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An investigation on qualitative dynamics in a voltage-current dual-loop controlled flywheel energy storage system (FESS) operating
in discharge mode is presented in this paper, providing novel insights into the effect of two-timescale characteristics on the safety
and stability of energy transmission of FESS. Based on singular perturbation theory, a two-timescale approach is proposed to
separate the FESS into the fast and slow subsystems. Stability analysis of the transient fixed points confirms the effects of systemic
parameters on FESS’s dynamics and indicates that the FESS shifts from the spiking state to the quiescent state when the slow variable
crosses the bifurcation point of the fast subsystem.Mechanism analysis reveals that the root cause of the qualitative dynamics is the
voltage instability of the FESS. Moreover, the feasibility boundaries of key parameters are derived, and application requirements
of the proposed approach are also discussed, guiding the extension of the approach to engineering applications and solving the
dynamics analysis problem to some extent at a theoretical analysis level. Constant voltage discharge experiment is performed based
on the FESS test bench built in Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, which validates the
theoretical results.

1. Introduction

Permanent magnet (PM) brushless dc motor (BLDCM) con-
trolled FESS, with the advantages of high density, low main-
tenance, long lifetime, and good compactness, has become a
new trend for energy storage, applied more and more in the
uninterruptible power supply, rail transportation, and smart
grids [1, 2]. As shown in Figure 1, the FESS mainly consists
of two self-contained parts, that is, the mechanical part
(flywheel motor system) and the electrical part (power drive
system). In general, the flywheelmotor is controlled by power
electronic circuits. Due to the existence of the intrinsic non-
linearity, various nonlinear dynamics occur during the oper-
ation of FESS when the system state changes, which has an
influence on the safety and stability of energy transmission.

So far, rotor dynamic problems of FESS’s mechanical part
have been seen as a cause of decreased rotor dynamic perfor-
mance and reduced stability [3–9]. However, few researchers
have revealed that, as a strongly coupled system, FESS has

more complex nonlinear dynamics due to the interaction
and difference between themechanical part and the electrical
part.This complex nonlinear dynamics hasmuchmore direct
influence on the safety and stability of energy transmission
and thus affects the safety and stability of FESS. Zhang et al.
have investigated the nonlinear dynamics of FESS from the
viewpoint of the interaction between themechanical part and
the electrical part [10]. Turning to the difference of the two
parts we find that the electrical variables have significantly
faster dynamics than the mechanical variables. As such, the
dynamics of the voltage and current are faster than that of
the rotate speed of flywheel, making the FESS be a typical
two-timescale system [11]. It is well known that bursting
phenomenon is observed when a slow variable controls
the fast dynamics in some two-timescale systems such as
neuronal systems and biological systems [12, 13]. Bursting
is a state of switching between the spiking state (SP) and
the quiescent state (QS). Generally, QS indicates all the
variables are at rest or exhibit small amplitude oscillations,
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Figure 1: FESS test bench. (a) Flywheel motor system, (b) power drive system.

while SP indicates variables may behave in large amplitude
oscillations.

In this paper, we aim to present evidences that as FESS
operating in discharge mode, a small change in parameter
values around the bifurcation points of FESS’s fast system
will lead to qualitative dynamics of the full-system, and
investigate the effect of two-timescale characteristics on such
dynamics, which is similar to nonrecurrent bursting. The
analysis of dynamical systems with two timescales is a subject
whose history interweaves three different viewpoints: non-
standard analysis [14], classical asymptotics [15], and geomet-
ric singular perturbation theory [16]. The first two methods
lead to relatively large errors, and the geometric singular per-
turbationmethod is used to get the analytical solution of sim-
ple multiple timescale systems. The two-timescale approach
proposed by Rinzel [17] is the classic approach to deeply
investigate the two-timescale bifurcation dynamics, which
gives a full description of the steady state, and periodic solu-
tion set of the fast subsystem, reflecting the global bifurcation
structure of the fast subsystem with the slow variables treated
as parameters [18]. First, stability analysis of the transient
fixed points is proposed to study the bifurcation set of the
fast subsystem, showing that as the slow variable varies, the
fast subsystem loses stability from the originally stable state
to Hopf bifurcation, and the dynamical evolution of the full-
system is close in accordance with that of the fast subsystem.
Not only reveling that the operation state of the FESS shifts
when the slow variable crosses the bifurcation point of the
fast subsystem, but also giving away to predict the occurrence
and evolution of qualitative dynamics of FESS in discharge
mode. Then, the bifurcation mechanism analysis of the fast
subsystem is proposed, offering an intuitive explanation of
the origin of the nonrecurrent dynamics of the full-system.
Furthermore, the feasibility regions are shown and provide
instructions to parameters setting of FESS. Finally, the
application requirements of the proposed approach are also
discussed, guiding the extension of the approach to dynamics
analysis of other electromechanical coupling systems.

This paper is organized as follows. In Section 2, the nor-
malized dynamicmodel of FESS is established and numerical
simulations have been taken. In Section 3, the two-timescale
approach based on singular perturbation theory is proposed

and applied. A brief analysis of the application of the pro-
posed approach is shown in Section 4. Also, the observed
instability phenomena are observed experimentally, as pre-
sented in Section 5. Finally, Section 6 concludes this paper.

