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We consider the bounded parallel-batch scheduling with two models of deterioration, in which the processing time of the first
model is 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡 and of the second model is 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡. The objective is to minimize the makespan. We present 𝑂(𝑛 log 𝑛)

time algorithms for the single-machine problems, respectively. And we propose fully polynomial time approximation schemes to
solve the identical-parallel-machine problem and uniform-parallel-machine problem, respectively.

1. Introduction

Consider the following problem of parallel-batch scheduling
with linear processing times.There are 𝑛 independent deteri-
orating jobs 𝐽 = {𝐽1, . . . , 𝐽𝑛} to be processed on a single or 𝑚
(identical or uniform) parallel batching machines.The actual
processing time of the first model is 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡 and of
the second model is 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, where 𝑎𝑗 and 𝑎 are the
basic processing times, 𝛼 and 𝛼𝑗 are the deteriorating rates,
and 𝑡 is the starting time of 𝐽𝑗 in a given schedule. All jobs
are available from time zero onwards.The batching machines
can process up to 𝑏 jobs simultaneously as a batch, and the
processing time of the batch 𝐵 is equal to the longest time
of any job in the batch; that is, 𝑃(𝐵) = max{𝑝𝑗 | 𝐽𝑗 ∈

𝐵} = max𝐽𝑗∈𝐵{𝑎𝑗} + 𝛼𝑡 or 𝑃(𝐵) = max{𝑝𝑗 | 𝐽𝑗 ∈ 𝐵} =

𝑎 + max𝐽𝑗∈𝐵{𝛼𝑗}𝑡. Let 𝑀𝑖 (𝑖 = 1, . . . , 𝑚) and 𝑠𝑖 denote the 𝑖th
machine and its proceeding speed, respectively. The speeds
are identical in the identical parallel machines environment,
while they are different from each other in the uniform
parallel machines environment. Our objective is to minimize
the makespan. Following Gawiejnowicz [1], we denote our
problems as 1(𝑃𝑚, 𝑄𝑚) | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max,
and 1(𝑃𝑚, 𝑄𝑚) | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max, where
“p-batch” means parallel-batch.

The model described above falls into two categories:
parallel-batch scheduling and scheduling with deteriorating

jobs. The parallel-batch scheduling is motivated by burn-
in operations in semiconductor manufacturing. Brucker
et al. [2] said that a parallel-batch machine is a machine that
can process up to 𝑏 jobs simultaneously as a batch, and the
processing time of the batch is equal to the longest time of any
job in the batch. All jobs contained in the same batch start
and complete at the same time. Once processing of a batch
is initiated, it cannot be interrupted and other jobs cannot
be introduced into the batch until processing is completed.
For the parallel-batch scheduling, there are two models: the
bounded model, in which the bound 𝑏 for each batch size is
effective, that is, 𝑏 < 𝑛, and the unbounded model, in which
there is effectively no limit on the size of batch, that is, 𝑏 ≥ 𝑛.
This processing system has been extensively studied in the
last two decades. The extensive survey of different models
and results was provided both by Potts and Kovalyov [3] and
Zhang andCao [4]. Afterwards, Yuan et al. [5] gave some new
results for the parallel-batch scheduling.

Traditional scheduling problems all assume that the pro-
cessing times of jobs are constant. However, the processing
times may change in the real world. Examples can be found
in steel production and firefighting, where any delay in
processing a task may increase its completion time. Schedul-
ing with deteriorating job was first considered by J. N. D.
Gupta and S. K. Gupta [6] and Browne and Yechiali [7].
From then on, this scheduling model has been extensively
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studied. Cheng et al. [8] gave a survey and the monograph
by Gawiejnowicz [1] presented this scheduling from different
perspectives and covers results and examples. Ji and Cheng
[9, 10] and Liu et al. [11] gave some new results for this
scheduling.

The parallel-batch scheduling with deteriorating jobs was
initiated by Qi et al. [12]; Li et al. [13] and Miao et al. [14]
also considered this scheduling; they gave some results for the
minimizing makespan of the parallel-batch scheduling with
the simple linear deterioration (i.e., 𝑝𝑗 = 𝛼𝑗𝑡). In this paper,
we consider the parallel-batch scheduling with 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡

and 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡. We not only consider the single-machine
problem but also the parallel-machine problems.

The remainder of the paper is organized as follows. In
Section 2, we give some preliminaries to be used in this paper.
In Section 3, we present an 𝑂(𝑛 log 𝑛) time algorithm for the
single-machine problem 1 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 |

𝐶max, and propose two fully polynomial time approximation
schemes for problems𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗+𝛼𝑡, 𝑏 < 𝑛 | 𝐶max
and 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max, respectively.
In Section 4, we present an 𝑂(𝑛 log 𝑛) time algorithm for the
single-machine problem 1 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 |

𝐶max, and propose two fully polynomial time approximation
schemes for problems𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎+𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max
and 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max, respectively.
We conclude the paper and suggest some interesting topics
for future research in the last section.

2. Preliminaries

In this section, we give some preliminaries to be used in the
following sections.

J. N. D. Gupta and S. K. Gupta [6] considered the general
model 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑗𝑡, where 𝑎𝑗 and 𝛼𝑗 denote the basic
processing time and deteriorating rate of job 𝐽𝑗, respectively.
Lemma 1 presented in [6] is useful for our problems.

Lemma 1 (see [6]). The problem 1 | 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑗𝑡 |

𝐶max is solvable in 𝑂(𝑛 log 𝑛) time by scheduling jobs in the
nonincreasing order of 𝛼𝑗/𝑎𝑗 ratios.

It leads to Lemmas 2 and 3.

Lemma 2. The problem 1 | 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡 | 𝐶max is solvable
in 𝑂(𝑛 log 𝑛) time by scheduling jobs in the increasing order of
their basic processing times, and the makespan is 𝐶max(𝜋) =

∑
𝑛
𝑖=1 𝑎[𝑖](1 +𝛼)

𝑛−𝑖 for the given schedule 𝜋 = {𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]}

with 𝑎[1] ≤ 𝑎[2] ≤ ⋅ ⋅ ⋅ ≤ 𝑎[𝑛].

Lemma 3. The problem 1 | 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡 | 𝐶max is solvable in
𝑂(𝑛 log 𝑛) time by scheduling jobs in the nonincreasing order
of their deteriorating rates, and the makespan is 𝐶max(𝜋) =

𝑎[1 + ∑
𝑛
𝑖=2∏
𝑛
𝑙=𝑖(1 + 𝛼[𝑙])] for the given schedule 𝜋 =

{𝐽[1], 𝐽[2], . . . , 𝐽[𝑛]} with 𝛼[1] ≥ 𝛼[2] ≥ ⋅ ⋅ ⋅ ≥ 𝛼[𝑛].

In the uniform parallel machines environment, let 𝑛𝑖 (𝑖 =
1, . . . , 𝑚) and 𝐽[𝑖,𝑗] denote the number of jobs scheduled on
machine 𝑀𝑖 and the 𝑗th job on this machine. Then ∑

𝑚
𝑖=1 𝑛𝑖 =

𝑛. Without loss of generality, let 𝐽[𝑖,1], 𝐽[𝑖,2], . . . , 𝐽[𝑖,𝑛𝑖]
be the

jobs scheduled on machine 𝑀𝑖. Then, there exists 𝑔 (𝑔 =

1, . . . , 𝑛) such that 𝐽[𝑖,𝑗] = 𝐽𝑔 with 𝑝[𝑖,𝑗] = 𝑎[𝑖,𝑗] + 𝛼𝑡 = 𝑎𝑔 + 𝛼𝑡

or 𝑝[𝑖,𝑗] = 𝑎 + 𝛼[𝑖,𝑗]𝑡 = 𝑎 + 𝛼𝑔𝑡.
From Lemma 2, we get the following lemma for problem

𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max.

