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Common coupled fixed point theorems are examined in this paper for comparable mappings ensuring nonlinear contraction in
ordered partial metric spaces. Given theorems enlarge and universalize some conclusions of Gnana Bhaskar and Lakshmikantham
(2006).

1. Introduction

The contraction method presented the fixed point theory on
partiallymetric spaces. It is enlarged to nonlinear contraction
mapping, which is attributed by many authors. (cf. [1–25]).
Particularly a partial metric space is a universalized metric
space. Some further generalizations of the conclusions in
[16] are demonstrated by Valero [25], Oltra and Valero [18],
Shatanawi et al. [23], andAltun andErduran [5]. Additionally,
Caristi type fixed point theorem on a partial metric space was
introduced by Romaguera [21].

Existence of fixed points was introduced in ordered
metric spaces by Ran and Reurings [19]. Some applications
of fixed points are also shown for linear and nonlinear
equations. Fixed and common fixed point theorems are
searched recently by many authors on this topic. Moreover
coupled coincidence and coupled fixed point theorems for
two mappings 𝐹 and 𝑔 such that 𝐹 has to be mixed g-
monotone property are stated by Lakshmikantham and Ćirić
[15].

The authors propose to give more information about
couple fixed point theory exists in the theory [1–25] for the
reader.

Let us give some necessarily definitions related to mixed
monotone maps and common coupled fixed point of a
mapping.

Definition 1. Suppose that (𝑋, ≤) is a partially ordered set
and also 𝐹 : 𝑋 × 𝑋 → 𝑋. Assume that 𝐹(𝑥, 𝑦) is
monotone nondecreasing pursuant 𝑥 and also is monotone
nonincreasing according to 𝑦, for any 𝑥, 𝑦 ∈ 𝑋, at the time
the map 𝐹 is named to have mixed monotone property:

𝑥
1
, 𝑥
2
∈ 𝑋, 𝑥

1
≤ 𝑥
2
implies 𝐹 (𝑥

1
, 𝑦) ≤ 𝐹 (𝑥

2
, 𝑦) ,

𝑦
1
, 𝑦
2
∈ 𝑋, 𝑦

1
≤ 𝑦
2
implies 𝐹 (𝑥, 𝑦

1
) ≥ 𝐹 (𝑥, 𝑦

2
) (see [15]) .

(1)

Definition 2. If 𝐹(𝑦, 𝑥) = 𝑦 and 𝐹(𝑥, 𝑦) = 𝑥, then (𝑥, 𝑦) ∈

𝑋 × 𝑋 is defined as an a coupled fixed point of a mapping
𝐹 : 𝑋 × 𝑋 → 𝑋 [15].

Definition 3. Suppose that 𝑋 is a nonempty set. A partial
metric on𝑋 is a real function of𝑑 of ordered pairs of elements
of 𝑋 which satisfies the following four conditions:

(pms
1
) 𝑥 = 𝑦 ⇔ 𝑑(𝑥, 𝑥) = 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑦),

(pms
2
) 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦),

(pms
3
) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

(pms
4
) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) − 𝑑(𝑧, 𝑧) [16].

A metric space consists of two objects: a set𝑋 ̸= 0 and partial
metric 𝑑 on𝑋, and also the elements of𝑋 are called the point
of the metric space (𝑋, 𝑑) (see [16]).
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Notice that the span of any point to itself need not be null;
so universalizing metrics, namely, a metric on a set𝑋 ̸= 0, are
named to be a partial metric 𝑑 on 𝑋 providing 𝑑(𝑥, 𝑥) = 0

for any 𝑥 ∈ 𝑋. We refer the reader to check some results and
related examples on partialmetric spaces in the theory [1–25].