2. Modelling and Two-Timescale
Characteristics of FESS

As shown in Figure 2, the modelling of FESS includes the fly-
wheel motor system (the flywheel rotor driven by BLDCM)
and the power drive system (the electrical subsystem and
feedback control subsystem). The flywheel motor system is
designed with a full bridge (IGBTs) at its output electrical
terminals and DC-DC converter at the dc link. While diodes
perform uncontrolled rectification, the DC-DC converter
adjusts the voltage of the BLDCM in order to make it suitable
for the load. Electronic commutation is achieved using a
microprocessor-based controller with a Hall-effect position
and a current sensor as input to generate gating signals for
IGBTs.

2.1. Modelling of FESS. Before modeling the FESS, five
assumptions of the flywheel motor system are described as
follows: (a) the saturation of the core is neglected; (b) the
losses of eddy and hysteresis are ignored; (c) the distribution
of air gap is uniform; (d) the self-inductance and mutual
inductance among the windings are independent of the
position of the rotor; (e) ignore the commutation process.
The physical structure of the flywheel motor system is shown
in Figure 3(a), while the schematic diagram is shown in
Figure 3(b). It has been assumed that the phase resistance
𝑟
𝑚
, the self-inductance 𝐿, andmutual inductance𝑀 of all the

windings are equal. Assuming further that there is no change
in the rotor reluctancewith angle, hence, the circuit equations
of the three windings in phase variables are
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Figure 2: Structure of the FESS.

where 𝑢
𝐴
, 𝑢
𝐵
, and 𝑢

𝐶
are phase voltages, 𝑖

𝐴
, 𝑖
𝐵
, and 𝑖

𝐶
are

phase currents, and 𝑒
𝑎
, 𝑒
𝑏
, and 𝑒

𝑐
are the induced back EMFs.

For 𝑖
𝐴
+ 𝑖
𝐵
+ 𝑖
𝐶

= 0 and denoting 𝐿 − 𝑀 as 𝑙
𝑚
, then the

coupled circuit of the stator windings in terms of themachine
electrical constants can be derived in Figure 3(c). The circuit
equation can be written as
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(2)

According to the switching pattern (commutation func-
tion), only two phases are active at the same time, while the
third one is silent (Figure 3(d)) [19]. For example, the voltage
equation during the operation of phase𝐴-𝐵 can be written as

𝑢
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(3)

where 𝐾
𝑒
, 𝐵V, 𝐽, 𝑅𝑚 = 2𝑟

𝑚
, and 𝐿

𝑚
= 2𝑙
𝑚
denote line back-

EMF constant, friction coefficient, moment of inertia, line
resistance, and line inductance, respectively. Considering the
equation of motion for BLDCM and treating the susceptibil-
ity and flux as constant, the differential equations for flywheel
motor system are derived as
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(4)

where𝐾
𝑚
denotes torque constant and the angular velocity𝜔,

the phase current 𝑖
𝑎
, and the motor voltage 𝑢

2
are state varia-

bles.

Table 1: Nomenclature for state variables.

State variables (with dimensions) State variables (dimensionless)
Inductor current 𝑖

𝐿
𝑋
1
(𝑖
𝐿
)

Load voltage 𝑢
1

𝑋
2
(𝑢
1
)

Motor voltage 𝑢
2

𝑋
3
(𝑢
2
)

Phase current 𝑖
𝑎

𝑋
4
(𝑖
𝑎
)

Angular velocity 𝜔 𝑋
5
(𝜔)

Outer corrector output 𝑥
1𝑐

𝑋
6
(𝑥
1𝑐
)

Inner corrector output 𝑥
2𝑐

𝑋
7
(𝑥
2𝑐
)

Table 2: Nomenclature for abbreviations.

Systematic matrix coefficient Input matrix coefficient
𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
, 𝑎
7
, 𝑎
8
, 𝑎
9
, 𝑎
10
, 𝑎
11

𝑏
1
, 𝑏
2

As shown in Figure 4, the electrical subsystem include a
bidirectional DC-DC converter, which consists of a transfer
inductor 𝐿, capacitors 𝐶

1
and 𝐶

2
, IGBT 𝑉

1
with diode 𝑉𝐷

1
,

and IGBT 𝑉
2
with diode 𝑉𝐷

2
and a three-phase full bridge

converter which consists of IGBT-diode 𝑉𝑇
1−6

. Mechanical
energy is converted into electrical energy through the diodes
of the three-phase full bridge converter when electrical
energy is transmitted to the load via bidirectional DC-
DC converter and regulated as load demands. During the
discharge mode, the switching of 𝑉 and 𝑉𝐷 determines the
two different modes, which are Mode 1 (𝑛𝑇 < 𝑡 < 𝑛𝑇 + 𝑑𝑇)
when 𝑉

2
is on and 𝑉𝐷

1
is off and Mode 2 (𝑛𝑇 + 𝑑𝑇 <

𝑡 < (𝑛 + 1)𝑇) when 𝑉
2
is off and 𝑉𝐷

1
is on. A dual-

loop proportional-integral scheme is applied to regulate the
duty cycle of switches, of which the PI coefficients are (𝐾

𝑝V,
𝐾
𝑖V) and (𝐾

𝑝𝑖
, 𝐾
𝑖𝑖
). The sampling coefficients of voltage and

current are ℎV = 0.02424 and ℎ
𝑖
= 0.08.

Dimensionless parameters are introduced to put the
system into standard form.Define the nominal output voltage
as 𝑉ref, the nominal angular velocity as 𝜔ref, and the load
resistance as 𝑅. To be clear, the nomenclature for all var-
iables, abbreviations, and parameters are listed in Tables 1,
2, and 3. With these definitions, the other variables can be
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Table 3: Nomenclature for parameters with values.