Lemma 4. The completion time of job 𝐽[𝑖,𝑗] is 𝐶[𝑖,𝑗] =

∑
𝑗

ℎ=1
(1 + (𝛼/𝑠𝑖))

𝑗−ℎ
(𝑎[𝑖,ℎ]/𝑠𝑖).

And from Lemma 3, we get the following lemma for
problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max.

Lemma 5. The completion time of job 𝐽[𝑖,𝑗] is𝐶[𝑖,𝑗] = (𝑎/𝑠𝑖)[1+

∑
𝑗

𝑖=2∏
𝑗

ℎ=𝑖
(1 + (𝛼[𝑖,ℎ]/𝑠𝑖))].

An algorithm 𝐴 is called a (1 + 𝜀)-𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 algo-
rithm for a minimization problem if it produces a solution
that is at most (1 + 𝜀) times as big as the optimal value,
running in time that is polynomial in the input size. A
family approximation algorithm {𝐴𝜀} is a fully polynomial-
time approximation scheme (FPTAS) if, for each 𝜀 > 0,
the algorithm 𝐴𝜀 is a (1 + 𝜀)-𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 algorithm that
is polynomial in the input size and in 1/𝜀. Without loss of
generality, we assume that 0 < 𝜀 ≤ 1.

3. Model 𝑝𝑗 = 𝑎𝑗 +𝛼𝑡

In this section, we discuss the model 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡. First,
we present polynomial time algorithm for problem 1 |

p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max. Then we propose fully
polynomial time approximation schemes for problems 𝑃𝑚 |

p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max and 𝑄𝑚 | p-batch, 𝑝𝑗 =
𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max, respectively.

3.1. Single-Machine Problem 1 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 |

𝐶max. In this subsection, we present an 𝑂(𝑛 log 𝑛) time
algorithm for the single-machine problem.

AlgorithmA. Consider the following steps.

Step 1. Reindex the jobs in increasing order of their basic
processing times such that 𝑎1 ≤ 𝑎2 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑛.

Step 2. Let 𝑘 = ⌈𝑛/𝑏⌉ and 𝑗 = 𝑛 − 𝑏(𝑘 − 1).

Step 3. Form batches 𝐵1, . . . , 𝐵𝑘 such that 𝐵1 =

{𝐽1, . . . , 𝐽𝑗}, 𝐵2 = {𝐽𝑗+1, . . . , 𝐽𝑗+𝑏}, . . . , 𝐵𝑘 = {𝐽𝑛−𝑏+1, . . . , 𝐽𝑛}.

Step 4. Schedule these batches in the increasing order of their
basic processing times from time zero.

Theorem 6. The problem 1 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 |

𝐶max is solvable in 𝑂(𝑛 log 𝑛) time by AlgorithmA.

Proof. Suppose that we reindex the jobs in increasing order
of their basic processing times. Now, we only need to
prove that there exists an optimal schedule satisfying the
following properties. (i) The indices of jobs in each batch
are consecutive. (ii) All batches are full except possibly the



Abstract and Applied Analysis 3

one which contains job 𝐽1. (iii) Batches are scheduled in the
increasing order of their basic processing times.

We consider an optimal schedule𝜋 in the following proof.
To show (i), suppose that there are two batches 𝐵𝑓 and 𝐵ℎ

and three jobs 𝐽𝑖, 𝐽𝑗, and 𝐽𝑙 with 𝑎𝑖 ≥ 𝑎𝑗 ≥ 𝑎𝑙 such that 𝐽𝑖, 𝐽𝑙 ∈
𝐵𝑓 and 𝐽𝑗 ∈ 𝐵ℎ in schedule 𝜋. We obtain a new schedule 𝜋

󸀠

by shifting job 𝐽𝑗 with job 𝐽𝑙; that is, 𝐵
󸀠
𝑓 = 𝐵𝑓 \ {𝐽𝑙} ∪ {𝐽𝑗}

and 𝐵
󸀠
ℎ = 𝐵ℎ \ {𝐽𝑗} ∪ {𝐽𝑙}. And then 𝑃(𝐵

󸀠
𝑓) = 𝑃(𝐵𝑓) and

𝑃(𝐵
󸀠
ℎ) ≤ 𝑃(𝐵ℎ) since 𝑎𝑖 ≥ 𝑎𝑗 ≥ 𝑎𝑙 and the starting time is not

changed. Thus, 𝐶(𝐵
󸀠
𝑓) ≤ 𝐶(𝐵𝑓) and 𝐶(𝐵

󸀠
ℎ) ≤ 𝐶(𝐵ℎ), and

the completion times of other jobs do not increase. Thus,
𝜋
󸀠 remains optimal. A finite number of repetitions of this

procedure yields an optimal schedule of the required form.
To show (ii), suppose that there is a batch 𝐵𝑥 in 𝜋

such that 𝐵𝑥 is not full. We know that the indices of jobs
in 𝐵𝑥 are consecutive from (i). Without loss of generality,
let 𝐵𝑥 = {𝐽𝑛𝑥

, 𝐽𝑛𝑥+1
, . . . , 𝐽𝑛𝑥+𝑒

} with |𝐵𝑥| = 𝑒 + 1 < 𝑏.
If we move the remaining consecutive 𝑏 − (𝑒 + 1) jobs
{𝐽𝑛𝑥+𝑒+1−𝑏

, . . . , 𝐽𝑛𝑥−2
, 𝐽𝑛𝑥−1

} from other batches to 𝐵𝑥, this
procedure cannot increase the objective value since 𝑎𝑗 ≤ 𝑎𝑛𝑥
for all 𝑗 = 𝑛𝑥 + 𝑒 + 1 − 𝑏, . . . , 𝑛𝑥 − 1. A finite number of
repetitions of this procedure yields an optimal schedule with
that all batches are full except possibly the onewhich contains
the first job 𝐽1.

If we view each batch 𝐵 as single aggregate job with
𝑃(𝐵) = max𝑗∈𝐵{𝑎𝑗} + 𝛼𝑡 in schedule 𝜋, property (iii) holds
from Lemma 2.

This completes the proof of Theorem 6.

3.2. Problem 𝑃𝑚 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max. In this
subsection, we assume that𝑚 (≥2), 𝑎𝑗 (𝑗 = 1, . . . , 𝑛) and 𝛼 are
all integral.We drive some properties of the optimal schedule
and propose an FPTAS.

We reindex jobs in increasing order of their basic process-
ing times such that 𝑎1 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑛.

Theorem 7. For problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 |

𝐶max, there exists an optimal schedule satisfying the following
properties.

(i) The indices of jobs in each batch on every machine are
consecutive.

(ii) All batches are full except possibly the one which
contains job 𝐽1.

(iii) Batches are scheduled in the increasing order of their
basic processing times on every machine.

The proof of this theorem is similar to the proof of
Theorem 6.

For problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max,
the properties allow us to determine the batch structure of
an optimal solution a priori. So we divide jobs into batches
𝐵1, 𝐵2, . . . , 𝐵𝑘 according to Algorithm A, where 𝑘 = ⌈𝑛/𝑏⌉.
It is possible to view the batch 𝐵𝑗 (𝑗 = 1, 2, . . . , 𝑘) as single
aggregate job with processing times 𝑃(𝐵𝑗) = max𝐽𝑖∈𝐵𝑗{𝑎𝑖} +

𝛼𝑡 = 𝑎𝑛+𝑏(𝑗−𝑘) + 𝛼𝑡.