Each partial metric 𝑑 on 𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋, which has a base of the family of open p-balls {𝐵
𝑝
(𝑥, 𝜀), 𝑥 ∈

𝑋, 𝜀 > 0}, where

𝐵
𝑝
(𝑥, 𝜀) = {𝛾 ∈ 𝑋 : 𝑑 (𝑥, 𝑦) < 𝑑 (𝑥, 𝑥) + 𝜀} . (2)

If 𝑑 is a partial metric on 𝑋, then the function 𝑑
𝑠
: 𝑋 ×

𝑋 → R+ given by

𝑑
𝑠
(𝑥, 𝑦) = 2𝑑 (𝑥, 𝑦) − 𝑑 (𝑥, 𝑥) − 𝑑 (𝑦, 𝑦) (3)

is a metric on 𝑋.

Definition 4. Assume that (𝑋, 𝑑) is a partial metric space and
also {𝑥

𝑛
} is a sequence in 𝑋.

At the time,
(i) 𝑑(𝑥, 𝑥) = lim

𝑛→∞
𝑑(𝑥
𝑛
, 𝑥) ⇔ {𝑥

𝑛
} converges to a

point 𝑥 ∈ 𝑋,
(ii) if there exists lim

𝑛,𝑚→∞
𝑑(𝑥
𝑛
, 𝑥
𝑚
), then {𝑥

𝑛
} is a

Cauchy sequence [5].

Definition 5. A partial metric space (𝑋, 𝑑) is named to be
complete if every Cauchy sequence {𝑥

𝑛
} in 𝑋 converges,

in accordance with 𝜏
𝑝
, to a point 𝑥 ∈ 𝑋, with 𝑑(𝑥, 𝑥) =

lim
𝑛,𝑚→∞

𝑑(𝑥
𝑛
, 𝑥
𝑚
) [5].

Lemma 6. Suppose that (𝑋, 𝑑) is a partial metric space. At the
time

(i) the sequence {𝑥
𝑛
} is Cauchy sequence in (𝑋, 𝑑) ⇔ it is

a Cauchy sequence in the metric space (𝑋, 𝑑
𝑠
),

(ii) (𝑋, 𝑑) is complete ⇔ the metric space (𝑋, 𝑑
𝑠
) is com-

plete. Besides, lim
𝑛→∞

𝑑
𝑠
(𝑥
𝑛
, 𝑥) = 0 ⇔ 𝑑(𝑥, 𝑥) =

lim
𝑛→∞

𝑑(𝑥, 𝑥
𝑛
) = lim

𝑛,𝑚→∞
𝑑(𝑥
𝑛
, 𝑥
𝑚
) [16].

Theorem 7. Assume that (𝑋, 𝑑) is a complete partial metric
space and also suppose that 𝑓 : 𝑋 → 𝑋 is a mapping to itself.
Then there exists a constant 𝑐 ∈ [0, 1) providing

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑐𝑑 (𝑥, 𝑦) , (4)

for all 𝑥, 𝑦 ∈ 𝑋. So 𝑓 has an individual fixed point [16].

Recently, Gnana Bhaskar and Lakshmikantham [8]
obtained the following nice result for possessing the mixed
monotone property mapping, which universalizes Theorem
7 of Matthews [16].

Theorem 8. Suppose that 𝐹 : 𝑋 × 𝑋 → 𝑋 is a continuous
mapping possessing the mixed monotone property on 𝑋. There
exists a 𝑘 ∈ [0, 1) such that

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, V)) ≤
𝑘

2
[𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V)] ,

∀𝑥 ≥ 𝑢, 𝑦 ≤ V.
(5)

If there exist 𝑥
0
, 𝑦
0
∈ 𝑋 with

𝑥
0
≤ 𝐹 (𝑥

0
, 𝑦
0
) , 𝑦

0
≥ 𝐹 (𝑦

0
, 𝑥
0
) , (6)

then, there exist 𝑥, 𝑦 ∈ 𝑋 with

𝑥 = 𝐹 (𝑥, 𝑦) , 𝑦 = 𝐹 (𝑦, 𝑥) (𝑠𝑒𝑒 [8, 15]) . (7)

The goal of the paper is to build coupled and common
fixedpoint theorems in partially ordered partialmetric spaces
with a function 𝜑 providing conditions 𝜑(𝑡) < 𝑡, nonincreas-
ing, and lim

𝑟→ 𝑡
+𝜑(𝑟) < 𝑡 for each 𝑡 > 0(𝑡). Offered theorems

universalize and enlarge to a pair of mappings which are
conclusions of Gnana Bhaskar and Lakshmikantham [8] and
some other theorems related to them.