Parameter Value
Voltage-loop 𝐾

𝑝V 60
Voltage-loop 𝐾

𝑖V 49
Current-loop 𝐾

𝑝𝑖
40

Current-loop 𝐾
𝑖𝑖

36
Nominal angular velocity 𝜔ref 800 rads−1

Transfer inductance 𝐿 0.7mH
Filter capacitance 𝐶

1
1mF

Filter capacitance 𝐶
2

1mF
Line resistance 𝑅

𝑚
0.5Ω

Line inductance 𝐿
𝑚

0.36mH
Torque constant 𝐾

𝑚
0.0673Nm/A

Line back-EMF constant 𝐾
𝑒

0.0625V/rads−1

Friction coefficient 𝐵V 0.0001Nm/rads−1

Moment of inertia 𝐽 0.123 kgm2

Load resistance 𝑅 5Ω

normalized on the basis of 𝑡 = √𝐿𝐶
1
𝜏, 𝑋
1
(𝑖
𝐿
) = 𝑖
𝐿
𝑅/𝑉ref,

𝑋
2
(𝑢
1
) = 𝑢

1
/𝑉ref, 𝑋3(𝑢2) = 𝑢

2
/𝑉ref, 𝑋4(𝑖𝑎) = 𝑖

𝑎
𝑅/𝑉ref,

𝑋
5
(𝜔) = 𝜔/𝜔ref, 𝑋6(𝑥1𝑐) = 𝑥

1𝑐
, 𝑋
7
(𝑥
2𝑐
) = 𝑥

2𝑐
, 𝑎
1

=

𝑅√𝐿𝐶
1
/𝐿, 𝑎
2
= −√𝐿𝐶

1
/(𝑅𝐶
1
), 𝑎
3
= √𝐿𝐶

1
/(𝑅𝐶
2
), 𝑎
4
=

𝑅𝐾
𝑒
𝜔ref√𝐿𝐶1/(𝑉ref𝐿𝑚), 𝑎5 = −𝑅

𝑚
√𝐿𝐶
1
/𝐿
𝑚
, 𝑎
6
= −𝑅√𝐿𝐶

1
/

𝐿
𝑚
, 𝑎
7
= −𝐾

𝑚
𝑉ref√𝐿𝐶1/(𝐽𝑅𝜔ref), 𝑎8 = −𝐵V√𝐿𝐶1/ 𝐽, 𝑎9 =

ℎV𝑉ref√𝐿𝐶1, 𝑎10 = −ℎ
𝑖
𝑉ref√𝐿𝐶1/𝑅, 𝑎11 = −𝐾

𝑝VℎVℎ𝑖𝑉ref√𝐿𝐶1,
𝑎
12
= 𝐾
𝑖Vℎ𝑖√𝐿𝐶1, 𝑏1 = 𝑎

9
, and 𝑏

2
= −𝑎
11
.

Then, the dimensionless switched dynamical equations of
the present FESS are

∙

X (𝜏) = A
1
X (𝜏) + B

1
, Mode 1,

∙
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(5)
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,

B
1
= Β
2
=

[

[

[

[
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[

[
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[

0

0

0

0

0

𝑏
1

𝑏
2

]

]

]

]
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]

]

]

]

,

X (𝜏)

= [𝑋1 (𝑖𝐿) 𝑋2 (𝑢1) 𝑋3 (𝑢2) 𝑋4 (𝑖𝑎) 𝑋5 (𝜔) 𝑋6 (𝑥1𝑐) 𝑋7 (𝑥2𝑐)]
𝑇

.

(6)

2.2. Dynamic Characteristics. The operation principle of
FESS is concerned with two processes: charge and discharge.
In the charge mode, the flywheel motor system is driven
by power grid and the electric energy is stored in the form
of mechanical energy. Once the unit receives a signal of
discharge, the flywheel rotor starts to decelerate and drives
the BLDCM to generate electricity. This paper reports that
the parametric regions have a significant effect on the two-
timescale characteristics of FESS and the discharge perfor-
mance degrades due to nonlinear dynamics when FESS’s
systemic parameters fall into a certain area.

Here, based on the exact state (5), a series of numerical
simulations are carried out to make an initial evaluation of
the possible dynamics. As shown in Table 3, the physical
system parameters are set according to the actual FESS, and
the PI control parameters of the feedback control subsystem
are carefully designed to maintain closed-loop performance
of the power drive system in spite of varying conditions.
For energy storage unit as FESS, the stability in conjunction
with the discharge targets is the primary consideration,
so we restrict our attention to the case when 𝑉ref varies,
while the other parameters are fixed. Essentially, for each
set of parameters, cycle-by-cycle time domain waveforms are
generated by solving the appropriate linear equation in a
subinterval of time, according to different switching states.
The waveforms for different 𝑉ref are shown in Figures 5–7.

