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A permanent magnet synchronous motor (PMSM) model with smooth air gap and an exogenous periodic input is introduced and
analyzed in this paper. With a simple mathematical transformation, a new nonautonomous Lorenz-like system is derived from this
PMSMmodel, and this new three-dimensional system can display the complicated dynamics such as the chaotic attractor and the
multiperiodic orbits by adjusting the frequency and amplitude of the exogenous periodic inputs.Moreover, this new system shows a
double-deck chaotic attractor that is completely different from the four-wing chaotic attractors on topological structures, although
the phase portrait shapes of the new attractor and the four-wing chaotic attractors are similar. The exotic phenomenon has been
well demonstrated and investigated by numerical simulations, bifurcation analysis, and electronic circuit implementation.

1. Introduction

Due to simple structure, low manufacturing cost, and high
performance [1], permanent magnet synchronous motors
(PMSMs) are widely used in modern direct drive motor
systems [2, 3], power conversion [4, 5], computer disk drives
[6, 7], and domestic applications [8, 9]. Compared with DC
motors and induction motors, PMSMs have the advantages
of high speed operational capability, precise torque control,
high torque to current ratio, high power to weight ratio,
high efficiency, and high robustness to exogenous distur-
bances [10]. Recently, the studies about the secure and stable
operation of PMSMs, which is an essential requirement of
industrial automation manufacturing, have attracted more
and more attentions. Some research results showed that
PMSMs are chaotic when system parameters change within
certain ranges [11–13]. The chaotic behavior in PMSMs,
which appears mainly as intermittent ripples of torque,

low-frequency oscillations of rotational speed of motor, can
extremely destroy the stability of the motor and even induce
drive system collapse.

Because the mathematical model for a PMSM is a typical
nonlinear system and it cannot be analyzed based on the lin-
ear theory, the modern nonlinear theory such as bifurcation
and chaos, which has been widely used to study the stability
of nonlinear systems, can be used to study the permanent
magnet machines. Li et al. deeply analyzed the bifurcation
and chaos in PMSM with smooth air gap in various cases
that stator voltages on rotating frame and external load torque
are equal to zero in whole or part [11]. However, their studies
about the nonzero external inputs of PMSM are only limited
to DC power supply, without considering AC power supply.
For the PMSMwith nonsmooth air gap, Jing et al. studied the
complex dynamics including the stability, the pitchfork, and
Hopf bifurcations using the bifurcation theory and the center
manifold [14]. In order to avoid chaos in PMSM, Choi gave
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an adaptive control scheme for the permanent magnets
based on the bifurcation analysis [15, 16]. Therefore, the
above research results [11, 14–16] show that the permanent
magnet machines can experience chaotic oscillations at some
situations.

Because the chaotic dynamical behavior has been widely
observed in practice, how to apply chaos to the engineering
practice and generate strange chaotic attractors with complex
topological structure by a simple dynamical system has
become the focus in the field of nonlinear dynamics recently.
Moreover, sometimes it is necessary to avoid the chaotic
dynamics in some systems. Hence, it would be useful to
investigate the dynamical behavior of PMSM and find out
whether there are strange attractors. In this paper, the focuses
of this study are as follows:

(1) investigating the dynamical behavior of a PMSM
model with smooth air gap with external periodic
excitation to the 𝑞-axes stator on rotating frame,
which has not been carefully studied;

(2) analyzing the bifurcation and chaos of the PMSM
model by phase portrait, Poincare map, Lyapunov
exponents, and bifurcation diagram, which are
important tools to find strange double-deck butterfly
chaotic attractors and multiperiodic orbits and
analyze the dynamical behavior of the PMSMmodel;

(3) analyzing the power spectra of the PMSMmodel since
the power spectrum analysis is an effective tool to
explore the frequency components of state variable;

(4) besides, validating the findings by the simulations and
experimental circuits.

This paper is organized as follows. In Section 2, the
mathematical model for a PMSM with external excitations is
proposed. Section 3 focuses on the bifurcation and chaos in
the nonautonomous PMSM system by the methods of phase
portrait, Poincare map, Lyapunov exponents, bifurcation
diagram, and power spectrum. In Section 4, an experimental
circuit is implemented to verify the obtained numerical
results. Finally, we draw the conclusions.

