
(4)

l1<k<m,1<l<n},

x;; represents the state of the cell C;, the coefficient a;;(f) >
0 means the passive decay rate of the passive decay rate of
the cell activity, and Cf.‘jl(t) and Df].l(t) describe the connection
or coupling strength of postsynaptic activity of the cell Cy;
transmitted to the cell C;;.

The initial condition associated with (3) is defined as

follows:

x5 () =y (s), s € (-00,0]y, (5)
where i = 1,2,...
differentiable.

Clearly, if T = R and uij =0, then (3) reduces to (1).

Our main purpose of this paper is to study the existence
and global exponential stability of periodic solutions to (3) by
using the exponential dichotomy of linear dynamic equations
on time scales and some inequality technics. Our results of
this paper are completely new and complementary to the
previously known results even if the time scale T = R or Z.
Our methods used in this paper are different from those used
in [14, 15, 19] and can be used to study other types’ delayed
neural networks of neutral type with delays in the leakage
term.

For convenience, we denote [a,b]y = {t | t € [a,b] N T}.
And we introduce the following notations:

o1, jo= L,2,...,m, and y;(s) are A-

m .

M _ —
ay =suplay ], aj =infla; )],

M Kl ki
W = sup |‘uij (t)' , Cf.‘jl = sup 'Cij (t)| ,
teR teR (6)
kI _ Kl T =
Dy =sup|Djj ], T = sup 1 1),

i=1,2,...,n j=12,...,m.

Throughout this paper, we assume that the following
conditions hold:

(H,) C (1), DY (1), I;(t) € C(T,R),a;(t) € C(T,R"), and
w;(t) € C(T, T*) are all w-periodic functions, for u €
(0,+00)yandt € T,t—u € Tandfort € 'ﬂ',t—yij(t) €

T,i=1,2,...,n,j=12,...,m.
(H,) fj, g€ C(R, R) and there exist positive constants L, /
such that

|f; - f;0)| < Liu-l, o
7
|9j(u)—gj(v)' <Ilu-v|,

forallu,v e R, j=1,2,...,m.
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(H;) Fori = 1,2,...,n, j = 1,2,...,m, the delay kernels
Kij, Jij [0,c0) N T — R are continuous and
integrable with

©0 (o)
0< L |K; ()| as<K), o< L Jy |as <. (8)

This paper is organized as follows: in Section 2, we
introduce some notations and definitions and state some
preliminary results which are needed in later sections. In
Section 3, we establish some sufficient conditions for the
existence of periodic solutions of (3). In Section 4, we
prove that the periodic solution obtained in Section 3 is
globally exponentially stable. In Section 5, we give examples
to illustrate the feasibility of our results obtained in previous
sections.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition I (see [29]). Let T be a nonempty closed subset
(time scale) of R. The forward and backward jump operators
o,p: T — T and the graininess y : T — R are defined,
respectively, by

o(t)=inf{s € T:s>t},

p(t)=sup{seT:s<t}, u)y=o() -t
Definition 2 (see [29]). A point t € T is called left-dense if
t > inf T and p(t) = t, left-scattered if p(t) < t, right-dense if
t < sup Tand o(t) = t, and right-scattered if o(¢) > ¢. If T has
a left-scattered maximum m, then T = T \ {m}; otherwise
TF = T.If T has a right-scattered minimum 1, then TF =
T\ {m}; otherwise T* = T.

Definition 3 (see [30]). One says that a time scale T is periodic
if there exists p > 0 such thatift € T, thent + p € T. For
T+ R, the smallest positive p is called the period of the time
scale.

Throughout this paper, we restrict our discussions in
periodic time scales.

Definition 4 (see [29]). A functionr : T — R is called

regressive if
L+u@)r(t) #0, (10)

for all t € T*. The set of all regressive and rd-continuous
functions r : T — R will be denoted by # = R(T) =
R(T,R); one defines the set Z#" = Z*(T,R) = {r € %,1 +
u()r(t) > 0,Vt e T} If r is regressive function, then the
generalized exponential function e, is defined by

e, (t,s) = exp {JtEM(T) (r (1)) AT} , fors,teT, (1)

N

3
with the cylinder transformation
Log (1 +hz)
——— if h#0,
@=1" n (12)
z if h=0.
Let p,q: T — R be two regressive functions, we define
p®q:=p+q+upg op =~ 2 ,

peq:=pe(eq).

Then the generalized exponential function has the following
properties.

Lemma 5 (see [29]). Assume that p,q : T — R are two
regressive functions, then
(i) ey(t,s) = 1 and ep(t, t)=1;
(ii) e,(a(t),s) = (1 + p(t) p(£))e, (¢, s);
(iii) ep(t, s) = (1/ep(s, 1)) = eep(s, t);
(iv) e,(t,s)e,(s,r) = e,(t,1);
() ep(t, s)eq(t, s) = epeaq(t, s).