Figure 5(a) shows that at 𝑉ref = 5V, 𝑋
1
(𝑖
𝐿
) takes a

combined oscillation of large and small amplitudes as the
flywheel rotor slows down. At the beginning of discharge,
𝑋
1
(𝑖
𝐿
) shows a quasiperiodic oscillation with a high-value

magnitude. Such oscillations decay rapidlywhen𝑋
5
(𝜔)drops

to 0.5; then 𝑋
1
(𝑖
𝐿
) becomes steady. The close-up views

are shown in Figures 5(b)-5(c). Dynamics of 𝑋
3
(𝑢
2
) and

𝑋
2
(𝑢
1
) as 𝑋

5
(𝜔) decreases are shown in Figure 5(d). For

𝑉ref = 10V and 𝑉ref = 15V shown in Figures 6-7, similar
oscillationswith different amplitudes and frequencies happen
to 𝑋
1
(𝑖
𝐿
). Although the control parameters are carefully

designed according to the closed-loop transfer function of the
power drive system, the interaction and difference between
themechanical part and the electrical part still cause complex
nonlinear dynamics. It can be seen that larger𝑉ref determines
stronger oscillations and 𝑋

5
(𝜔) changes much slower than

other state variables. This indicates the existence of two-
timescale characteristics in the discharge mode of FESS.
Moreover, the oscillations of the electrical variables weaken



6 Journal of Applied Mathematics

50 100 150 200 250
0.0

1.0

2.0
X

1
(i
L
)

an
d
X

5
(𝜔

)

X1(iL)

X5(𝜔)

𝜏

(a)

0.0

1.0

2.0

X
1
(i
L
)

an
d
X

5
(𝜔

)

X1(iL)

X5(𝜔)

𝜏

45 46 47 48 49 50

(b)

0.0

1.0

2.0

X
1
(i
L
)

an
d
X

5
(𝜔

)

X1(iL)

X5(𝜔)

𝜏

200 202 204 206

(c)

𝜏

50 100 150 200 250
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

X
2
(u

1
)

an
d
X

3
(u

2
)

X2(u1)

X3(u2)

(d)

Figure 5: Time histories at 𝑉ref = 5V, for (a)𝑋
1
(𝑖
𝐿
), (b) oscillatory state of (a), (c) steady state of (a), (d)𝑋

2
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3
(𝑢
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).

along with the decrease of the mechanical variables, which
will be proved related to the qualitative dynamics in the fol-
lowing section.

3. Singular Perturbation Theory-Based
Qualitative Dynamics Analysis

In this section, based on the singular perturbation theory,
the two-timescale approach is proposed to separate the full-
system into the fast and slow subsystems, providing a way
for analyzing the interaction of the two-timescale dynamics.
Treating the slow variable as constant, stability analysis of

the transient fixed points of the full-system is proposed to
describe the evolution of dynamics of the full process.

3.1. Two-Timescale Model. Averaged model approach is a
common method to analyze the physical mechanism of con-
verters which neglects the switching details but focuses on
the envelope of the dynamical motion.The following analysis
will adopt this approach. Set the duty ratio as 𝑑. Set all the
derivatives to zero, and we get
∙

𝑋
1
(𝐼
𝐿
) = (𝑑 − 1) 𝑎

1
𝑋
2
(𝑈
1
) + 𝑑𝑎

1
𝑋
3
(𝑈
2
) = 0,

∙

𝑋
2
(𝑈
1
) = (𝑑 − 1) 𝑎

2
𝑋
1
(𝐼
𝐿
) + 𝑎
2
𝑋
2
(𝑈
1
) = 0,
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Figure 6: Time histories at 𝑉ref = 10V, for (a)𝑋
1
(𝑖
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), (b) oscillatory state of (a), (c) steady state of (a), (d)𝑋
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∙

𝑋
3
(𝑈
2
) = 𝑎
3
𝑋
4
(𝐼
𝑎
) − 𝑑𝑎

3
𝑋
1
(𝐼
𝐿
) = 0,

∙

𝑋
4
(𝐼
𝑎
) = 𝑎
4
𝑋
5
(Ω) + 𝑎

5
𝑋
4
(𝐼
𝑎
) + 𝑎
6
𝑋
3
(𝑈
2
) = 0,

∙

𝑋
5
(Ω) = 𝑎

7
𝑋
4
(𝐼
𝑎
) + 𝑎
8
𝑋
5
(Ω) = 0,

∙

𝑋
6
(𝑋
1𝑐
) = − 𝑎

9
𝑋
2
(𝑈
1
) + 𝑎
9
= 0,

∙

𝑋
7
(𝑋
2𝑐
) = 𝑎
10
𝑋
1
(𝐼
𝐿
) + 𝑎
11
𝑋
2
(𝑈
1
) + 𝑎
12
𝑋
6
(𝑋
1𝑐
) − 𝑎
11

= 0,

(7)

where 𝑋
1
(𝐼
𝐿
), 𝑋
2
(𝑈
1
), 𝑋
3
(𝑈
2
), 𝑋
4
(𝐼
𝑎
), 𝑋
5
(Ω), 𝑋

6
(𝑋
1𝑐
), and

𝑋
7
(𝑋
2𝑐
) are average values of𝑋

1
(𝑖
𝐿
),𝑋
2
(𝑢
1
),𝑋
3
(𝑢
2
),𝑋
4
(𝑖
𝑎
),

𝑋
5
(𝜔), 𝑋

6
(𝑥
1𝑐
), and 𝑋

7
(𝑥
2𝑐
) during a duty cycle, 𝑈ramp

is the independent sawtooth peak voltage of the control
subsystem, 𝑎

13
= 𝐾

𝑖𝑖
/𝑈ramp, 𝑎

14
= 𝐾

𝑝𝑖
𝐾
𝑝Vℎ𝑖/𝑈ramp,

𝑎
15

= −𝐾
𝑝𝑖
𝐾
𝑝VℎVℎ𝑖𝑉ref/𝑈ramp, 𝑎16 = −𝐾

𝑝𝑖
ℎVℎ𝑖𝑉ref/(𝑅𝑈ramp),

and 𝑑 = 𝑎
13
𝑋
7
(𝑋
2𝑐
) + 𝑎

14
𝑋
6
(𝑋
1𝑐
) + 𝑎

15
𝑋
2
(𝑈
1
) +

𝑎
16
𝑋
1
(𝐼
𝐿
) − 𝑎

15
. 𝑎
𝑖
(𝑖 = 1, 2, . . . , 12) are real con-

stants with different magnitudes, among which 𝑎
7
and

𝑎
8

are about 100 times smaller than the others. Thus
𝑋
5
(𝜔) changes much slower than other variables, which
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Figure 7: Time histories at 𝑉ref = 15V, for (a)𝑋
1
(𝑖
𝐿
), (b) oscillatory state of (a), (c) steady state of (a), (d)𝑋