2. The Mathematical Model

The 𝑑-𝑞 machine model for a permanent magnet syn-
chronous motor (PMSM) in the rotor rotating reference
frame [11, 17] is characterized by

𝑑𝑖𝑑

𝑑𝑡
=
1

𝐿𝑑

(−𝑅𝑖𝑑 + 𝐿𝑞𝜛𝑖𝑞 + 𝜐𝑑)

𝑑𝑖𝑞

𝑑𝑡
=
1

𝐿𝑞

(−𝑅𝑖𝑞 − 𝐿𝑑𝑖𝑑𝜛 − 𝜓𝑟𝜛 + 𝜐𝑞)

𝑑𝜛

𝑑𝑡
=
1

𝐽
[𝑛𝜓𝑟𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞 − 𝐵𝜛 − 𝑇𝐿] ,

(1)

where 𝑖𝑑, 𝑖𝑞, and 𝜛 are the state variables of the nonlinear
dynamical system (1). The state variables 𝑖𝑑, 𝑖𝑞, and 𝜛 and

system parameters 𝐿𝑑, 𝐿𝑞, 𝑅, 𝐽, 𝐵, 𝑇𝐿, 𝑛, and 𝜓𝑟 represent the
physical meanings, respectively, as follows:

𝑖𝑑, 𝑖𝑞: 𝑑- and 𝑞-axes stator currents on rotating frame;
V𝑑, V𝑞: 𝑑- and 𝑞-axes stator voltages on rotating frame;
𝐿𝑑, 𝐿𝑞: 𝑑- and 𝑞-axes stator self-inductances;
𝜛: rotor speed at electrical angle;
𝑅: stator per-phase residence;
𝐽: polar moment of inertia;
𝐵: viscous damping coefficient;
𝑇𝐿: external load torque;
𝑛: number of pole-pairs;
𝜓𝑟: permanent magnetic flux.

If 𝐿𝑑 = 𝐿𝑞 = 𝐿, the system (1) is the model of smooth
air-gap synchronous machines. Applying a time-scaling
transformation 𝑡 = 𝜏�̃�, where parameter 𝜏 = 𝐿/𝑅 is a scaling
factor, and further letting

�̃�𝑑 = 𝜏
𝑛𝜓𝑟

𝐵
𝑖𝑑, �̃�𝑞 = 𝜏

𝑛𝜓𝑟

𝐵
𝑖𝑞, 𝜛 = 𝜏𝜛, (2)

the system (1) can be rewritten as

𝑑�̃�𝑑

𝑑�̃�
= − �̃�𝑑 + �̃�𝑞𝜛 + 𝜐𝑑

𝑑�̃�𝑞

𝑑�̃�
= − �̃�𝑞 + 𝛾𝜛 − �̃�𝑑𝜛 + 𝜐𝑞

𝑑𝜛

𝑑�̃�
= 𝑎 (�̃�𝑞 − 𝜛) − �̃�𝐿.

(3)

Here the updated parameters are

𝛾 = −𝜏
𝑛𝜓
2
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2
𝑇𝐿

𝐽
.

(4)

Let 𝑥 = 𝜛, 𝑦 = �̃�𝑞, and 𝑧 = �̃�𝑑; one obtains that

�̇� = 𝑎 (𝑦 − 𝑥) − �̃�𝐿

̇𝑦 = 𝛾𝑥 − 𝑦 − 𝑥𝑧 + 𝜐𝑞

�̇� = − 𝑧 + 𝑥𝑦 + 𝜐𝑑.

(5)

If �̃�𝐿 = 𝜐𝑞 = 𝜐𝑑 = 0, the system (5) evolves into the famous
Lorenz system with the parameter 𝜌 = 1, whose dynamical
behavior has been deeply explored [18, 19]. For the system
(5) with 𝜐𝑞 ̸= 0, there are two main cases: �̃�𝐿 = 𝜐𝑑 ̸= 0 and
�̃�𝐿 = 𝜐𝑑 = 0. According to the numerical simulations and
experimental investigations, it was found that the dynamics
of the system (5) with 𝜐𝑞 ̸= 0 and �̃�𝐿 = 𝜐𝑑 ̸= 0 is similar to that
of the system (5) with 𝜐𝑞 ̸= 0 and �̃�𝐿 = 𝜐𝑑 = 0. For the ease of
analysis, this paper will only focus on the case with 𝜐𝑞 ̸= 0 and
�̃�𝐿 = 𝜐𝑑 = 0, and a new type of double-deck butterfly chaotic
attractor is obtained by adjusting the control signal 𝜐𝑞, which
has not been found in the existing literatures.
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3. Bifurcation and Chaos Analysis
of the PMSM Model