Lemma 6 (see [29]). Assume that f,g : T — R are delta
differentiable at t € T, then

(1) (0 f +v,9)" = v, f* + v,9° for any constants v, v,;
(i) (f9)2(1) = fA0)g®) + fla®)g™ () = f(Hg*(t) +
g
(iii) if f* > 0, then f is nondecreasing.

Lemma 7 (see [29]). Assume that p(t) > 0 fort > s, then
ep(t,s) > 1.

Lemma 8 (see [29]). Suppose that p € R, then

(i) ep(t, s)>0, forallt,s € T;

(ii) if p(t) < q(¢t) forallt > s, t,s € T, then e,(t,s) <
eq(t, s) forallt > s.

Definition 9 (see [29]). If a € T, supT = oo and f is rd-
continuous on [a, 00), then one defines the improper integral
by

00 b
J f®At= lim J f @At (14)

provided this limit exists, and one says that the improper
integral converges in this case. If this limit does not exist, then
one says that the improper integral diverges.

Definition 10 (see [29]). If a € T, inf T = —oo, and f is
rd-continuous on (—00,a), then one defines the improper
integral by

Ja f®at= lim J £ AL (15)

b



provided this limit exists, and we say that the improper
integral converges in this case. If this limit does not exist, then
one says that the improper integral diverges.

Lemma 11 (see [29]). Leta € T* and b € T and assume that
f:Tx TF — R is continuous at (t,t), where t € T with

t > a. Also assume that fA(t, -) is rd-continuous on [a, o(t)].
Suppose that for each € > 0, there exists a neighborhood U of
T € [a,0(t)] such that

|fe®), - fs1)- &)@ -9)
Vs e U,

16)

selo(t) -l
where f* denotes the derivative of f with respect to the first
variable. Then

(M) g(t) = [\ f(t,7)AT implies g*(t) :=
flo(®),1);

(i) h(t) = [ f(t.7)AT implies h(¢) == |1 FA(t,7)AT -
Slo(®),1).

Definition 12 (see [31]). Let X € R” and A(tf) bean x n
matrix-valued function on T, the linear system

XAt =AM X(),

is said to admit an exponential dichotomy on T if there exist
positive constants k; and «;, i = 1,2, projection P, and the
fundamental solution matrix X(¢) of (17) satistying

|X t)PX ' (o (s))| < kjeoy, (1:5),

[l fAtoar +

teT, (17)

ssteT, t>s,

|X(t) I =P)X 7' (0 (5)| < kreay, (1), steT, t<s,
(18)
where | - | is a matrix norm on T; that is, if A = (a; then

lj)nxm’
we can take |A] = (Y. ijl la;] Hz,

Lemma13 (see [31]). If (17) admits an exponential dichotomy,
then the following w- perzodzc system:

LB =ANxE)+g(@),

has an w-periodic solution as follows:

teT, (19)

x(t) = r X(B)PX " (0(5)) g (s) As
- (20)

+00
[ xou-Px e@geas
t
where X (t) is the fundamental solution matrix of (17).

Lemma 14 (see [31]). If A(t) is a uniformly bounded rd-
continuous n x n matrix-valued function on T and there is a
0 > 0 such that

2
ii (1) i ()] = Sup () ij (1)
1= ool - 2o (Sloel)

—8%u(t) > 28,

then (17) admits an exponential dichotomy on T.

teT,i=12,...,n,
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Lemma 15 (see [29]). If p € R and a,b,c € T, then
A o
e, ()] =-ple, ()]
b (22)
J pB)e,(c,o(t) At =e,(c,a) e, (c, b).

3. Existence of Periodic Solutions

In this section, we will state and prove the sufficient condi-
tions for the existence of periodic solutions of (3).

Set X = {9 = {q),»j} | pij € CNT, R), @ is an w-
periodic function on T,i = 1,2,...,n,j = 1,2,...,m}
with the norm || = max{|ply, 9]}, where |pl, =

A A
maxi,jmaxte[o,wh|§0ij(t)|) lo™ly = ma-xi,jmaxte[o,w]T|(Pij(t)|’
CY(T,R) is the set of continuous functions with contin-
uous A-derivatives on T; then X is a Banach space. Let

t .
¢°(t) = {gy (O}, where g3(t) = [ e, (£,0(s))L;(s)As, i =
1,2,...,n,j = 1,2,...,mand let A be a constant satisfying
A = max{llg’]l, max, ., | f;(0)], max, .|, ()}

Theorem 16. Let (H,)-(H,) hold. Suppose that

(H,) there exists a positive constant § such that

a; (0~ Sp (0@ 0 - 8 (0) 2 25,
@3
teT,

i=12,...,n, j=1L2,...,m

(Hs) more over

(24)

max
1<i<n
1<jsm

O

max —J
1<i<n | g™’
1<j<m ]
_J

m

]

wherei=1,2,...,n,j=1,2,...,m,

Z cle (2AL + | £ (0)))

CyEN, (1 ])

0 _
0 az] Mz]

+ ) D_fFJ.’]l.Oj(ZAl+|g(0)|),
CueN, (i)
. (25)
D cjfle?j(4AL+|f(0)|)
CeN, (i.f)