2
(𝑢
1
) &𝑋

3
(𝑢
2
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proves the existence of state variables with two timescales.
The full-system can be divided into fast subsystem and
slow subsystem, that is, the fast subsystem 𝛼 which con-
tains (𝑋

1
(𝑖
𝐿
), 𝑋
2
(𝑢
1
), 𝑋
3
(𝑢
2
), 𝑋
4
(𝑖
𝑎
), 𝑋
6
(𝑥
1𝑐
), 𝑋
7
(𝑥
2𝑐
)) and

the slow subsystem 𝛽 which contains 𝑋
5
(𝜔). From (7)

we can see 𝑎
4
reflects the coupling effect between 𝑋

5
(𝜔)

and 𝑋
4
(𝑖
𝑎
) and also the coupling effect between the fast

and slow subsystems. Define 𝑎
4
as coupling coefficient; the

influence on dynamics of FESS from 𝑎
4
will be studied

later.

3.2. Hopf Bifurcation Set for Fast Subsystem. To study the
mechanism of the full-system’s dynamics, the concept of
transient fixed point is proposed; for general multitimescale
system, define the transient fixed point of the full-system as
the fixed point of the fast subsystemunder slow variables with
different fixed values. During a sufficiently short time period
[𝜏
𝑘
, 𝜏
𝑘
+Δ𝜏], themovement trend of the fast subsystem during

[𝜏
𝑘
, 𝜏
𝑘
+Δ𝜏] can be predicted by the eigenvalues on the basis at

𝑋
5
= 𝑋
5
(𝜔)|
𝜏𝑘
. Thus the microstructure of the full trajectory

can be described. The transient fixed point at various𝑋
5
is

[𝑋
1
𝑋
2
𝑋
3
𝑋
4
𝑋
6
𝑋
7
]

𝑇

= [

1

1 − 𝐷

1 1 − 𝐷

𝐷

1 − 𝐷

𝑎
10

(𝐷 − 1)𝑎
12

1

𝑎
13

(𝐷 +

𝑎
16

𝐷 − 1

+

𝑎
10
𝑎
14

(1 − 𝐷)𝑎
12

)]

𝑇

, (8)
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Figure 8: Eigenvalue loci as𝑋
5
decreases from 0.9 to 0.1 at (a) 𝑉ref = 5V, (b) 𝑉ref = 10V, and (c) 𝑉ref = 15V.

where 𝐷 = (2𝑎
6

+ 𝑎
4
𝑋
5

− 𝑎
5

+

√(𝑎
5
− 𝑎
4
𝑋
5
− 2𝑎
6
)
2

− 4𝑎
6
(𝑎
4
𝑋
5
+ 𝑎
6
))/2𝑎
6
.

By studying the movement of the eigenvalues of the Jaco-
bian under varying 𝑋

5
, stability information such as the

occurrence of bifurcations can be obtained, which reveals the
bifurcation of the transient fixed points follows:

det [𝜆I − J (𝑋)] = 0,

J (𝑋) =

[

[

[

[

[

[

[
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𝑎
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𝑎
16
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]
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]

]

]

,

(9)

where 𝜆 is the eigenvalue, I is the identity matrix, and J(𝑋) is
the Jacobian matrix at [𝑋

1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, 𝑋
6
, 𝑋
7
]. Parameters

are set as Table 3, and loci of the eigenvalues are shown
in Figure 8. When all the eigenvalues are in the left half-
side of complex plane, the system is stable. When a couple
of complex conjugate eigenvalues simultaneously cross the
imaginary axis, Hopf bifurcation occurs [20, 21].

From Figures 8(a)–8(c), as 𝑋
5
changes from 0.9 to 0.1,

the eigenvalues (𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
) stay on the left half-side of

complex plane, while a pair of conjugate complex eigenvalues
(𝜆
1
, 𝜆
2
) are firstly on the right half-side and cross the

imaginary axis as 𝑋
5
reaches 0.4903, 0.4269, and 0.3774,

respectively.

3.3. Studies on Qualitative Dynamics. It would be imperative
to know how the influence on the stability of the transient

fixed points from the slow variable is reflected in the full-
system. The study of the internal relations between the
properties of the transient fixed points and the full-system’s
dynamics can predict the occurrence and evolution of non-
linear dynamics of FESS in the discharge mode. Among all
the fast variables, the inductor current 𝑖

𝐿
serves as a link

between the access system and the flywheel motor system;
thus, the stability and dynamic characteristics of 𝑖

𝐿
influence

the energy transmission process a lot. In this part we focus
mainly on the dynamics of 𝑋

1
(𝑖
𝐿
) against 𝑋

5
(𝜔). Parameters

are set as Table 3, and obviously in Figure 9, the transient
fixed points curves (ES

1
, ES
2
, and ES

3
) are L-form curveswith

various𝑋
5
(𝜔), which is divided in a stable part (dashed line)

and an unstable part (solid line). Hopf bifurcation points (H
1
,

H
2
, and H

3
) are the joints of the two parts.