Similar to the establishment of FPTAS in Kovalyov and
Kubiak [15], we introduce the variables 𝑥𝑗, 𝑥𝑗 ∈ {1, 2, . . . , 𝑚},
𝑗 = 1, 2, . . . , 𝑘, where 𝑥𝑗 = 𝑙 if batch 𝐵𝑗 is scheduled on
machine 𝑀𝑙 (𝑙 ∈ {1, 2, . . . , 𝑚}). Let 𝑋 be the set of all vectors
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) with 𝑥𝑗 = 𝑙, 𝑗 = 1, 2, . . . , 𝑘, 𝑙 =

1, 2, . . . , 𝑚. Set

𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,

𝐹
𝑙
𝑗 (𝑥) = 𝑎𝑛+𝑏(𝑗−𝑘) + (1 + 𝛼) 𝐹

𝑙
𝑗−1 (𝑥) for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙.

(1)

Then problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max is
reduced to the following problem:

Minimize𝑄 (𝑥) = max {𝐹
𝑖
𝑘 (𝑥) | 𝑖 = 1, 2, . . . , 𝑚} for 𝑥 ∈ 𝑋.

(2)

We introduce the procedure Partition (𝐴, 𝐹, 𝜌) proposed by
Kovalyov and Kubiak [15], where 𝐴 ⊆ 𝑋, 𝐹 is a nonnegative
integer function on 𝑋, and 0 < 𝜌 ≤ 1. This procedure
partitions 𝐴 into disjoint subsets 𝐴

𝐹
1, 𝐴
𝐹
2, . . . , 𝐴

𝐹
𝑘𝐹

such that
|𝐹(𝑥) − 𝐹(𝑥

󸀠
)| ≤ 𝜌min{𝐹(𝑥), 𝐹(𝑥󸀠)} for any 𝑥, 𝑥

󸀠
∈ 𝐴
𝐹
𝑗 ,

𝑗 = 1, 2, . . . , 𝑘𝐹.The following description provides the details
of Partition (𝐴, 𝐹, 𝜌).

Procedure Partition (𝐴, 𝐹, 𝜌). Arrange the vectors 𝑥 ∈ 𝐴 in the
order 𝑥(1), 𝑥(2), . . . , 𝑥(|𝐴|), where 0 ≤ 𝐹(𝑥

(1)
) ≤ 𝐹(𝑥

(2)
) ≤ ⋅ ⋅ ⋅ ≤

𝐹(𝑥
(|𝐴|)

). Assign the vectors 𝑥(1), 𝑥(2), . . . , 𝑥(𝑖1) to set 𝐴𝐹1 until
𝑖1 is found such that 𝐹(𝑥(𝑖1)) ≤ (1 + 𝜌)𝐹(𝑥

(1)
) and 𝐹(𝑥

(𝑖1+1)) >

(1 + 𝜌)𝐹(𝑥
(1)

). If such 𝑖1 does not exist, then take𝐴
𝐹
1 = 𝐴 and

stop.
Assign 𝑥

(𝑖1+1), 𝑥
(𝑖1+2), . . . , 𝑥

(𝑖2) to set 𝐴𝐹2 until 𝑖2 is found
such that 𝐹(𝑥(𝑖2)) ≤ (1 + 𝜌)𝐹(𝑥

(𝑖1+1)) and 𝐹(𝑥
(𝑖2+1)) > (1 +

𝜌)𝐹(𝑥
(𝑖1+1)). If such 𝑖2 does not exist, then take 𝐴

𝐹
2 = 𝐴 − 𝐴

𝐹
1

and stop.
Continue the above process until 𝑥(|𝐴|) is included in𝐴

𝐹
𝑘𝐹

for some 𝑘𝐹.
The main properties of Partition were given by Kovalyov

and Kubiak [15] as follows.

Proposition 8. Consider |𝐹(𝑥)−𝐹(𝑥
󸀠
)| ≤ 𝜌min{𝐹(𝑥), 𝐹(𝑥󸀠)}

for any 𝑥, 𝑥
󸀠
∈ 𝐴
𝐹
𝑗 , 𝑗 = 1, 2, . . . , 𝑘𝐹.

Proposition 9. Consider 𝑘𝐹 ≤ ((log𝐹(𝑥
(|𝐴|)

))/𝜌) + 2 for 0 <

𝜌 ≤ 1 and 1 ≤ 𝐹(𝑥
(|𝐴|)

).

Now, we give a fully polynomial time approximation
scheme for problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max.

Algorithm 𝐴
𝑃
𝜀 .Consider the following steps.

Step 1. Reindex the jobs in increasing order of their basic
processing times such that 𝑎1 ≤ 𝑎2 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑛.

Step 2. Form batches 𝐵1, . . . , 𝐵𝑘 by using AlgorithmA, where
𝑘 = ⌈𝑛/𝑏⌉.
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Step 3. Regard batch 𝐵𝑗 as an aggregate job with 𝑃(𝐵𝑗) =

𝑎𝑛+𝑏(𝑗−𝑘) + 𝛼𝑡 (𝑗 = 1, . . . , 𝑘).

Step 4. Set 𝑌0 = {(

𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)}, 𝑗 = 1, and 𝐹

𝑖
0(𝑥) = 0 for 𝑖 =

1, 2, . . . , 𝑚.

Step 5. For the set 𝑌𝑗−1, generate the set 𝑌󸀠𝑗 by adding 𝑙 (𝑙 =

1, 2, . . . , 𝑚) in position 𝑗 of each vector from 𝑌𝑗−1. Calculate
the following for any 𝑥 ∈ 𝑌

󸀠
𝑗 , without loss of generality,

assuming 𝑥𝑗 = 𝑙:

𝐹
𝑙
𝑗 (𝑥) = 𝑎𝑛+𝑏(𝑗−𝑘) + (1 + 𝛼) 𝐹

𝑙
𝑗−1 (𝑥) ,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) for 𝑖 ̸= 𝑙.

(3)

If 𝑗 = 𝑘, then set 𝑌𝑘 = 𝑌
󸀠
𝑘, and go to Step 6.

If 𝑗 < 𝑘, then set 𝜌 = (𝜀/2(𝑘 + 1)), and perform the
following computation.

Call Partition (𝑌
󸀠
𝑗 , 𝐹
𝑖
𝑗, 𝜌) (𝑖 = 1, . . . , 𝑚) to partition the set

𝑌
󸀠
𝑗 into disjoint subsets 𝑌

𝐹𝑖

1 , 𝑌
𝐹𝑖

2 , . . . , 𝑌
𝐹𝑖

𝑘
𝐹𝑖
.

Divide set 𝑌
󸀠
𝑗 into disjoint subsets 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

=

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
, 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . . ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 .

For each nonempty subset 𝑌𝑏1⋅⋅⋅𝑏𝑚
, choose a vector 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)

such that

𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)) = min { max

𝑖=1,...,𝑚
𝐹
𝑖
𝑗 (𝑥) | 𝑥 ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

} . (4)

Set 𝑌𝑗 := {𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚) | 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . . ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 , and

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
̸= 𝜙}, and 𝑗 = 𝑗 + 1. Repeat Step 5.

Step 6. Select set 𝑥
0

∈ 𝑌𝑘 such that 𝑄(𝑥
0
) =

min𝑥∈𝑌𝑘{max𝑖=1,...,𝑚𝐹
𝑖
𝑘(𝑥)}.

Let 𝑇 = log(max{𝑘, 1/𝜀, 1 + 𝛼, 𝑎max}), where 𝑘 = ⌈𝑛/𝑏⌉,
𝑎max = max𝑗=1,...,𝑛{𝑎𝑗}.

We get the following theorem.

Theorem 10. Algorithm 𝐴
𝑃
𝜀 finds 𝑥

0
∈ 𝑋 for 𝑃𝑚 |

𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max such that 𝑄(𝑥
0
) ≤ (1 +

𝜀)𝑄(𝑥
∗
) in 𝑂((⌈𝑛/𝑏⌉)

(2𝑚+1)
𝑇
𝑚+1

/𝜀
𝑚
), where 𝑥

∗ is an optimal
solution.