9 _al] Mz]
+ ) DEJ;(4Al+]g(0)]).
CueN, (i-f)

Then (3) has a unique periodic solution in X, = {p € X |
lp - "Il < A},
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Proof. Rewrite (3) in the form

xij (£) = —ay; () x;; (1) + (1) J

xiAj (s) As
t_.uij(t)

- X G
CueN, (i)

X L K;; (u) f [ (t = w)] Aux;; (£) (26)

B Z Dkl )

Cr €N (1 ])

<[ 0 g s e - 0] w004 1,0,

wherei = 1,2,...,n, j = 1,2,...,m. The initial condition
associated with (3) is defined as follows:

= (),

where i = 1,2,...,n, j = 1,2,...,m, and y;(s) are A-
differentiable. For any given ¢ € X, we consider the following
periodic system:

Xij (s) s € (—00, 0], (27)

t

xij (8) = —ay; (£) x5 (1) + ay; (1) Lﬂ” , @;; (s) As
_ Z Ckl )
Cu€EN, (z ])
X JO f [(Pkl (t - ] Au(Pl] (t)
_ Z Dkl B (28)
CueN, (i)
% L T (W) g [l (¢ — 1) Augy; () + I,; (£)
= —a;; (1) x; (1) + Fj, (£) + I; (1),
i=1,2,...,n j=12,....,m
where
FY (6) = a; (1) j% SIS
_ Z Ckl )
CrEN, (z])
X JO K;; () f g (t = w)] Augy; (1) (29)
- 2 Djo
CueN,(if)

X Jo v Jij(w) g [‘Plél (t- ”)] Aug; (t),

i=12,...,n, j=L2,...,m

Since (H,) holds, it follows from Lemma 14 that the linear
system

_al](t)xl](t), i=1,2,...,1’l,j=1,2,...,m,

(30)

ACE

admits an exponential dichotomy on T. Thus, by Lemma 13,
we obtain that (28) has an w-periodic solution, which is
expressed as follows:

X (1) = LX, €-a; (60 () (Ff (9) 4 1;(9) s, (31)

i=12,...,n, j=12,...,m

For ¢ € X, then |l¢]l < llo — @oll + llogll < 2A. Define the

following nonlinear operator:

ol XO N XO’ ¢ = {(Pij} — x‘P = {x:’;} (32)

First we show that, for any ¢ € X, ®(¢) € X. Note that

Y cf

CueN, (i.j)

|Ff )] < @' o] +

X J0+oo |K,-j (u)| |f [P (s —w)] |Aul @ (S)'

Sy

CeN,(if)
<y @l [of (- ] aule, )

> &

CueN, (i)

<ay'uy ol +

<[ Iyl au (Lol + 17 @D ol

© Y DF| swlautlel+lg@) ol

CueN,(if)

M M
< <ai]. [/li]- +

v Y DE (o] + Ig(0)|>ll</>||

CueN, (irj)

M M
< <aij P‘ij +

+ )

CklENs(z ])

Y CHK (Lol +1f @)

CuEN, (1 ])

> cle (2AL +|f (0)])
CuEN, (1 ])

Dkl]U (2AI + |g(0)|)> 24

serfj, i=1,2,...,n

(33)
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So Gy (s o.9)

(@(p-9"), 0] =

Jt e o (1,0 () Y () As

t ki
) - Z D;; (s)

< Lo e_q, (1,0 () |Ff ()] As i

t +00
< | egtowadas 69 x “0 T ) g [ (s = )] Augs; (5)

246° 0 A

< i - J Jij(w) g [‘/’kl (s - “)] Auy; (5)] >
< —-, 0

a;

i=12,...,n, j=L12,...,m
i:1,2,...,n, j:1,2,...,m. (37)
On the other hand, we have So
|Gy (s, 0. v)|

|(<1>((p - (PO)A)U (t)|

Z Ckl s)

CEN, (z ])

A

_ ‘ ( Jt e (L0 () FL () As)

t
= FZ? (t) - a; (t) J_OO ey, (t,o(s)) Fi? (s) As

X [L Kij () f [pwa (s = w)] Augy; (s)

- L K;; () f [y (s —w)] Auy; (5)]

S|F$(t)|+|aij(t)|£ ey, (ta(S))| ?(s)| As

0 0
_ 246,24, < XY |Gol
am oogm CkleNr(’ J)
ij ij
M +00
a; X K (u s—u))— s—u
<1+_>2Aeg, e it [, Ky 1 (a5 =) = 7 (i 5= )]
a”
ij

(35) X Aug; (s)