Considering the different kinds of equilibria, the stable
node represents the quiescent state (QS), which indicates
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all the variables are at rest or exhibit small amplitude
oscillations. The stable limit cycle surrounding the unstable
focus represents the spiking state (SP), which indicates
variables may behave in large amplitude oscillations [22].
Figures 10(a)–10(f) show the stroboscopic phase trajectory
[23] of the full-system as well as the transient fixed points
curves under different reference voltages in two and three
dimensions. The phase trajectory for 𝑉ref = 5V is plotted in
Figures 10(a)-10(b), fromwhichwe can see thatH

1
divides the

full-system’s trajectory into two qualitatively different parts.
Hopf bifurcation occurs at H

1
. The trajectory starting at A

1

moves along ES
1
to H
1
, where the trajectory tends to a limit

cycle oscillation, the direction of which can be demonstrated

by
∙

𝑋
5

(𝜔) (see the expression in (7)). Between H
1
and

A
1
, the difference between the fast and slow subsystems on

timescales causes large amplitude oscillations around ES
1

from the beginning of the discharge process, leading the
system to SP (from A

1
to H
1
). The repetitive oscillation stays

until the trajectorymeetsH
1
, at whichHopf bifurcation of the

transient fixed point takes place. Using the center manifold
theory, the curvature coefficient at the Hopf bifurcation point
is less than 0, which proved the existence of supercritical
bifurcation. Therefore, the amplitudes of the oscillations
decrease gradually after the trajectory passing by H

1
and SP

settles down to QS (from H
1
to B
1
). The coupling strength

of the fast and slow subsystems causes another type of
small amplitude oscillations around ES

1
in QS. Then the

phase trajectory reaches B
1
, at which the full-system becomes

stable. When the FESS is in QS, the slow subsystem only
influences the position of the transient fixed points but does
not affect the dynamics of the full-system. For the reason
that H

1
is the unique Hopf bifurcation point to join SP and

QS, there is only one state conversion in a discharge cycle.
The above process completes one period of the nonrecurrent
qualitative dynamics.

Similar phenomena occurwhen the reference voltages are
10V and 15V. For 𝑉ref = 10V and 15V in Figures 10(c)–
10(f), the H

2
and H

3
still join SP and QS. Comparing with

qualitative dynamics at 𝑉ref = 5V, the real part of the pair of
complex conjugate eigenvalues of the Jacobian at the transient
fixed point corresponding to A

2
and A

3
are larger than

that corresponding to A
1
, which causes much more intense

oscillations in SP. Above all, the slow variable modulates the
qualitative dynamics by acting essentially as parameters to the
full-system.The FESS shifts from SP to QS with the change of
the slow variable. These shifts occur when the slow variable
crosses the bifurcation point on the transient fixed points
curve. Furthermore, from the expression of 𝑎

4
we can see

𝑉ref determines the value of 𝑎
4
largely, which represents the

strength of the coupling between the two subsystems. When
𝑉ref increases, the coupling strength weakens and QS lasts
shorter time. The qualitative dynamics with the variation of
the coupling strength are shown in Figure 11. It can be found
that the duration 𝑇 of QS decreases quickly as 𝑉ref increases.
As is shown in Figure 11, when 𝑉ref = 5V, 𝑇 = 87.41; when
𝑉ref = 10V, 𝑇 = 62.74; and when 𝑉ref = 15V, 𝑇 = 48.14.

3.4. Mechanism Analysis Based on Homotopy Method.
According to the analysis above, the transient fixed points
curves obtained possesses Hopf bifurcation points at which
the full-system can be divided into a stable part and an
unstable part, and qualitative dynamics is closely bound up
with the properties of the transient fixed points. Therefore,
the mechanism analysis of the bifurcation of the transient
fixed points can give an intuitive explanation of the origin of
complex oscillations of the full-system. A state-to-eigenvalue
correspondence can be set up to reveal the physical mech-
anism of the qualitative dynamics by tracing the changing
trend of the eigenvalues. The homotopy method [24–26] can
be applied to link eigenvalues of the Jacobianmatrix J(𝑋) of a
dynamic model to the corresponding state variables through
the following homotopy relation:

H (𝑟) = (1 − 𝑟) F (𝑋) + 𝑟J (𝑋) (0 ≤ 𝑟 ≤ 1) , (10)

where F(𝑋) = diag[𝐽
11
, 𝐽
22
, 𝐽
33
, 𝐽
44
, 𝐽
55
, 𝐽
66
] is the diagonal

Jacobian and 𝑟 is the homotopy parameter. When 𝑟 varies
in the interval [0, 1] and the difference between each two
adjacent values is sufficiently small, homotopy method takes
the trajectory of eigenvalues of H(𝑟) as a continuous path.
Following the paths from 𝑟 = 0 to 𝑟 = 1, the correspondence
between eigenvalues and state variables of the fast subsystem
is established. Parameters are set as Table 3, and Figure 12
shows the trace of the sorted eigenvalues by making 𝑟 as
abscissa and the real part of eigenvalues of H(𝑟) as vertical
coordinate at𝑉ref = 10V,𝑋

5
= 0.9.More traces are calculated

and show the same correspondence, which is shown in
Table 4.