2. Main Result

Definition 9. Assume that (𝑋, ≤) is a partially ordered set and
𝐹, 𝐺 : 𝑋 × 𝑋 → 𝑋. 𝐹 and 𝐺 mappings have the following
properties:

if 𝑛 is even, then 𝐹(𝑥
𝑛
, 𝑦
𝑛
) ≥ 𝐺(𝑥

𝑛−1
, 𝑦
𝑛−1

) and
𝐹(𝑦
𝑛
, 𝑥
𝑛
) ≤ 𝐺(𝑦

𝑛−1
, 𝑥
𝑛−1

);
if 𝑛 is odd, then 𝐺(𝑥

𝑛
, 𝑦
𝑛
) ≥ 𝐹(𝑥

𝑛−1
, 𝑦
𝑛−1

) and
𝐺(𝑦
𝑛
, 𝑥
𝑛
) ≤ 𝐹(𝑦

𝑛−1
, 𝑥
𝑛−1

).

Theorem 10. Suppose that (𝑋, ≤) is a partially ordered set and
𝑑 is a partial metric on 𝑋 with (𝑋, 𝑑) being a complete partial
metric space. Assume that 𝐹, 𝐺 : 𝑋 × 𝑋 → 𝑋 are satisfied by
Definition 2 and also are continuous mappings possessing the
mixed monotone property on 𝑋. Let there be a non-increasing
function 𝜑 : R+ → R such that 𝜑(𝑡) < 𝑡, and lim

𝑟→ 𝑡
+𝜑(𝑟) < 𝑡

for all 𝑡 > 0 and also having 𝑥 ≤ 𝑢 and 𝑦 ≥ V, with

𝑑 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

≤ 𝜑(
𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, V) + 𝑑 (𝑥, V) + 𝑑 (𝑦, 𝑢)

2
) ,

(8)

for 𝑥, 𝑦, 𝑧, 𝑢, V ∈ 𝑋. If there exists (𝑥
0
, 𝑦
0
) ∈ 𝑋 × 𝑋 with 𝑥

0
≤

𝐹(𝑥
0
, 𝑦
0
) and 𝑦

0
≥ 𝐹(𝑦

0
, 𝑥
0
), at the time ∃𝑥, 𝑦 ∈ 𝑋 with 𝑥 =

𝐹(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) and 𝑦 = 𝐹(𝑦, 𝑥) = 𝐺(𝑦, 𝑥).

Proof. Suppose 𝑥
0
, 𝑦
0

∈ 𝑋 with 𝑥
0

≤ 𝐹(𝑥
0
, 𝑦
0
) and 𝑦

0
≥

𝐹(𝑦
0
, 𝑥
0
). Define sequences {𝑥

𝑛
} and {𝑦

𝑛
} in 𝑋 in the

following way:

𝑥
2𝑛+1

= 𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) , 𝑦

2𝑛+1
= 𝐹 (𝑦

2𝑛
, 𝑥
2𝑛
) ,

𝑥
2𝑛+2

= 𝐺 (𝑥
2𝑛+1

, 𝑦
2𝑛+1

) , 𝑦
2𝑛+2

= 𝐺 (𝑦
2𝑛+1

, 𝑥
2𝑛+1

) .