In view of (Hs), we have

- L N K () f (Y (s —w)) Au (V/ij (s) — ¢ (5)) ‘

ZAGO aM 00
(D < 1 2A A;
[@(p-¢")] < max 1 —2, (14— < Y [
1<]<m 1 ij CkleNr(i ])
(36)
+00
that is, ©(¢) € X. Next, we show that @ is a contraction. For X {L |Kij (”)| I (@ (s —w))

oveXyi=12,...,nj=1,2,...,m,denote
u — f (i (s = w) lAul |g; (5)|
Gi(sov)== ) Ci() n
e (6) o[ Ky @] 1 (s ts =) - £ O] + 17 O
= H Ki; (W) f [r (s — )] Aug; (s)
0 x Au |1pij (s) — @3 (s)| }

i=12,...,n, j=L2,...,m, CueN, (i.5)

_ L K;; (u) f [y (s —w)] Auy; (s)] ,
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(2 [ ey @l e o - vl
[ iy @l au (LI +1F @D o -1

< Y CH(K@ar+|f )y -l

CueN, (ij)

i=12,...,n, j=L2,....m

(38)

Similarly,

|G?: (5. 9 9)|

M M
< <ai]. yij +

> B0

(4AlL+|g (0>|))> lv -l

CueN, (i)
(39)
0
|G} (5. 0.9) + G, (s, 0, p)|
<|G}; (5. . 9)| + |G} (5. 09|
< (affyff + ) cle (4AL +|f (0)])
CuEN, (1 ])
+ Y DHJ;(aal+]g (0)I)> lv -9l
CueN;,(if)
=0;llv-¢|, i=L2...n j=12,..m,
'(q)‘P - (Dq/)ij (f)|
! 1 2
= IL ey, (£,0(s)) (Gij (@) + G (s, 9, 1//)) As
t
< Jloo ey, (£,0(s)) |G11] (s, 0, 9) + Gizj (s, 9, 1//)' As
61
< Ny -9, i=12...,n, j=12,...,m,
ij
(40)

|(@p - @y); (1)

A

=i(j g, (.09 (G (t<p,w)+G§f)(f,¢>w)))t

= |G§].” (.9 9) + Gy (£.9.v) —a; ()

<[ e, o) (G (h9y)+ G (tpy) s
s 'ijl) (toy) + ijz) (t.o: 1//)' + |aij (t)|

t
X J-—oo e, (t0(s) 'GE}) (to,w)+ GEJ?) (t, ¢, 1//)| As

aM
T ol =l

(41)

By (Hj), we have

M
1 a;j
e { o (1% oty -el <lvol. @

1<j<m ij
which implies that

|Pp -y <o -yl (43)

It follows that ® is a contraction. Therefore, @ has a fixed
point in X; that is, (3) has a unique periodic solution in X,,.
This completes the proof of Theorem 16. O

4. Exponential Stability of
the Periodic Solution

In this section, we will discuss the exponential stability of the
periodic solution of (3).

Definition 17. The periodic solution x(t) = {xl-j(t)} of system
(3) with initial value y(t) = {y;;(t)} is said to be globally
exponentially stable, if there exists a positive constant A
with ed € #" and M > 1 such that every solution
y(t) = {yij(t)} of (3) with any initial value ¢(t) = {(pij(t)}
satisfies

”x -y (t)"1 < Meg, (t:t,) “‘/’" » V€ (0,+00)y, (44)



where

|x @) - y @), = max {mi?x {'xij ) = v (t)H‘ ,
max{}s5 0 -5 O]}

ol = s |

e max{lyi; () - 9 O}

N

sup max {lwﬁ (s) - ‘Pﬁ (5)'}} ,

s€(—00,0]1

i=12,...,n j=12,...,m,

to = max {(-00,0];}.
(45)

Theorem 18. Suppose that all of the conditions in Theorem 16
are satisfied; then the unique periodic solution of (3) is globally
exponentially stable.

Proof. By Theorem 16, (3) has an w-periodic solution x(t) =
{xij(t)} with initial condition y(t) = {wij(t)}, i=1,2,...,nm,
j = 1,2,...,m. Suppose that y(t) = {y,-j(t)} is an arbitrary
solution of (3), associated with the initial value ¢(t) = {(pij(t)},
i = 1,2,...,n,j = 1,2,...,m. Let z(t) = y(t) — x(t)
and ¢(t) = o@(t) — y(t). Then it follows from system (3)
that

Z,-? () +a; () z;; (2)

t

:aij(t)J z; (s) As
t—py(t)
- ¥ do

CueN, (i.7)

X [JO K;] (u) f [xkl (t - M)] Auxij (t)
(46)
- L Ky W) f [y (t —w)] Auy;; (t)]

-3 o

CueN,(if)

X [L - Jij(w) g [x,fl (t - u)] Aux;; (1)

[ e b -] auy, 0.

where zij(t) = y,-j(t) - xij(t),i =12,...,nj=12,...,m
and the initial condition of (46) is

¢ij (s) = Pij (s) - Vij (s),

s€(-00,0]y, i=1,2,...,m,
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Let §;; and T}; be defined as follows:
5, (8) = - - exp  Bsup () ) 4, (),
T (B) = “Z‘q -B
- (et exp (Bsup () ) - ) 4, (),