To ensure that the system (5) can be realized by electrical
circuits, the variation of state variables 𝑥, 𝑦, and 𝑧 of the
system (5) must be limited into a proper range by the
method of linear transformation and the linear transfor-
mation (𝑥, 𝑦, 𝑧) → (10𝑥, 10𝑦, 100𝑧) can be used without
changing the properties of the original system. Then, the
system (5) can be changed to

�̇� = 𝑎 (𝑦 − 𝑥)

̇𝑦 = 𝛾𝑥 − 𝑦 − 100𝑥𝑧 + 0.1𝜐𝑞

�̇� = − 𝑧 + 𝑥𝑦,

(6)

where 𝜐𝑞 = 𝐴 sin(𝜔𝑡). 𝐴 and 𝜔 denote the amplitude
and angular frequency of the driving signal 𝜐𝑞, respectively.
To analyze the system (6), there are many methods such
as Lyapunov exponent spectrum [20], bifurcation diagram,
phase portrait, and power spectrum, and they can be used
to analyze the dynamics of nonlinear systems. The fourth-
order Runge-Kutta method is used to solve the system (6) in
MATLAB.

3.1. Phase Portraits and Poincare Sections. Considering the
system (6) with 𝜐𝑞 = 𝐴 sin(𝜔𝑡), we set 𝑎 = 10 and 𝛾 = 100,
respectively. Varying parameters 𝐴 and 𝜔, the dynamics of
the system (6) is to be explored.

When the amplitude 𝐴 and the angular frequency 𝜔 of
the driving signal 𝜐𝑞 are not equal to zero, the system (6)
is a nonautonomous three-dimensional system. By adjusting
parameters 𝐴 and 𝜔, a new chaotic attractor, which was not
found in the existing dynamical systems, occurs when 𝐴 =
0.2 and 𝜔 = 0.6, and meanwhile, uncommon multiperiodic
orbits are observed when 𝐴 = 1 and 𝜔 = 0.6.

Case 1 (𝐴 = 0.2 and 𝜔 = 0.6). When 𝐴 = 0.2 and 𝜔 = 0.6,
the system is chaotic, but the new chaotic attractor is different
from the famous attractor of the Lorenz-family systems [21]
and is different from any other attractors contained in the
known nonlinear dynamical system. Currently, four-wing
chaotic attractors have been investigated bymany researchers
since the four-wing chaotic attractor shows complicated
dynamics. From the shape of attractor shown in Figure 2, it
can be seen that the new attractor is similar to four-wing
chaotic attractor [22, 23], but the topologies are completely
different between the new attractor and the known four-
wing chaotic attractors since the new attractor contains two
double-wing chaotic attractors, and we call this new chaotic
attractor “double-deck butterfly chaotic attractor.” To check
whether the system (6) is really chaotic when 𝐴 = 0.2 and
𝜔 = 0.6, we calculated the Lyapunov exponents of the system
(6) via the Jacobian method and obtained the Lyapunov
exponents (0.042, 0, −0.341, −11.701). Owing to the system
(6) being a three-dimensional nonautonomous system, the
calculating results show four exponents, among which one is
greater than zero, so the system (6) is chaotic.

From Figures 1(a)–1(d), it is very clear that the new
chaotic attractor is constructed by double-deck butterfly
chaotic attractor, which is different from the common four-
wing chaotic attractors. The projections of phase portrait on
𝑥-𝑦, 𝑥-𝑧, and 𝑦-𝑧 plane are shown in Figures 1(a)–1(c) and
the 3D shape is in Figure 1(d), respectively.

There is another method to describe the dynamical
behavior of the system (6), that is, Poincaremap. Via Poincare
sections, we can understand the motion of phase trajectories.
Generally, the Poincare maps present several points that
mean that the dynamics is periodic orbits, and countless
points that form a closed curve mean that the dynamics
is quasiperiodic orbits, and countless points that are self-
similarly distributed at a specific region and cannot form one
or more closed curves mean that the dynamics is chaotic.

On Case 1, the corresponding Poincare maps of the
system (6) projected on different planes are exhibited in
Figures 2(a)–2(c). Since the system (6) is chaotic, the distinct
points on the Poincare sections cannot form one or more
closed curves.

Case 2 (𝐴 = 1 and 𝜔 = 0.6). When 𝐴 = 1 and 𝜔 =
0.6, a multiperiodic orbit can be found, as shown in Figures
3(a)–3(c). It can be seen from Figure 3 that the type of
multiperiodic orbit has the feature of helix which is rare and
different from that of periodic orbits in the known dynamical
systems.