Proof. Suppose that 𝑥∗[𝑗] = (𝑥
∗
1 , . . . , 𝑥

∗
𝑗 , 0, . . . , 0) ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

⊆

𝑌
󸀠
𝑗 for some 𝑗 and 𝑏1, . . . , 𝑏𝑚. Algorithm 𝐴

𝑃
𝜀 may not choose

𝑥
∗
[𝑗] for further construction; however, for a vector 𝑥(𝑏1 ⋅⋅⋅𝑏𝑚)

chosen instead of it, we have

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗 (𝑥
∗
[𝑗]) − 𝐹

𝑖
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚))

󵄨󵄨󵄨󵄨󵄨
≤ 𝜌𝐹
𝑖
𝑗 (𝑥
∗
[𝑗]) , 𝑖 = 1, . . . , 𝑚.

(5)

Set 𝜌1 = 𝜌. Consider the vector 𝑥
∗
[𝑗 +

1] = (𝑥
∗
1 , . . . , 𝑥

∗
𝑗 , 𝑥
∗
𝑗+1, 0, . . . , 0) and 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚) =

(𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)

1 , . . . , 𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)

𝑗 , 𝑥
∗
𝑗+1, 0, . . . , 0). We assume 𝑥

∗
𝑗+1 = 𝑙. It

follows that
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(𝑎𝑛+𝑏(𝑗+1−𝑘) + (1 + 𝛼) 𝐹

𝑙
𝑗 (𝑥
∗
[𝑗]))

− (𝑎𝑛+𝑏(𝑗+1−𝑘) + (1 + 𝛼) 𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(1 + 𝛼) (𝐹

𝑙
𝑗 (𝑥
∗
[𝑗]) − 𝐹

𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)))

󵄨󵄨󵄨󵄨󵄨

≤ (1 + 𝛼) 𝜌𝐹
𝑙
𝑗 (𝑥
∗
[𝑗])

≤ 𝜌1 (𝑎𝑛+𝑏(𝑗+1−𝑘) + (1 + 𝛼) 𝐹
𝑙
𝑗 (𝑥
∗
[𝑗]))

= 𝜌1𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) .

(6)

Consequently,

𝐹
𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (7)

Similarly, for 𝑖 ̸= 𝑙, we have

𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (8)

Assume that 𝑥(𝑏1 ⋅⋅⋅𝑎𝑚) ∈ 𝑌𝑐1 ⋅⋅⋅𝑐𝑚
⊆ 𝑌
󸀠
𝑗+1 and Algorithm 𝐴

𝑃
𝜀

chooses 𝑥
(𝑐1 ⋅⋅⋅𝑐𝑚) ∈ 𝑌𝑐1 ⋅⋅⋅𝑐𝑚

instead of 𝑥(𝑏1 ⋅⋅⋅𝑏𝑚) in the (𝑗 + 1)th
iteration; then we have

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) − 𝐹
𝑖
𝑗+1 (𝑥

(𝑐1 ⋅⋅⋅𝑐𝑚))
󵄨󵄨󵄨󵄨󵄨

≤ 𝜌𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))

≤ 𝜌 (1 + 𝜌1) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) , 𝑖 = 1, . . . , 𝑚.

(9)

Then we have
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑖
𝑗+1 (𝑥

(𝑐1 ⋅⋅⋅𝑐𝑚))
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) − 𝐹
𝑖
𝑗+1 (𝑥

(𝑐1 ⋅⋅⋅𝑐𝑚))
󵄨󵄨󵄨󵄨󵄨

≤ (𝜌1 + 𝜌 (1 + 𝜌1)) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1])

= (𝜌 + 𝜌1 (1 + 𝜌)) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) , 𝑖 = 1, 2, . . . , 𝑚.

(10)

Set 𝜌ℎ = 𝜌 + (1 + 𝜌)𝜌ℎ−1, ℎ = 2, . . . , 𝑘 − 𝑗.
Then,

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))
󵄨󵄨󵄨󵄨󵄨

≤ 𝜌2𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) , 𝑖 = 1, . . . , 𝑚.

(11)

By repeating the above argument for 𝑗+2, . . . , 𝑘, we show that
∃𝑥
󸀠
∈ 𝑌𝑘 such that

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑘 (𝑥
󸀠
) − 𝐹
𝑖
𝑘 (𝑥
∗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜌𝑘−𝑗+1𝐹

𝑖
𝑘 (𝑥
∗
) , 𝑖 = 1, . . . , 𝑚. (12)
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Since,

𝜌𝑘−𝑗+1 ≤ 𝜌

𝑘

∑

𝑗=0

(1 + 𝜌)
𝑗

= (1 + 𝜌)
𝑘+1

− 1

=

𝑘+1

∑

𝑗=1

(𝑘 + 1) 𝑘 ⋅ ⋅ ⋅ (𝑘 − 𝑗 + 2)

𝑗! (𝑘 + 1)!
(
𝜀

2
)

𝑗

≤

𝑘+1

∑

𝑗=1

1

𝑗!

𝜀

2
≤ 𝜀.

(13)

Then,
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑘 (𝑥
󸀠
) − 𝐹
𝑖
𝑘 (𝑥
∗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀𝐹
𝑖
𝑘 (𝑥
∗
) , 𝑖 = 1, . . . , 𝑚. (14)

Now, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
󸀠
)} − max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
∗
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
∗
)} .

(15)

From Step 6 in Algorithm𝐴
𝑃
𝜀 , we know that the vector 𝑥0 will

be chosen such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
0
)} − max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
∗
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
󸀠
)} − max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
∗
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
∗
)} .

(16)

Then,

max
𝑖=1,...,𝑚

{𝐹
𝑖
𝑘 (𝑥
0
)} ≤ (1 + 𝜀) max

𝑖=1,...,𝑚
{𝐹
𝑖
𝑘 (𝑥
∗
)} . (17)

So,

𝑄(𝑥
0
) ≤ (1 + 𝜀)𝑄 (𝑥

∗
) . (18)

To establish the computation of Algorithm 𝐴
𝑃
𝜀 , we know that

Step 5 requires the time of 𝑂(|𝑌
󸀠
𝑗 | log |𝑌

󸀠
𝑗 |) to complete. We

have |𝑌
󸀠
𝑗+1| ≤ 2|𝑌𝑗| ≤ 2𝑘𝐹1 ⋅ ⋅ ⋅ 𝑘𝐹𝑚 .

By Proposition 9, for 𝑖 = 1, . . . , 𝑚,

𝑘𝐹𝑖 ≤
2 (⌈𝑛/𝑏⌉ + 1) log (⌈𝑛/𝑏⌉ 𝑎max(1 + 𝛼)

⌈𝑛/𝑏⌉
)

𝜀
+ 2

≤
2(⌈𝑛/𝑏⌉ + 1)

2
𝑇

𝜀
+ 2.

(19)

So |𝑌
󸀠
𝑗 | = 𝑂((⌈𝑛/𝑏⌉)

2𝑚
𝑇
𝑚
/𝜀
𝑚
) and |𝑌

󸀠
𝑗 | log |𝑌

󸀠
𝑗 | =

𝑂((⌈𝑛/𝑏⌉)
2𝑚

𝑇
𝑚+1

/𝜀
𝑚
). Now,we have that the time complexity

of Algorithm 𝐴
𝑃
𝜀 is 𝑂((⌈𝑛/𝑏⌉)

2𝑚+1
𝑇
𝑚+1

/𝜀
𝑚
).

This completes the proof of Theorem 10.

3.3. Problem 𝑄𝑚 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max.
Motivated by Liu et al. [11], we propose an FPTAS for our
uniform-parallel-machine problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 +

𝛼𝑡, 𝑏 < 𝑛 | 𝐶max.
We reindex jobs in increasing order of their basic process-

ing times such that 𝑎1 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑛.
We can obtain the following similar theorem to

Theorem 7.