(48)
where
A; (B)
P +00
—alwl+ Yy CH [(AL +]£ ) L |K;; (w)| Au
CueN, (i)
+00
+AL J |Kij (u)| exp (Bu) Au]
0
w +00
+ 0y ~ Dj [(Al +]g(0)) L |J;; (w)] Au
C €N, (i,5)
+00
+Al L |],-]- (u)| exp (Bu) Au] ,
i=12,...,n, j=12,...,m.
(49)
By (Hs),fori=1,2,...,n, j=1,2,...,m, we have
m m 0
§;;(0)=a; —A;; (0) 2a; —0; >0,
T, (0) = af - (a +af) A;; (0) (50)

m M
> aij - (aij

mY\ n0
+a; ) 0;; > 0.
Since §;; and T;; are continuous on [0,+00) and
Sij(ﬁ),Tij([g’) — +ooas f — +00, there exist A;; > 0
and ¢; > 0 such that §;;(A;)) = 0and S;(f) > 0 for all
B € (0,4, T;;(s;;) = 0, and T;;(B) > 0 for all B € (0,¢;).

Take " = min, ;e 1<jemfAij» 65} then

S;(A") =0, T; (A7) 20,
(51)

i=12,...,n, j=12,...,m.

So, we can choose a positive constant 0 < A < min{A*, ai']f‘, i=

1,2,...,n, j=1,2,...,m} such that
Sij(/\)>0, T,.j(A)>0,
(52)
i=1,2,...,n, j=L2,...,m,
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which implies that

exp (Asupr (¢4 (5))) Ay (D) -1

ajf = A ’ (53)
i=12,...,n, j=12,...,m,
M
a;; exp (Asup; (s)
<1+ ;exp ( mpg(# )))A,-j(k)d,
aj =2 (54)

Let M = max,;c,, 1< j<m 1]; /A;;(0)}; by (Hs), wehave M > 1.
It is obvious that

Vt € (—00, 0]y,
(55)

1ZOl = ¢ O, < M| er (.10) »

where A € #*. In the following, we will show that

1Z@®)l, = ¢ O], < M|¢] ecp (t.15), V€ (0, +00)y.

(56)

holds for all t € (0, +00)7.
For this aim, we show that for any P > 1,

1Z B, < PM |[¢] ecy (t:15), Yt € (0,+00)p.  (57)

If (57) is not true, then there must be t; € (0, +00)y such that

|2 (8] = max {|z (£, | 2* (22)]}

= {ngaxn {|Zij (t1)| > |Z$ (tl)”
lgjgm

(58)
> PM "‘/’” €ol (tpto) >
1Z @)l < PM |[¢] ecp (t.1) »

t € (-0o,t)]y  ty € (—00,0)r.

Therefore, there must exist a constant ¢ > 1 such that

1Z (t,)] = max {|Z (£)]. | 2* ()|}

max {|Z; (£))].]23 (1)} (59)

cPM |$] ecx (t1 o)

12 @) < cPM [[¢] ear (¢ o)
(60)

t € (-oo,t; ]yt € (-00,0)r.

Multiplying both sides of (46) by e_aij(to,cr(s)) and inte-
grating over [f(,t], by Lemma 15, fori = 1,2,...,n, j =
1,2,...,m, we get

z;; (t) = ¢y; (o) e_q, (6. 10)

+ Jt: € a, (t,o (s))

X {aij (s) r ( )xiAj (u) Au — Z ijl (s)
Sl

i1 CueN, (i.f)

X “O+oo K;; (u) f x5 (s — w)] Aux;; (s)

- L Ki;(w) f (Vi (s = )] Auy;; (S)]

-3 o

CyeN,(if)

X [Jo v Jij(w) g [x,fl (s— u)] Aux;; (s)

B J'0+oo Ty () g [yl?l (s— u)] Auy;; (S)] } As.

(61)

It follows from (60), (61), and the assumptions of the theorem
that

'Zij (t1)|

<olles, (o) + | eq (610(5)

0
N
X {ai]}/l J-S_H”(s) 'zﬁ (u)| Au + Z

ki
C; i
ij CyeN, (i.§)

X

J;) Kz] (u) f ['xkl (S - I/l)] Auxij (5)

B J Kij (W) f [y (s —w)] Auy;; ()
0

+ Z Dg.l
CueN, (i)

X

L - Jij (u)g [x,él (s— u)] Aux;; (s)

- .[0 h Jij(w g [)’l?l (s u)] Auy;; (s)

fa
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tl
<] € g (tioto) + J-t €_a, (t1,0(9))
0
M § A
X {aij j 'zij (u)| Au
s—pii(s)

CueN, (i.j)
X [AL L |K,~j (u)| |11 (s = 1) = yp (s — )| Au
+(AL+|f (0)])

y J~0+oo |Kij (U)| Au |xkl (8) = yu (s)|]

+ Z Dl’Fj’
CreN,(if)

« [Al L“” 1, 60 [ (5 ) -y (s — )] A
+ (Al + g (0)])
X L+OO |]ij (u)| Au|x (s) = vy (s)|] } As
< |@lle_a, (t1rt) + cPM |§] eca (11, 0) a i’

t
o[ elglen, (b0 @) eas (tnt) e (10 )