3.2. Analysis of Lyapunov Spectra and Bifurcation Diagrams.
The observations in Section 3.1 are several cases under dif-
ferent parameters. In order to deeply explore the dynamics
of the system (6) in a fixed parameter range, it is necessary
to investigate the system (6) using Lyapunov spectra and
bifurcation diagrams. For a nonlinear dynamical system, the
largest Lyapunov exponent can denote dynamical behavior.
The largest Lyapunov exponent is expressed by𝜆max, and then
𝜆max > 0, = 0 and < 0 represent the dynamics of the system
to be chaos, periodic orbit, and convergence, respectively.

For 𝜐𝑞 = 𝐴 sin(𝜔𝑡), we set that the amplitude 𝐴 is in
[0, 0.6] and the angle frequency 𝜔 is in [0.4, 1], respectively.
Fixing 𝐴 = 0.2 and changing the angle frequency 𝜔, the
dynamical behavior of the system (6) can be shown in
Figure 4. Similarly, fixing𝜔 = 0.6 and adjusting the amplitude
𝐴, the dynamical behavior of the system (6) is exhibited
in Figure 5. Here, Figures 4(a) and 5(a) are the bifurcation
diagrams of the state variable 𝑥 for increasing 𝜔 and 𝐴,
respectively. The corresponding largest exponent spectra are
shown in Figures 4(b) and 5(b). From Figures 4 and 5, we can
investigate the dynamics of the system (6) along with 𝐴 and
𝜔, respectively.

Further, it is necessary to characterize the dynamical
behavior of the system (6) if parameters 𝐴 and 𝜔 simultane-
ously change.Therefore, we give a two-dimensional dynamics
distribution shown in Figure 6 along with the change of 𝐴 in
[0, 0.6] and 𝜔 in [0.4, 1], where the dark-cyan region denotes
chaotic motion and the magenta region represents periodic
motion.

3.3. Power SpectraAnalysis. Thedifferent dynamics subjected
to different system parameters are described by the phase
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Figure 1: Phase portraits of the system (6) with 𝐴 = 0.2, 𝜔 = 0.6, 𝑎 = 10, and 𝛾 = 100: (a) 𝑥-𝑦 plane; (b) 𝑥-𝑧 plane; (c) 𝑦-𝑧 plane; (d) 𝑥-𝑦-𝑧
space.

portraits and the bifurcation diagrams that can be used to
intuitively understand dynamics of the system (6). However,
the phase portraits and the bifurcation diagrams cannot pro-
vide more information concerning frequency characteristics
of a nonlinear system, and the power spectrum analysis is a
useful tool to explore frequency characteristics.

As we all know, the power spectrum of periodic motion
gives peaks at a primary frequency and its harmonics, and
the power spectrum of quasiperiodic motion gives peaks
at linear combinations of two or more irrationally related
frequencies, and the power spectrum of chaotic motion gives
continuous broadband components to the spectrum. When
𝐴 = 1 and 𝜔 = 0.6, the time series and power spectrum
of variable 𝑥 of the system (6) are shown in Figures 7(a)
and 7(b), respectively. From Figure 7(a), it is obvious that
the time series of variable 𝑥 is periodic and the frequency
𝑓 is approximately equal to 9/95 ≈ 0.095Hz, which is
in concordance with 𝜔 = 0.6; namely, 𝑓 = 𝜔/2𝜋 ≈

0.095Hz. Moreover, the primary frequency 0.095Hz and
its higher harmonics 0.287Hz, 0.475Hz, 0.67Hz, 0.86Hz,

1.05Hz, 1.24Hz, and 1.43Hz are shown in Figure 7(b) which
further validate that the dynamics of the system (6) is
periodic.

Chaotic signal, in contrast, has the properties of nonpe-
riodicity, so the power spectrum is a continuous broadband.
For the system (6), if𝐴 = 0.2 and 𝜔 = 0.6, the time series and
power spectrum of variable 𝑥 are shown in Figures 8(a) and
8(b), respectively. Figure 8(a) shows random-like dynamics
of variable 𝑥 and the corresponding power spectrum shown
in Figure 8(b) is continuous spectrum with noise-like back-
ground, which is one of the characteristics of chaotic signal.
Through further analyzing of the power spectrum shown
in Figure 8(b) and comparing it with the periodic power
spectrum shown in Figure 7(b), it is easy to find that the
primary frequency and its higher harmonics of the periodic
signal generated from the system (6) at parameters 𝐴 = 1
and 𝜔 = 0.6 are still existing and act as the salient frequency
components, but some new frequency components between
the primary frequency and its higher harmonics are excited
because of the change of the parameters of the driving signal
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𝜐𝑞. The excited frequency components are filled in other
spectra of frequency, which forms a continuous frequency
band. Because of its inadequate information of chaotic time
series, richer frequency components are not wholly exhibited
in Figure 8(b).