(9)

We are to prove that {𝑥
𝑛
} sequence is nondecreasing and {𝑦

𝑛
}

sequence is nonincreasing. That is, for all 𝑛 ≥ 0

𝑥
2𝑛

≤ 𝑥
2𝑛+1

, 𝑦
2𝑛

≥ 𝑦
2𝑛+1

. (10)

For this, mathematical induction method is used.
Firstly suppose 𝑛 = 0. Having 𝑥

0
≤ 𝑥
1
and 𝑦

0
≥ 𝑦
1
,

because 𝑥
0

≤ 𝐹(𝑥
0
, 𝑦
0
) and 𝑦

0
≥ 𝐹(𝑦

0
, 𝑥
0
) and as 𝑥

1
=

𝐹(𝑥
0
, 𝑦
0
) and 𝑦

1
= 𝐹(𝑦

0
, 𝑥
0
), so (10) is verified for 𝑛 = 0.
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Assume that (10) is satisfied for a constant 𝑛 ≥ 0; then,
because 𝑥

2𝑛
≤ 𝑥
2𝑛+1

and 𝑦
2𝑛

≥ 𝑦
2𝑛+1

, from Definition 9 we
have

𝑥
2𝑛+1

= 𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) ≤ 𝐺 (𝑥

2𝑛+1
, 𝑦
2𝑛+1

) = 𝑥
2𝑛+2

,

𝑦
2𝑛+1

= 𝐹 (𝑦
2𝑛
, 𝑥
2𝑛
) ≥ 𝐺 (𝑦

2𝑛+1
, 𝑦
2𝑛+1

) = 𝑦
2𝑛+2

.

(11)

Thus we get 𝑥
2𝑛

≤ 𝑥
2𝑛+1

and 𝑦
2𝑛

≥ 𝑦
2𝑛+1

.
Hereby, by the induction method we conclude that (10)

hold for all 𝑛 ≥ 0. Thereof,

𝑥
0
≤ 𝑥
1
≤ 𝑥
2
≤ ⋅ ⋅ ⋅ ≤ 𝑥

𝑛
≤ 𝑥
𝑛+1

≤ ⋅ ⋅ ⋅ , (12)

𝑦
0
≥ 𝑦
1
≥ 𝑦
2
≥ ⋅ ⋅ ⋅ ≥ 𝑦

𝑛
≥ 𝑦
𝑛+1

≥ ⋅ ⋅ ⋅ . (13)

Denote

𝛿
𝑛
= 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) , (14)

showing {𝛿
𝑛
} sequence is nonincreasing. From (10) and (8) we

have
𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) = 𝑑 (𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) , 𝐺 (𝑥

2𝑛+1
, 𝑦
2𝑛+1

))

≤ 𝜑 ( (𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

+ 𝑑 (𝑥
2𝑛
, 𝑦
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑥
2𝑛+1

))

× 2
−1

)

≤ 𝜑(
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2
) .

(15)

Similarly, we can obtain

𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛+2

) ≤ 𝜑(
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2
) .

(16)

Thus, using properties of 𝜑 function we get

𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) + 𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛+2

)

≤ 2𝜑(
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2
)

≤ 2
𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2

= 𝑑 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑑 (𝑦
2𝑛
, 𝑦
2𝑛+1

) .

(17)

Similarly one can show that

𝑑 (𝑥
2𝑛+2

, 𝑥
2𝑛+3

) + 𝑑 (𝑦
2𝑛+2

, 𝑦
2𝑛+3

)

≤ 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) + 𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛+2

) .

(18)

Then, we obtain

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + 𝑑 (𝑦
𝑛+1

, 𝑦
𝑛+2

)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

≤ ⋅ ⋅ ⋅ ≤ 𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑦

0
, 𝑦
1
) .

(19)

Thus a sequence {𝛿
𝑛
} is nonincreasing. Thence, there is a

𝛿 ≥ 0 is obtained with

lim
𝑛→∞

𝛿
𝑛
= 𝛿. (20)

Now, we claim that

lim
𝑛→∞

𝛿
𝑛
= 0. (21)

we substitute 𝑛 = 2𝑘 in (14). Then we can get

𝛿
𝑛
= 𝛿
2𝑘

= 𝑑 (𝑥
2𝑘
, 𝑥
2𝑘+1

) + 𝑑 (𝑦
2𝑘
, 𝑦
2𝑘+1

)

≤ 2𝜑(
𝑑 (𝑥
2𝑘−1

, 𝑥
2𝑘
) + 𝑑 (𝑦

2𝑘−1
, 𝑦
2𝑘
)

2
)

= 2𝜑(
𝛿
𝑛−1

2
) .