From the analysis above, Hopf bifurcation occurs when
𝜆
1
and 𝜆

2
cross the imaginary axis.Thus 𝜆

1
and 𝜆

2
are the key

factors which dominate the stability of the FESS. Considering
the correspondence between the eigenvalues and the state
variables, we can conclude that the system instability derives
from the voltage instability; that is, the voltage instability is
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Figure 10: Stroboscopic phase trajectory of the full-system as well as the transient fixed points curves under different 𝑉ref in two and three
dimensions at (a)-(b) 𝑉ref = 5V, (c)-(d) 𝑉ref = 10V, and (e)-(f) 𝑉ref = 15V.
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Figure 11: Time domain waveforms of QS at (a) 𝑉ref = 5V, (b) 𝑉ref = 10V, and (c) 𝑉ref = 15V.
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Figure 12: Real part of eigenvalues trace through homotopymethod
for FESS.

Table 4: The correspondence between eigenvalues and state vari-
ables.

State variables eigenvalue
𝑋
2
(𝑢
1
),𝑋
3
(𝑢
2
) 𝜆

1
, 𝜆
2

𝑋
1
(𝑖
𝐿
),𝑋
4
(𝑖
𝑎
) 𝜆

3
, 𝜆
4

𝑋
6
(𝑥
1𝑐
),𝑋
7
(𝑥
2𝑐
) 𝜆

5
, 𝜆
6

the root inducement of the qualitative dynamics. Therefore,
dynamic voltage stability control scheme plays a key role in
stabilizing the FESS, which will be the focus of our further
work.

A detailed look into the influencing factors on the quali-
tative dynamics is taken further by presenting the boundaries
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Figure 13: Critical boundary between SP and QS with 𝑢
2
− 𝑢
1
.

of SP and QS in terms of 𝑢
2
and 𝑢
1
. It shows that the region of

QS gets smaller with the increase of 𝑢
1
, which represents the

load level (Figure 13).

4. Application

4.1. Feasibility Regions Analysis. This part will apply the two-
timescale approach to derive the feasibility regions of FESS
in the discharge mode and then provide instructions to
parameters setting of FESS. From the analysis above we know
that the feasibility regions of the fast subsystem dominate
that of the full-system. Therefore, the FESS is stable when all
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Figure 15: Stroboscopic phase trajectory of the full-system in𝑋
5
(𝜔) −𝑋

1
(𝑖
𝐿
) as well as the transient fixed points curves at (a) 𝐽 = 0.5 ⋅ 𝐽, (b)

𝐽


= 0.25 ⋅ 𝐽, and (c) 𝐽 = 0.1 ⋅ 𝐽. H
4
, H
5
, and H

6
-Hopf bifurcation point.

the eigenvalues of the fast subsystem are in the left half-side
of complex plane with𝑋

5
(𝜔) decreasing from 1 to 0.

The feasibility regions of key parameters are shown in
Figure 14. Figure 14(a) shows the feasibility boundary in
the parameter space of 𝑉ref versus the outer loop control
parameters𝐾

𝑝V and𝐾𝑖V and Figure 14(b) shows the feasibility
boundary in the parameter space of𝑉ref versus the inner loop
control parameters 𝐾

𝑝𝑖
and 𝐾

𝑖𝑖
, all of which clearly illustrate

the effect of those sensitive parameters on the feasibility
regions.The space in front of the critical surface corresponds
to stable operation and the space behind it corresponds to
unstable operation. The results can be used as instructions
to the parameters setting of the access unit of FESS itself and
constraints to improve the safety and stability of FESS and the
power system.

4.2. Application Requirements. Obviously, the applicability
and rationality of the proposed two-timescale approach with
transient fixed points analysismainly depend on the existence
of state variables with two timescales, which is not to be
considered as an exact criterion but as a guideline [27]. From
model (7) we can see 𝑎

7
= −𝐾

𝑚
𝑉ref√𝐿𝐶1/(𝐽𝑅𝜔ref) and

𝑎
8
= −𝐵V√𝐿𝐶1/𝐽 represent the change rates of 𝑋5(𝜔); thus,

𝐽 dominates the difference between the fast and slow vari-
ables on timescales. For typical electromechanical coupling
systems, the two-timescale characteristics are ubiquitous but
in degree. As is shown in the foregoing analysis, the proposed
approach does well in predicting the qualitative dynamics
when the magnitude difference of fast and slow variables
is about 100 times. Set 𝐽 to 0.5, 0.25, and 0.1 times of its
original value; other parameters are set as Table 3; then
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Figure 16: Discharge experiment for 𝑉ref = 15V, (a)𝑋
5
(𝜔) = 0.60, (b)𝑋

5
(𝜔) = 0.37, (c)𝑋

5
(𝜔) = 0.25, and (d)𝑋

5
(𝜔) = 0.20.

the corresponding magnitude difference will be 50, 25, and
10 times. Figure 15 shows the stroboscopic phase trajectory of
the full-system in the phase plane 𝑋

5
(𝜔) − 𝑋

1
(𝑖
𝐿
) as well as

the transient fixed points bifurcation diagram at 𝑉ref = 10V.
At 𝐽 = 0.5 ⋅ 𝐽 in Figure 15(a),H

4
divides the phase trajectory

of the full-system into two qualitatively different parts, which
agrees very well with ES