Kl
X‘I 2 G
CueN, (i.j)

X [AL J(:OO 'Kij (u)' ey (o(s),s—u)

AL+ O [ Ky @l er (09,9 8u]

X [Al Lm |1, )| ey (0 (), s — u)

+ (Al + g (0)])
% J:OO ']ij (”)|6A (0(s),s) Au] } As
< cPM ||¢] ey (1 to)

1
X {CP_Me_”"f' (tioto) esp (tort1) + ayuéd

Journal of Applied Mathematics

tl
+ J ey (t1o(s)) ey (t5t0)
)

dza

CueN, (i.f)

X [AL Jo |K,~j (u)|
X exp (/\ (u + supy(s))) Au
seT
+ (AL +[f (0)])

x L - |K,»j (u)| exp (Ap (s)) Au]

x | Al - Jii )| exp | A u+supu(s) ) ) Au
[0l (3o

+ (Al + g (0)])

X Lm i ()] exp (A (5)) Au] } }

< cPM ||¢]| eex (1 to)

1 M M
x {Me_aij% (t1sto) + a4 Wy T EXp ()‘SS‘;PT’F (S)>

CueN, (i-5)
X [AL on |Kij (u)| exp (Au) Au
0
+ (AL +|f (0)])

X L |Kij (u)| Au]

x [Al Lm |]ij (u)| exp (Au) Au + (Al +|g (0)])

X j‘o*oo ']ij (u)| Au] }} J: e (t,0(s)) As
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< cPM ||¢] eey (1 to)

X {(i _ €xp ()Lsupse'ﬂ' (Au (5))) Al] (A) )

M ai’}‘—/\

X € g @1 (t:t)

exp (Asup ey (¢ (5))) AN
" a;]f‘ -A

< cPM ||¢| ey (t1> o) -
(62)

A direct differentiation of (61) gives

t
z$ (t) = —a;; (t) z;; (1) + a;; (t) j

E—pii(t)
Kl
- 2 Gi®
CyeN, (i.)

z$ (s) As

X |:J0 K1] (M) f ['xkl (t — u)] Auxij (t)

- J K ) f [y (t —w)] Auy;; (t)]
0

-y oo

CueN,(if)

(63)

X [L Jij () g [x,fl (t- u)] Aux;; (t)
+00 A
- L Jij () g [ykl (t- ”)] Auy;; (t)] ,
i=1,2...,n j=12,..,m
Thus, we have by (53), (54), (60), and (63)
|2 (1)
ty
< af]\.d |zij (tl)' + afj\./IJ |Z$ (s)| As
tl_ﬂij(tl)

CueN, (i.j)

y [AL Lm 1K, @0 s (61 = 1) = i (& - )] A
+ (AL + £ (0)])
[ Ky 0] i 1) - i 1)

+ Z ij’
CueN,(ir))

1

X [Al J.(:OO |]ij (u)| 'xﬁl (t, —u) -y (- u)' Au

+00

+(Al+]g(0))) L |Iij (u)' Aulxyg (1) = yu (t1)|]

£ “;‘1]\'4 'Zij (tl)' + PM 9] ey (t1: %)
X {as/fyy + Z Cffjl
CueN, (i.j)

+00
X [AL X J |Kij (u)| ey (t,t; —u)Au
0

+00

+(AL+|f(0)]) L |K1‘j (u)| ex(tisty) A“]

kL
+ Z Dij
CueN,(i.f)

X [Al .[0 |]ij (u)' ey (t,t; —u)Au

+(Al+|g(0)|)J0 |J,-j<u)lek(t1,t1)Au]}

< ‘11‘1}4 'zij (tl)' +cPM ||¢]| ecy (21, 10)
X {ai]}/[yf]\./[ + Z Cf.‘jl
CueN, (i.j)

X [AL J:OO 'Kij (u)' exp (Au) Au
+(AL+|f(0)|)J 00|1<ij (u)|Au]

+
0
+ Z Df.‘].l
CreN,(ir)

X [Al J:Oo ']ij (u)| exp (Au) Au

+00

+(Al+|g(0)]) JO |],-j (u)' Au] }

< al.lj\./f 'zij (tl)' +cPM ] esp (£1,t0) As; (A)

Sa.M

i [cPM "‘/’” e (t1,10)

1
X {Me—aijea)t (t1,to) + exp <)t sup u (5)) A;; (M)
seT

ty
x Jt € g 00 (t,0(s)) As}
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+ cPM "(/5” es) (tl’ to) Aij A)

< cPM ||¢]| ec (1 o)

af]\./f o
X177 C-a0) (tl,t0)+aij exp /\sslel%)y(s) A ()

y J;tl eiaij@)t (tl’ o (5)) As + At] ()‘)}

< cPM ||| ey (t15 o)

ay! o
X137 C-ay0h (ti>to) +a; exp /\sslg;y(s) A;; (A)

ey on(ttg) =1
ij

< cPM ¢ ec (11, 10)

xﬁ (t),ty) — a A (s) | A; (M)
Me—aijee)t 1to) — a4 €Xp Ss‘g?!" S ij

ey on(tity) = 1
a.. —
)