Theorem 11. For problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 |

𝐶max, there exists an optimal schedule satisfying the following
properties.

(i) The indices of jobs in each batch on every machine are
consecutive.

(ii) All batches are full except possibly the one which
contains job 𝐽1.

(iii) Batches are scheduled in the increasing order of their
basic processing times on every machine.

For problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max,
these properties allow us to determine the batch structure of
an optimal solution a priori. So we divide jobs into batches
𝐵1, 𝐵2, . . . , 𝐵𝑘 according to Algorithm A, where 𝑘 = ⌈𝑛/𝑏⌉.
It is possible to view the batch 𝐵𝑗 (𝑗 = 1, 2, . . . , 𝑘) as single
aggregate job with processing times 𝑃(𝐵𝑗) = max𝑖∈𝐵𝑗{𝑎𝑖} +

𝛼𝑡 = 𝑎𝑛+𝑏(𝑗−𝑘) + 𝛼𝑡.
We design the FPTAS by using the procedure Partition

proposed in Kovalyov and Kubiak [15] which requires that
the function used must be a nonnegative integer function.
Similar to Liu et al. [11], we first modify the objective function
to a nonnegative integer function, and this operation does not
affect the schedule. For any 𝑖 ∈ {1, . . . , 𝑚} and 𝑗 ∈ {1, . . . , 𝑛},
define Δ 1 = min{𝑎𝑗/𝑠𝑖}, Δ 2 = min{1 + (𝛼/𝑠𝑖)}. For simplicity,
we suppose that Δ 1 and Δ 2 are finite decimals. Arbitrarily
find integers {𝑙1, 𝑙2} ∈ 𝑁

+ such that 10
𝑙1Δ 1 ∈ 𝑁

+ and
10
𝑙2Δ 2 ∈ 𝑁

+. The parameter 10
𝑙1+𝑗𝑙2𝐶[𝑖,𝑗] can be verified

as an integer since 𝐶[𝑖,𝑗] = ∑
𝑗

ℎ=1
(1 + (𝛼/𝑠𝑖))

𝑗−ℎ
(𝑎[𝑖,ℎ]/𝑠𝑖).

Define 𝐿 = 10
𝑙1+𝑘𝑙2 ; the transformed objective function can be

expressed as 𝐿𝐶max. And we have that 𝐿𝐶max is a nonnegative
integer. Meanwhile, the above scale operation only increases
the absolute value of the 𝐶max and does not change the
schedule. We use the new objective function instead of the
original one in the remainder. Now our problem is equivalent
to 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐿𝐶max.

Similar to the FPTAS in Section 3.2, we introduce the
variables 𝑥𝑗, 𝑥𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑗 = 1, 2, . . . , 𝑘, where 𝑥𝑗 = 𝑙

if batch 𝐵𝑗 is scheduled on 𝑀𝑙 (𝑙 ∈ {1, 2, . . . , 𝑚}). Let 𝑋

be the set of all vectors 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) with 𝑥𝑗 = 𝑙,
𝑗 = 1, 2, . . . , 𝑘, 𝑙 = 1, 2, . . . , 𝑚. Set

𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,



6 Abstract and Applied Analysis

𝐹
𝑙
𝑗 (𝑥) =

𝑎𝑛+𝑏(𝑗−𝑘)

𝑠𝑙
10
𝑙1+𝑗𝑙2

+ (1 +
𝛼

𝑠𝑙
)𝐹
𝑙
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙,

(20)

where 𝐹𝑖𝑗(𝑥) is the magnified workload of machine𝑀𝑖 for the
jobs among 𝐽1, 𝐽2, . . . , 𝐽𝑗.

Then problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐿𝐶max
is reduced to the following problem:

Minimize𝐺 (𝑥) = max {𝐹
𝑖
𝑘 (𝑥) | 𝑖 = 1, 2, . . . , 𝑚} for 𝑥 ∈ 𝑋.

(21)

Now, we propose the fully polynomial time approxima-
tion scheme.

Algorithm 𝐴
𝑄
𝜀 . Consider the following steps.

Step 1. Reindex the jobs in increasing order of their basic
processing times such that 𝑎1 ≤ 𝑎2 ≤ ⋅ ⋅ ⋅ ≤ 𝑎𝑛.

Step 2. Form batches 𝐵1, . . . , 𝐵𝑘 by using AlgorithmA, where
𝑘 = ⌈𝑛/𝑏⌉.

Step 3. Regard batch 𝐵𝑗 as an aggregate job with 𝑃(𝐵𝑗) =

𝑎𝑛+𝑏(𝑗−𝑘) + 𝛼𝑡 (𝑗 = 1, . . . , 𝑘).

Step 4. Set 𝑌0 = {(

𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)}, 𝑗 = 1 and 𝐹

𝑖
0(𝑥) = 0 for 𝑖 =

1, 2, . . . 𝑚.

Step 5. For the set 𝑌𝑗−1, generate the set 𝑌󸀠𝑗 by adding 𝑙 (𝑙 =

1, 2, . . . , 𝑚) in position 𝑗 of each vector from 𝑌𝑗−1. Calculate
the following for any 𝑥 ∈ 𝑌

󸀠
𝑗 , without loss of generality,

assuming 𝑥𝑗 = 𝑙. Set

𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,

𝐹
𝑙
𝑗 (𝑥) =

𝑎𝑛+𝑏(𝑗−𝑘)

𝑠𝑙
10
𝑙1+𝑗𝑙2

+ (1 +
𝛼

𝑠𝑙
)𝐹
𝑙
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙.

(22)

If 𝑗 = 𝑘, then set 𝑌𝑘 = 𝑌
󸀠
𝑘, and go to Step 6.

If 𝑗 < 𝑘, then set 𝜌 = 𝜀/(2(𝑘 + 1)), and perform the
following computation.

Call Partition (𝑌
󸀠
𝑗 , 𝐹
𝑖
𝑗, 𝜌) (𝑖 = 1, . . . , 𝑚) to partition the set

𝑌
󸀠
𝑗 into disjoint subsets 𝑌

𝐹𝑖

1 , 𝑌
𝐹𝑖

2 , . . . , 𝑌
𝐹𝑖

𝑘
𝐹𝑖
.

Divide set 𝑌
󸀠
𝑗 into disjoint subsets 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

=

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
, 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . .; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 .

For each nonempty subset 𝑌𝑏1 ⋅⋅⋅𝑏𝑚
, choose a vector 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)

such that

𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)) = min { max

𝑖=1,...,𝑚
𝐹
𝑖
𝑗 (𝑥) | 𝑥 ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

} . (23)

Set 𝑌𝑗 := {𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚) | 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . .; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 , and

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
̸= 𝜙}, and 𝑗 = 𝑗 + 1. Repeat Step 5.

Step 6. Select set 𝑥
0

∈ 𝑌𝑘 such that 𝐺(𝑥
0
) =

min𝑥∈𝑌𝑘{max𝑖=1,...,𝑚𝐹
𝑖
𝑘(𝑥)}.

Let 𝐾 = log(max{⌈𝑛/𝑏⌉, (1/𝜀), 𝐴max, 1 + 𝐵max, 10
𝑙1 , 10
𝑙2}),

where 𝐴max = max𝑗=1,...,𝑛;𝑖=1,...,𝑚{𝑎𝑗/𝑠𝑖} and 𝐵max =

max𝑖=1,...,𝑚{𝛼/𝑠𝑖}.
We get the following theorem.

Theorem 12. Algorithm 𝐴
𝑄
𝜀 finds 𝑥

0
∈ 𝑋 for 𝑄𝑚 |

p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐿𝐶max such that 𝐺(𝑥
0
) ≤ (1 +

𝜀)𝐺(𝑥
∗
) in 𝑂((⌈𝑛/𝑏⌉)

(2𝑚+1)
𝐾
𝑚+1

/𝜀
𝑚
), where 𝑥

∗ is an optimal
solution.