4
. At 𝐽 = 0.25 ⋅ 𝐽 in Figure 15(b), ES

5

basically corresponds to the dynamics of the full-system. At
𝐽


= 0.1 ⋅ 𝐽 in Figure 15(c), ES
6
has deviated from the correct

equilibrium position.
Considering that the two-timescale approach based on

singular perturbation theory is a kind of model reduction
method, Ghorbel and Spong [28] have given out the condi-
tion for the reduction of multitimescales system model; the
equilibrium of the fast system must be close to that of the
full-system. We can see that though the SP and QS caused
by Hopf bifurcation are especially apparent in qualitative
dynamics, they can still becomeweakening or even disappear
as the difference of state variables on timescales diminishes.
And meanwhile, the deviation between the transient fixed
points curves and the stroboscopic phase trajectory of the
full-system becomes larger, which reflects the inapplicability
of the proposed approach. Therefore, the applicability and
rationality of the proposed approach we concern here mainly
refers to the bifurcation characteristics of the fast subsystem
can actually reflect what extent of the full-system’s dynamical
evolution. From the numerical simulations in Figure 15

we can see the proposed approach is applicable when the
magnitude difference of state variables is bigger than 25 times;
more simulations have been done and gave out the same
conclusion that when the magnitude difference is not big
enough, the proposed approach is not applicable.

5. Experimental Verification

To verify the analysis in this paper, constant voltage discharge
experiment is carried out; the parameter values are set as
those in Table 3.The drivingmotor of the flywheel was solved
byBLDCM,which indicates high reliability and the rotational
speed being up to 8000 r/min. First charge up the FESS to 60%
of its rated speed; then catch the time-variant dynamics under
dischargemode at different𝑉ref. Set𝑉ref = 15V; the trajectory
of 𝑖
𝐿
evolves with 𝜔; when 𝑋

5
(𝜔) = 0.60 (60% of rated

speed) in Figure 16(a), 𝑖
𝐿
shows a large-scale oscillation with

a frequency of 666.7Hz and an amplitude of 4A, implying
the FESS is in SP; when 𝑋

5
(𝜔) = 0.37 in Figure 16(b), the

amplitudes of quasiperiodic oscillation behaviors decrease
gradually and approach a nearly stable limit cycle, as the
property by Hopf bifurcation of the fast subsystem. The
waveform of 𝑖

𝐿
is superposed with a sinusoidal oscillation

with a frequency of 625Hz and an amplitude of 2.4 A; then
it settles down to QS; when 𝑋

5
(𝜔) = 0.25 and 𝑋

5
(𝜔) = 0.20

in Figures 16(c)-16(d), the phase trajectory of 𝑖
𝐿
-𝑢
1
is a point

and the FESS operates steady.
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Figure 17: Discharge experiment for 𝑉ref = 10V, (a)𝑋
5
(𝜔) = 0.60, (b)𝑋

5
(𝜔) = 0.42, (c)𝑋

5
(𝜔) = 0.25, and (d)𝑋

5
(𝜔) = 0.20.

The structures of qualitative dynamics change with 𝑉ref.
Figures 17-18 present phase portraits for 𝑉ref = 10V and
𝑉ref = 5V, respectively. Set 𝑉ref = 10V; when 𝑋

5
(𝜔) =

0.60 in Figure 17(a), 𝑖
𝐿
shows a large-scale oscillation with

a frequency of 625Hz and an amplitude of 4A; when
𝑋
5
(𝜔) = 0.42 in Figure 17(b), the waveform of 𝑖

𝐿
mixes

with a sinusoidal oscillation with a frequency of 588Hz and
an amplitude of 2A; when 𝑋

5
(𝜔) = 0.25 and 𝑋

5
(𝜔) =

0.20 in Figures 17(c)-17(d), the phase trajectory of 𝑖
𝐿
-𝑢
1
is a

point and the FESS operates steady. Set 𝑉ref = 5V; when
𝑋
5
(𝜔) = 0.60 in Figure 18(a), 𝑖

𝐿
shows a large-scale oscillation

with a frequency of 600Hz and an amplitude of 3.8 A; when
𝑋
5
(𝜔) = 0.49 in Figure 18(b), the waveform of 𝑖

𝐿
mixes

with a sinusoidal oscillation with a frequency of 90Hz and an
amplitude of 0.67A; when 𝑋

5
(𝜔) = 0.25 and 𝑋

5
(𝜔) = 0.20

in Figures 18(c)-18(d), the phase trajectory of 𝑖
𝐿
-𝑢
1
is a point

and the FESS operates steady.

6. Conclusion

This paper investigates the qualitative dynamics of the
voltage-current dual-loop controlled FESS, which is mainly
shown as the fast oscillations of the inductor current and
the motor voltage weakens along with the slowdown of
the flywheel rotor. By the proposed two-timescale approach
based on singular perturbation theory, the state variables
are separated into fast and slow variables. First, it is shown

that the stability of FESS is closely bound up with that of
the transient fixed points. The FESS shifts from SP to QS
when the slow variable crosses the bifurcation point on the
transient fixed points curve. Larger eigenvalues’ real parts
determinemore intense oscillations in SP, and larger coupling
coefficient leads to longer duration of QS. Further analysis
shows that the evolution of the full-system’s dynamics is
dominated by the difference between the slow and fast
variables on timescales, whereas the qualitative dynamics
are mainly caused by the voltage instability. Moreover, the
feasibility regions of the main system parameters are derived,
in which stability operation and power transmission quality
of FESS can be guaranteed. Finally, an applicability investi-
gation shows that when the difference of state variables on
timescales is not big enough, the proposed approach is not
applicable.This paper provides insights into the effect of two-
timescale characteristics on the safety and stability of energy
transmission of FESS. The results can be used as instructions
to the parameters setting of the FESS itself and constraints
to improve the safety and stability of FESS and the smart
grids.
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Figure 18: Discharge experiment for 𝑉ref = 5V, (a)𝑋
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(𝜔) = 0.60, (b)𝑋
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