< cPM ||| e (t15 o)

ay! MV
X137 C-ayed (tl,t0)+aij exp /\s:;%//t(S) A; (M)

e_,enlfrty)—1
X( zJ@A’Sll 0) >+AIJ(A)}
ai - A
< cPM ||| ecy (t1: o)

X {(i _ eXp (A’ Sups€T (nu (S))) A’] (A) >

M al.’]f'—)u

x ailj\‘/le—a,-jea)t (tl’ tO)

m_
a; A

< cPM ||¢] ecy (t1, o)
(64)

In view of (62) and (64), we obtain
1Z Ol < cPM ] eap (t1:t0) (65)

which contradicts (59), and so (57) holds. Letting P — 1,
then (56) holds. Hence, the almost periodic solution of system
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(3) is globally exponentially stable. The global exponential
stability implies that the periodic solution is unique. The
proof is complete. 0

5. Some Examples

Consider the following SICNNs model:
xiAj (t) = —ay; (t) x;5 (t — Ui (t))
kil
- 2 GO

CueN, (i)

X L Kij (u) f [0 (£ = w)] Auxc;; ()

-y oo

CueN, (i)

« L Ty ) g [x5 (¢ = )] A, (0 + 1, 1),

teT,
(66)

4u

where f(x) = 2cosx, g(x) = 2lx|, Kij(u) = e, and

Jijw) = e, i, j=1,2,3.

Example 1. In system (66), let T = R; then u(t) = 0, and take

ay (1) ay (£) ay (1)
as, (1) asy (t) ass ()

|i‘111 (t) anp ) a; (t)]

4+ |sint| 5+ |sin2t] 8+ [sint|
= |6+ |cost|] 6+|sint| 7+]|cost| |,
8+ |cost| 8+ |sint| 5+ [sin 2t

61 () (1) (1)
Gy (1) (1) o5 (F)

[Cu (£) ez (t) ¢ (t)]

0.01 |sin 2| 0.01 |sin 3¢] 0.01 |sin 4¢]

0.01 |sin 2¢| 0.02 |sin 3| 0.01 |sin 4]
0.01 |sin 2t 0.01 |sin 3¢] 0.01 |sin 4¢]

dy (t) dyy (t) dys (1)

[du (t) dip(t) dys (t)]
dy (t) dsp (t) das ()

0.01 |cos2t| 0.01 |cos3t| 0.01 |cos 4t|
0.01 |cos2t| 0.01|cos3t| 0.01|cos4t|

|i111 t) I, () I (t)] [sint sint cost]

[0.01 |cos2t| 0.01|cos3t| 0.02]|cos 4t|]

L (t) Ly(t) Ly (1) sint cost cost
Ly (1) Ly(t) Iy (1) cost cost cost
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pr () pyp () g5 (8)
po1 (£) ppy () 3 (2)
a1 (8) sy (8) a5 (F)

0.02 |cos2t| 0.01]|cos3t| 0.01 |cos4t|
=10.011]|cos2t| 0.001 |cos3t| 0.01 |cos 4t|
0.01 |cos2t| 0.01]|cos3t| 0.02 |cos4t|

(67)

Letr =s=1,A=1/2,and § = 1. Obviously, L = [ = 2,
£(0) =2and g(0) =0, K?]. =1/4, ]3 =1/2,

T M M M
a a -
11 12 13 5 6 9
M M M
Ay Gy Gz | = ;;2 >
M M M L
| 431 G3p a3 |
[ oz @] g5
Lay) ay, ay| ¢
1 G G 0.02 0.02 0.01
G S, o3 | =[0.01 001 0.01 |,
& & O 0.01 0.01 0.01
di dip dis 0.01 0.01 0.02
o | |01 001 0|
ds dyy ds ' ' ’

ay () ap () a;(t)
ay (1) ay (t) ay (t)
as () a3, (£) as; (1)

ar (1) ¢ () ¢5()
01 (1) o () o (1)
G (£) (1) 5 (t)

dyy (t) dip(t) dys ()
dy (t) dy (t) dys (2)
ds (t) dyy (t) dss (2)

Ly () I, () I5(2)

0.8+ 0.1|sin3t| 0.7 + 0.1 |sin 2¢|
0.7 + 0.2 |cos t|
0.7 + 0.2 |cos |

13
Iy Iy Is 111
Ly Iy Ly|=(111}f,
51 Iy Iz 111
M M M (68)
i o s 0.02 001 001
Wt Wl Wl | =10.011 0.001 0.01
0.01 0.01 0.02
M M M
H31 M3y Has
So
0 A0 Ao
O 01, 615 0.2 021 0.19
69, 65, 6% | =10217 0217 0.22],
0.17 0.21 0.2
0 0 Ao
031 032 933 (69)
0,, 6y, 0y 027 032 0.265
6,, 6,, 6, | =|0317 0372 0325
05, 05, 0Oy 023 03 026
It is easy to check that
60 aM 1
e max {—;(1 + ’—jn>e?j} <,
<i<n a.. a.. 2
I<jsm LY ki
. 70)
Q.. a.
max {—Z,<l+ 1—i1>9ij]> < 1.
1<i<n a.. ..
1<j<m Uil ij