Analysis. The proof is similar to the proof of Theorem 10
except the following:

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎𝑛+𝑏(𝑗+1−𝑘)

𝑠𝑙
10
𝑙1+𝑗𝑙2 + (1 +

𝛼

𝑠𝑙
)𝐹
𝑙
𝑗 (𝑥
∗
[𝑗]) ⋅ 10

𝑙2

−
𝑎𝑛+𝑏(𝑗+1−𝑘)

𝑠𝑙
10
𝑙1+𝑗𝑙2 − (1 +

𝛼

𝑠𝑙
)𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)) ⋅ 10

𝑙2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (1 +
𝛼

𝑠𝑙
) ⋅ 10

𝑙2
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑙
𝑗 (𝑥
∗
[𝑗]) − 𝐹

𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚))

󵄨󵄨󵄨󵄨󵄨

≤ (1 +
𝛼

𝑠𝑙
) ⋅ 10

𝑙2𝜌𝐹
𝑙
𝑗 (𝑥
∗
[𝑗])

≤ 𝜌1 (
𝑎𝑛+𝑏(𝑗+1−𝑘)

𝑠𝑙
10
𝑙1+𝑗𝑙2 + (1 +

𝛼

𝑠𝑙
)𝐹
𝑙
𝑗 (𝑥
∗
[𝑗]) 10

𝑙2)

= 𝜌1𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) .

(24)

Consequently,

𝐹
𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (25)

Similarly, for 𝑖 ̸= 𝑙, we have

𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (26)

To establish the computation of Algorithm 𝐴
𝑄
𝜀 , we know

that Step 5 requires the time of 𝑂(|𝑌
󸀠
𝑗 | log |𝑌

󸀠
𝑗 |) to complete.

We have |𝑌
󸀠
𝑗+1| ≤ 2|𝑌𝑗| ≤ 2𝑘𝐹1 ⋅ ⋅ ⋅ 𝑘𝐹𝑚 .
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By Proposition 9, for 𝑖 = 1, . . . , 𝑚,

𝑘𝐹𝑖

≤

2 (⌈𝑛/𝑏⌉ + 1) log (10
𝑙1+⌈𝑛/𝑏⌉𝑙2 ⌈𝑛/𝑏⌉𝐴max(1 + 𝐵max)

⌈𝑛/𝑏⌉
)

𝜀

+ 2 ≤
2(⌈𝑛/𝑏⌉ + 1)

2
𝐾

𝜀
+ 2.

(27)

So |𝑌
󸀠
𝑗 | = 𝑂((⌈𝑛/𝑏⌉)

2𝑚
𝐾
𝑚
/𝜀
𝑚
) and |𝑌

󸀠
𝑗 | log |𝑌

󸀠
𝑗 | =

𝑂((⌈𝑛/𝑏⌉)
2𝑚

𝐾
𝑚+1

/𝜀
𝑚
). Now, we have that the time complex-

ity of Algorithm 𝐴
𝑄
𝜀 is 𝑂((⌈𝑛/𝑏⌉)

2𝑚+1
𝐾
𝑚+1

/𝜀
𝑚
).

4. Model 𝑝𝑗 = 𝑎+𝛼𝑗𝑡

In this section, we discuss the model 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡. First,
we present polynomial time algorithm for problem 1 |

p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max. Then we propose fully
polynomial time approximation schemes for problems 𝑃𝑚 |

p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max and 𝑄𝑚 | p-batch, 𝑝𝑗 =
𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max, respectively.

4.1. Single-Machine Problem 1 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎+𝛼𝑗𝑡, 𝑏 < 𝑛 |

𝐶max. In this subsection, we present an 𝑂(𝑛 log 𝑛) time
algorithm for the single-machine problem.

Algorithm FBLDR (fully batching longest deteriorating rate).
Consider the following steps

Step 1. Reindex jobs in nonincreasing order of their deterio-
rating rates such that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.

Step 2. Form batches by placing jobs 𝐽𝑗𝑏+1 through 𝐽(𝑗+1)𝑏
together in the same batch, for 𝑗 = 0, 1, . . . , ⌊𝑛/𝑏⌋

Step 3. Schedule the batches in the increasing order of their
indices.

The schedule contains at most ⌊𝑛/𝑏⌋ + 1 batches and
all batches are full except possibly the last one, where ⌊𝑛/𝑏⌋

denotes the largest integer less than or equal to 𝑛/𝑏.

Theorem 13. Algorithm FBLDR solves problem
1 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max optimally, and the
optimal objective value is𝐶∗max = 𝑎[1+∑

𝑛
𝑖=2∏
𝑛
𝑙=𝑖(1+𝛼(𝑙−1)𝑏+1)].

We omit the proof as it is simple.

4.2. Problem 𝑃𝑚 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎+𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max. In this
subsection, we assume that 𝑚 (≥ 2), 𝛼𝑗 (𝑗 = 1, . . . , 𝑛) and
𝑎 are all integral. We drive some properties of the optimal
schedule and propose an FPTAS.

We reindex jobs in nonincreasing order of their deterio-
rating rates such that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.

Theorem 14. For problem 𝑃𝑚 | 𝑝-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 |

𝐶max, there exists an optimal schedule satisfying the following
properties.

(i) The indices of jobs in each batch on every machine are
consecutive.

(ii) All batches are full except possibly the one which
contains job 𝐽𝑛.

(iii) Batches are scheduled in the increasing order of their
indices on every machine.

For problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max,
the properties allow us to determine the batch structure of
an optimal solution a priori. So we divide jobs into batches
𝐵1, 𝐵2, . . . , 𝐵𝑘 according to Algorithm FBLDR, where 𝑘 =

⌈𝑛/𝑏⌉. It is possible to view the batch 𝐵𝑗 (𝑗 = 1, 2, . . . , 𝑘)

as single aggregate job with processing times 𝑃(𝐵𝑗) = 𝑎 +

max𝐽𝑖∈𝐵𝑗{𝛼𝑖}𝑡 = 𝑎 + 𝛼(𝑗−1)𝑏+1𝑡.
Similar to the establishment of FPTAS in Kovalyov and

Kubiak [15], we introduce the variables 𝑥𝑗, 𝑥𝑗 ∈ {1, 2, . . . , 𝑚},
𝑗 = 1, 2, . . . , 𝑘, where 𝑥𝑗 = 𝑙 if batch 𝐵𝑗 is scheduled on
machine 𝑀𝑙 (𝑙 ∈ {1, 2, . . . , 𝑚}). Let 𝑋 be the set of all vectors
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) with 𝑥𝑗 = 𝑙, 𝑗 = 1, 2, . . . , 𝑘, 𝑙 =

1, 2, . . . , 𝑚. Set
𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,

𝐹
𝑙
𝑗 (𝑥) = 𝑎 + (1 + 𝛼(𝑗−1)𝑏+1) 𝐹

𝑙
𝑗−1 (𝑥) for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙.

(28)

Then problem 𝑃𝑚 | p-batch, 𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡, 𝑏 < 𝑛 | 𝐶max is
reduced to the following problem:

Minimize𝑄 (𝑥) = max {𝐹
𝑖
𝑘 (𝑥) | 𝑖 = 1, 2, . . . , 𝑚} for 𝑥 ∈ 𝑋.

(29)
Using the Procedure Partition (𝐴, 𝐹, 𝜌), we design a fully

polynomial time approximation scheme for problem 𝑃𝑚 |

p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max as follows.

Algorithm 𝐻
𝑃
𝜀 . Consider the following steps.

Step 1. Reindex the jobs in nonincreasing order of their
deteriorating rates such that 𝛼1 ≥ 𝛼2 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.