4. Circuit Implementation
and Experimental Results

4.1. Experimental Circuit. A simpler implementation of a
chaotic system can be achieved by an electronic circuit.
With the help of the oscillators, the dynamics of many
chaotic systems constructed by electronic circuit can be well
demonstrated, which has been deeply researched in many
chaotic systems. How to realize a chaotic experimental circuit
has been investigated fully in [24, 25]. Here, the method is
not introduced in details, but the schematic circuit and some
necessary explanations are given.

The analog circuit for the nonautonomous system (6) is
shown in Figure 9 and this circuit consists of three channels
to conduct the integration of the three state variables𝑥,𝑦, and

𝑧, respectively.The operational amplifiers LF347 (A1–A6) and
associated circuitry perform the basic operations of addition,
subtraction, and integration, and the values of resistors and
capacitors are labeled in Figure 9. The nonlinear terms of the
system (6) are implemented with two analogue multipliers
AD633 (U1 and U2).

The periodic excitation signal 𝜐𝑞 = 𝐴 sin(𝜔𝑡) is directly
derived from a function generator YB1638. The input voltage
frequency 𝑤 of the periodic excitation signal is 385Hz and is
fixed. It is necessary to point out that the angular frequency
𝜔 = 2𝜋𝑓, where 𝑓 is the frequency, can be directly and freely
changed in the experimental environment.

Therefore, it is very convenient for us to change the
value of parameters 𝐴 and 𝜔 by adjusting the corresponding
knobs in control panel.When we adjusted the amplitude𝐴 of
the function generator YB1638, rich bifurcation phenomena
emerged in the analogue oscilloscope YB4360.

4.2. Experimental Results. The bifurcation processes of chaos
and periodic orbits can be obtained by changing the mag-
nitude 𝐴 of YB1638, and the corresponding strange chaotic
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Figure 9: Circuit implementation of the system (6).

attractors and periodic orbits are shown in Figures 10(a)–
10(c) and Figures 11(a)–11(c). As compared with Figures 1(a)–
1(c) and Figures 3(a)–3(c), a good qualitative agreement
between the numerical simulation and the experimental data
was obtained. All results were recorded by YB4360.

But it should be pointed out that the obtained experi-
mental results given above are not exactly the same as the
numerical solutions in MATLAB even if the parameters were
the same, since the chaos pattern is very sensitive to tiny
changes in initial conditions (or during the evolution) and
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(a) (b)

(c)

Figure 10: Chaotic motion shown in the phase portraits of the system (6) with 𝐴 = 0.8V and 𝑓 = 385Hz: (a) 𝑥-𝑦 plane; (b) 𝑥-𝑧 plane; (c)
𝑦-𝑧 plane.

(a) (b)

(c)

Figure 11: Multiperiodic orbit shown in the phase portraits of the system (6) with 𝐴 = 1.4V and 𝑓 = 385Hz: (a) 𝑥-𝑦 plane; (b) 𝑥-𝑧 plane;
(c) 𝑦-𝑧 plane.



10 Abstract and Applied Analysis

themodeling errors and environmental noise are unavoidable
in hardware experiments.

5. Conclusions

In this paper, we put the emphasis on the investigation
of a PMSM model with smooth air gap. By setting 𝜐𝑞 =
𝐴 sin(𝜔𝑡), a new nonlinear systemhaving complex dynamical
behavior was obtained.The resulting nonautonomous system
with given parameters, which can be adjusted shrewdly
and accurately by controlling the frequency and amplitude
of the external periodic excitation, has shown significant
characteristics that there exist a strange double-deck butterfly
attractor and multiperiodic orbits. These phenomena have
also been validated by the numerical simulations and an
electronic circuit, and the experimental circuit showed that
the phenomenon really exists in nature. Moreover, because
the obtained chaotic attractor has amore complex topological
structure that is not found in existing systems and is different
from the existing four-wing chaotic attractors, the system (6)
may have a good application value in the field of information
technology such as secure communication and encryption.
In the future we will conduct research on how to control the
PMSM to escape from the chaotic behavior to protect the
motors in the applications.
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