Therefore, all the conditions in Theorems 16 and 18 are
satisfied. Hence (66) has a 2m-periodic solution, which is
globally exponentially stable (we give numerical simulations
in Figures 1, 2, and 3 by taking x,,, x,,, and x,5 to illustrate
our results).

Example 2. In system (66), let T = Z, then u(t) = 1, and take

0.7 + 0.1 |sin t|
0.8 +0.1|sint| |,
0.8 + 0.1 |cos 2t|

0.8 + 0.1 |cost|
0.7 + 0.1 |sin¢|

0.01 |sin 2t| 0.02 |sin 3¢| 0.01 |sin 4¢|
0.02 |sin 2t| 0.01 [sin 3| 0.01 |cos4t] |,
0.01 |sin 2t| 0.01 [sin 3| 0.02 |cos 4|

0.01 |cos2t| 0.02|sin3t| 0.01 |sin 4¢]|
0.01|cos2t| 0.01 |cos3t| 0.01]|cos4t| |,
0.01 |cos2t| 0.01|sin2t| 0.02 |cos4t|

(71)

0.08 sint + 0.03 cost 0.02sint + 0.01 cos2t 0.02cost

Li(t) L) Ly@®) | = 0.01sint 0.02 cost 0.06 cost |,
Ly (1) Ly (t) Iy (1) 0.01 cost 0.01sint +0.02sint 0.01 cost
P (&) pp (B) pys (1) 0.02|sint| 0.01[sin2¢| 0.02|cost]|
Por (£) ppy (t) pps (£) | = | 0.01 |cos2t| 0.01[sint| 0.01 [cost|
Uz (£) psy (B) pss (£) 0.02|sin 2t] 0.01|cost| 0.02 |sin 2¢|
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Letr =s=1,A =1/2,and § = 0.1. Obviously, L = [ = 2,
£(0) = 2and g(0) = 0, KOJ =1/4, ]‘j =1/2,

r M M M 7
Y %2 M3 109 0.8 09]
I e el &
M M L V. . 2 |
| (31 O3y 33 |
[ 4 a3 108 07 0.7]
& ar | =107 08 08],
an an an] L0707 08)
o o 0.01 0.02 0.01
o G, G, | =002 001 001,
Gl &y G 0.01 0.01 0.02 )
dy dy, d| [001 002 001
dy dy dys | = [001 0.01 0011,
dyy dyy sy 0.01 0.01 0.02
Iy I, ;] [011 0.03 0.02
Ly T, Ly | = | 001 0.02 006,
T, In, L 0.01 0.03 0.01
M M M
Hin ta His 0.02 0.01 0.02
M M M
Wy My Wy | = 0.01 0.01 0.01

0.02 0.01 0.02
M M M
H31 M3 Hs3

So

[0.128 0.158 0.118]
0.159 0.229 0.169 |,
0 0 0 [ 0.108 0.158 0.118 |
_931 032 933_ (73)
[0.208 0.288 0.193]
0.269 0.389 0.289 | .
[0.133 0.268 0.193 |

It is easy to check that

0° aM 1
0 ij ij 0
AZ"(P ”’{2,25 {a?,<1+a7>9ij}ﬁz; (74)
I<jsm Y Y
0.. a.M
max {l,<l+i>6,~]><l. (75)
1<i<n | g amn 7
1<j<m i j

Therefore, all the conditions in Theorems 16 and 18 are
verified. Hence (66) has a 2m-periodic solution, which is
globally exponentially stable(we give numerical simulations
in Figures 4, 5, and 6 by taking x,,, x,, and x5 to illustrate
our results).

Remark. In [27], authors studied the existence and stability
of antiperiodic solutions to impulsive shunting inhibitory
cellular neural networks with distributed delays on time
scales by using a continuation theorem of coincidence degree

Journal of Applied Mathematics

0.6

0.5

0.4

03F

X12

0.2}

0.1+F

-0

1 1 1 1 I 1
-02 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
X11

F1Gure 1: Phase response of state variables x,,, x,, in Example 1.
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FIGURE 4: Phase response of state variables x,;, x,, in Example 2.
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theory and constructing a suitable Lyapunov functions, and
in [28], authors investigated the existence and stability of
almost periodic solutions to shunting inhibitory cellular
neural networks on time scales by the exponential dichotomy
oflinear dynamic equations on time scales and constructing a
suitable Lyapunov functions. However, our methods used in
this paper are different from those used in [27, 28]; also, the
results obtained in [27, 28] cannot be applied to our examples
here.
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