Step 2. Form batches 𝐵1, . . . , 𝐵𝑘 by using Algorithm FBLDR,
where 𝑘 = ⌈𝑛/𝑏⌉.

Step 3. Regard batch 𝐵𝑗 as an aggregate job with 𝑃(𝐵𝑗) = 𝑎 +

𝛼(𝑗−1)𝑏+1 (𝑗 = 1, . . . , 𝑘).

Step 4. Set 𝑌0 = {(

𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)}, 𝑗 = 1, and 𝐹

𝑖
0(𝑥) = 0 for 𝑖 =

1, 2, . . . 𝑚.

Step 5. For the set 𝑌𝑗−1, generate the set 𝑌󸀠𝑗 by adding 𝑙 (𝑙 =

1, 2, . . . , 𝑚) in position 𝑗 of each vector from 𝑌𝑗−1. Calculate
the following for any 𝑥 ∈ 𝑌

󸀠
𝑗 , without loss of generality,

assuming 𝑥𝑗 = 𝑙:

𝐹
𝑙
𝑗 (𝑥) = 𝑎 + (1 + 𝛼(𝑗−1)𝑏+1) 𝐹

𝑙
𝑗−1 (𝑥) ,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) for 𝑖 ̸= 𝑙.

(30)
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If 𝑗 = 𝑘, then set 𝑌𝑘 = 𝑌
󸀠
𝑘, and go to Step 6.

If 𝑗 < 𝑘, then set 𝜌 = (𝜀/(2(𝑘 + 1))), and perform the
following computation.

Call Partition (𝑌
󸀠
𝑗 , 𝐹
𝑖
𝑗, 𝜌) (𝑖 = 1, . . . , 𝑚) to partition the set

𝑌
󸀠
𝑗 into disjoint subsets 𝑌

𝐹𝑖

1 , 𝑌
𝐹𝑖

2 , . . . , 𝑌
𝐹𝑖

𝑘
𝐹𝑖
.

Divide set 𝑌
󸀠
𝑗 into disjoint subsets 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

=

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
, 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . . ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 .

For each nonempty subset 𝑌𝑏1⋅⋅⋅𝑏𝑚
, choose a vector 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)

such that

𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)) = min { max

𝑖=1,...,𝑚
𝐹
𝑖
𝑗 (𝑥) | 𝑥 ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

} . (31)

Set 𝑌𝑗 := {𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚) | 𝑏1 = 1, . . . , 𝑘𝐹1 ; ⋅ ⋅ ⋅ ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 , and

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
̸= 𝜙}, and 𝑗 = 𝑗 + 1. Repeat Step 5.

Step 6. Select set 𝑥
0

∈ 𝑌𝑘 such that 𝑄(𝑥
0
) =

min𝑥∈𝑌𝑘{max𝑖=1,...,𝑚𝐹
𝑖
𝑘(𝑥)}.

Let 𝑇 = log(max{𝑘, (1/𝜀), 1 + 𝛼max, 𝑎}), where 𝛼max =

max𝑗=1,...,𝑛{𝛼𝑗}.
We get the following theorem.

Theorem 15. Algorithm 𝐻
𝑃
𝜀 finds 𝑥

0
∈ 𝑋 for 𝑃𝑚 |

𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max such that 𝑄(𝑥
0
) ≤ (1 +

𝜀)𝑄(𝑥
∗
) in 𝑂((⌈𝑛/𝑏⌉)

(2𝑚+1)
𝑇
𝑚+1

/𝜀
𝑚
), where 𝑥

∗ is an optimal
solution.

Proof. Suppose that 𝑥∗[𝑗] = (𝑥
∗
1 , . . . , 𝑥

∗
𝑗 , 0, . . . , 0) ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

⊆

𝑌
󸀠
𝑗 for some 𝑗 and 𝑏1, . . . , 𝑏𝑚. Algorithm 𝐻

𝑃
𝜀 may not choose

𝑥
∗
[𝑗] for further construction; however, for a vector 𝑥(𝑏1 ⋅⋅⋅𝑏𝑚)

chosen instead of it, we have
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑖
𝑗 (𝑥
∗
[𝑗]) − 𝐹

𝑖
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚))

󵄨󵄨󵄨󵄨󵄨
≤ 𝜌𝐹
𝑖
𝑗 (𝑥
∗
[𝑗]) , 𝑖 = 1, . . . , 𝑚.

(32)

Set 𝜌1 = 𝜌. Consider the vector 𝑥
∗
[𝑗 +

1] = (𝑥
∗
1 , . . . , 𝑥

∗
𝑗 , 𝑥
∗
𝑗+1, 0, . . . , 0) and 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚) =

(𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)

1 , . . . , 𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)

𝑗 , 𝑥
∗
𝑗+1, 0, . . . , 0). We assume 𝑥

∗
𝑗+1 = 𝑙. It

follows that
󵄨󵄨󵄨󵄨󵄨
𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) − 𝐹

𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚))
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(𝑎 + (1 + 𝛼𝑗𝑏+1) 𝐹

𝑙
𝑗 (𝑥
∗
[𝑗]))

− (𝑎 + (1 + 𝛼𝑗𝑏+1) 𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)))

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(1 + 𝛼𝑗𝑏+1) (𝐹

𝑙
𝑗 (𝑥
∗
[𝑗]) − 𝐹

𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)))

󵄨󵄨󵄨󵄨󵄨

≤ (1 + 𝛼𝑗𝑏+1) 𝜌𝐹
𝑙
𝑗 (𝑥
∗
[𝑗])

≤ 𝜌1 (𝑎 + (1 + 𝛼𝑗𝑏+1) 𝐹
𝑙
𝑗 (𝑥
∗
[𝑗]))

= 𝜌1𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) .

(33)

Consequently,

𝐹
𝑙
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑙
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (34)

Similarly, for 𝑖 ̸= 𝑙, we have

𝐹
𝑖
𝑗+1 (𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)) ≤ (1 + 𝜌1) 𝐹
𝑖
𝑗+1 (𝑥
∗
[𝑗 + 1]) . (35)

The remained proof of this theorem is similar to that of
Theorem 10.

4.3. Problem 𝑄𝑚 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎+𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max. We
reindex jobs in nonincreasing order of their deteriorating
rates such that 𝛼1 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.

Theorem 16. For problem 𝑄𝑚 | 𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 |

𝐶max, there exists an optimal schedule satisfying the following
properties.

(i) The indices of jobs in each batch on every machine are
consecutive.

(ii) All batches are full except possibly the one which
contains job 𝐽𝑛.

(iii) Batches are scheduled in the increasing order of their
indices on every machine.

For problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐶max,
these properties allow us to determine the batch structure of
an optimal solution a priori. So we divide jobs into batches
𝐵1, 𝐵2, . . . , 𝐵𝑘 according to Algorithm FBLDR, where 𝑘 =

⌈𝑛/𝑏⌉. It is possible to view the batch 𝐵𝑗 (𝑗 = 1, 2, . . . , 𝑘) as
single aggregate job with processing times 𝑃(𝐵𝑗) = 𝑎 +

𝛼(𝑗−1)𝑏+1𝑡.
Followed that in Section 3.3, for any 𝑖 ∈ {1, . . . , 𝑚} and

𝑗 ∈ {1, . . . , 𝑛}, define Δ 1 = min{𝑎/𝑠𝑖}, Δ 2 = min{1 + (𝛼𝑗/𝑠𝑖)}.
For simplicity, we suppose thatΔ 1 andΔ 2 are finite decimals.
Arbitrarily find integers {𝑙1, 𝑙2} ∈ 𝑁

+ such that 10𝑙1Δ 1 ∈ 𝑁
+

and 10
𝑙2Δ 2 ∈ 𝑁

+. From Lemma 5, the parameter 10𝑙1+𝑗𝑙2𝐶[𝑖,𝑗]
can be verified as an integer since 𝐶[𝑖,𝑗] = (𝑎/𝑠𝑖)[1 +

∑
𝑗

𝑖=2∏
𝑗

ℎ=𝑖
(1+(𝛼[𝑖,ℎ]/𝑠𝑖))]. Define 𝐿 = 10

𝑙1+𝑘𝑙2 , the transformed
objective function can be expressed as 𝐿𝐶max. And we have
that 𝐿𝐶max is a nonnegative integer. Meanwhile, the above
scale operation only increases the absolute value of the 𝐶max
and does not change the schedule. We use the new objective
function instead of the original one in the remainder. Now
our problem is equivalent to 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 <

𝑛 | 𝐿𝐶max.
Similar to the FPTAS in Section 3.3, now, we introduce

the variables 𝑥𝑗, 𝑥𝑗 ∈ {1, 2, . . . , 𝑚}, 𝑗 = 1, 2, . . . , 𝑘, where 𝑥𝑗 =

𝑙 if batch 𝐵𝑗 is scheduled on 𝑀𝑙 (𝑙 ∈ {1, 2, . . . , 𝑚}). Let 𝑋 be
the set of all vectors 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) with 𝑥𝑗 = 𝑙, 𝑗 =

1, 2, . . . , 𝑘, 𝑙 = 1, 2, . . . , 𝑚. Set

𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,

𝐹
𝑙
𝑗 (𝑥) =

𝑎

𝑠𝑙
10
𝑙1+𝑗𝑙2

+ (1 +
𝛼(𝑗−1)𝑏+1

𝑠𝑙
)𝐹
𝑙
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙,

(36)
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where 𝐹𝑖𝑗(𝑥) is the magnified workload of machine𝑀𝑖 for the
jobs among 𝐽1, 𝐽2, . . . , 𝐽𝑗.

Then problem 𝑄𝑚 | p-batch, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐿𝐶max
is reduced to the following problem:

Minimize𝐺 (𝑥) = max {𝐹
𝑖
𝑘 (𝑥) | 𝑖 = 1, 2, . . . , 𝑚} for 𝑥 ∈ 𝑋.

(37)
Now, we propose the fully polynomial time approxima-

tion scheme.

Algorithm 𝐻
𝑄
𝜀 . Consider the following steps.

Step 1. Reindex the jobs in non-increasing order of their
deteriorating rates such that 𝛼1 ≥ 𝛼2 ≥ ⋅ ⋅ ⋅ ≥ 𝛼𝑛.

Step 2. Form batches 𝐵1, . . . , 𝐵𝑘 by using Algorithm FBLDR,
where 𝑘 = ⌈𝑛/𝑏⌉.

Step 3. Regard batch 𝐵𝑗 as an aggregate job with 𝑃(𝐵𝑗) = 𝑎 +

𝛼(𝑗−1)𝑏+1𝑡 (𝑗 = 1, . . . , 𝑘).

Step 4. Set 𝑌0 = {(

𝑘
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, 0, . . . , 0)}, 𝑗 = 1, and 𝐹

𝑖
0(𝑥) = 0 for 𝑖 =

1, 2, . . . 𝑚.

Step 5. For the set 𝑌𝑗−1, generate the set 𝑌󸀠𝑗 by adding 𝑙 (𝑙 =

1, 2, . . . , 𝑚) in position 𝑗 of each vector from 𝑌𝑗−1. Calculate
the following for any 𝑥 ∈ 𝑌

󸀠
𝑗 , without loss of generality,

assuming 𝑥𝑗 = 𝑙. Set

𝐹
𝑖
0 (𝑥) = 0 𝑖 = 1, 2, . . . , 𝑚,

𝐹
𝑙
𝑗 (𝑥) =

𝑎

𝑠𝑙
10
𝑙1+𝑗𝑙2

+ (1 +
𝛼(𝑗−1)𝑏+1

𝑠𝑙
)𝐹
𝑙
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙,

𝐹
𝑖
𝑗 (𝑥) = 𝐹

𝑖
𝑗−1 (𝑥) ⋅ 10

𝑙2 for 𝑥𝑗 = 𝑙 𝑖 ̸= 𝑙.

(38)

If 𝑗 = 𝑘, then set 𝑌𝑘 = 𝑌
󸀠
𝑘, and go to Step 6.

If 𝑗 < 𝑘, then set 𝜌 = (𝜀/(2(𝑘 + 1))), and perform the
following computation.

Call Partition (𝑌
󸀠
𝑗 , 𝐹
𝑖
𝑗, 𝜌) (𝑖 = 1, . . . , 𝑚) to partition the set

𝑌
󸀠
𝑗 into disjoint subsets 𝑌

𝐹𝑖

1 , 𝑌
𝐹𝑖

2 , . . . , 𝑌
𝐹𝑖

𝑘
𝐹𝑖
.

Divide set 𝑌
󸀠
𝑗 into disjoint subsets 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

=

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
, 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . . ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 .

For each nonempty subset 𝑌𝑏1⋅⋅⋅𝑏𝑚
, choose a vector 𝑥

(𝑏1 ⋅⋅⋅𝑏𝑚)

such that

𝐹
𝑙
𝑗 (𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚)) = min { max

𝑖=1,...,𝑚
𝐹
𝑖
𝑗 (𝑥) | 𝑥 ∈ 𝑌𝑏1 ⋅⋅⋅𝑏𝑚

} . (39)

Set 𝑌𝑗 := {𝑥
(𝑏1 ⋅⋅⋅𝑏𝑚) | 𝑏1 = 1, . . . , 𝑘𝐹1 ; . . . ; 𝑏𝑚 = 1, . . . , 𝑘𝐹𝑚 , and

𝑌
𝐹1

𝑏1
⋂ ⋅ ⋅ ⋅ ⋂𝑌

𝐹𝑚

𝑏𝑚
̸= 𝜙}, and 𝑗 = 𝑗 + 1. Repeat Step 5.

Step 6. Select set 𝑥
0

∈ 𝑌𝑘 such that 𝐺(𝑥
0
) =

min𝑥∈𝑌𝑘{max𝑖=1,...,𝑚𝐹
𝑖
𝑘(𝑥)}.

Let 𝐾 = log(max{⌈𝑛/𝑏⌉, (1/𝜀), 𝐷max, 1 + 𝐸max, 10
𝑙1 , 10
𝑙2}),

where 𝐷max = max𝑖=1,...,𝑚{𝑎/𝑠𝑖} and 𝐸max =

max𝑗=1,...,𝑛;𝑖=1,...,𝑚{𝛼𝑗/𝑠𝑖}.
We get the following theorem.

Theorem 17. Algorithm 𝐻
𝑄
𝜀 finds 𝑥

0
∈ 𝑋 for 𝑄𝑚 |

𝑝-𝑏𝑎𝑡𝑐ℎ, 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡, 𝑏 < 𝑛 | 𝐿𝐶max such that 𝐺(𝑥
0
) ≤ (1 +

𝜀)𝐺(𝑥
∗
) in 𝑂((⌈𝑛/𝑏⌉)

(2𝑚+1)
𝐾
𝑚+1

/𝜀
𝑚
), where 𝑥

∗ is an optimal
solution.

5. Conclusion

In this paper, we consider the parallel-batch scheduling with
𝑝𝑗 = 𝑎𝑗 + 𝛼𝑡 and 𝑝𝑗 = 𝑎 + 𝛼𝑗𝑡; the objective is to minimize
the makespan. For these two models of deterioration, we
present𝑂(𝑛 log 𝑛) algorithms for the single-machine problem
and propose fully polynomial time approximation schemes to
solve the identical-parallel-machine problem and uniform-
parallel-machine problem, respectively.

For future research, it is worth considering other objec-
tives.
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