(22)

Letting 𝑛 → ∞ in (22), we get

𝛿 = lim 𝛿
𝑛
≤ 2 lim𝜑(

𝛿
𝑛−1

2
) ≤ 2

𝛿

2
= 𝛿. (23)

Hence 𝛿 = 0. That is

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

) + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (24)

Now we show that

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑦
𝑚
) + 𝑑 (𝑥

𝑛
, 𝑥
𝑚
) = 0. (25)

Suppose the contrary. At the time there exists 𝜀 > 0 when
obtaining two subsequences {𝑥

2𝑛(𝑖)
} and {𝑥

2𝑚(𝑖)
} of {𝑥

𝑛
} with

2𝑛(𝑖) is the smallest index where

2𝑛 (𝑖) > 2𝑚 (𝑖) > 𝑖, 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

) ≥ 𝜀.

(26)

This means that

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

) < 𝜀. (27)

By (pms
4
) in Definition 3 and (27), we have

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) ≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

) + 𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑛(𝑖)

)

− 𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑚(𝑖)+1

)

≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

) + 𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑛(𝑖)

)

≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

) + 𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑚(𝑖)

)

+ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) − 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)

)

≤ 2𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

) + 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

)

≤ 2𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

) + 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

)

+ 𝑑 (𝑥
2𝑛(𝑖)−1

, 𝑥
2𝑛(𝑖)

) .

(28)
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Similarly, we can obtain that

𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

) ≤ 2𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑚(𝑖)+1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)

+ 𝑑 (𝑦
2𝑛(𝑖)−1

, 𝑦
2𝑛(𝑖)

) .

(29)

Adding (28) and (29) and also from (27) and (26) we get

𝜀 ≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

)

≤ 2 [𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑚(𝑖)+1

)

+ 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑚(𝑖)+1

)] + 𝜀

+ 𝑑 (𝑥
2𝑛(𝑖)−1

, 𝑥
2𝑛(𝑖)

)

+ 𝑑 (𝑦
2𝑛(𝑖)−1

, 𝑦
2𝑛(𝑖)

) .

(30)

Taking the limit as 𝑖 → ∞ in (30) and by (26) we get

lim
𝑖→∞

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

) = 𝜀. (31)

Employing the triangle inequality,

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

)

≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)

+ 𝑑 (𝑥
2𝑛(𝑖)−1

, 𝑥
2𝑛(𝑖)

)

+ 𝑑 (𝑦
2𝑛(𝑖)−1

, 𝑦
2𝑛(𝑖)

) .

(32)

Similarly, we get

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)

≤ 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)

)

+ 𝑑 (𝑥
2𝑛(𝑖)

, 𝑥
2𝑛(𝑖)−1

)

+ 𝑑 (𝑦
2𝑛(𝑖)

, 𝑦
2𝑛(𝑖)−1

) .

(33)

As 𝑖 → ∞ in (33) and (32) and from (31) and (26) we can
obtain

lim
𝑖→∞

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

) = 𝜀. (34)

Since from (12) we have 𝑥
2𝑚(𝑖)

≤ 𝑥
2𝑛(𝑖)−1

and 𝑦
2𝑚(𝑖)

≥

𝑦
2𝑛(𝑖)−1

and also by (8) and (10),

𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑛(𝑖)

)

= 𝑑 (𝐹 (𝑥
2𝑚(𝑖)

, 𝑦
2𝑚(𝑖)

) , 𝐺 (𝑥
2𝑛(𝑖)−1

, 𝑦
2𝑛(𝑖)−1

))

≤ 𝜑 ( (𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

)

+𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)) × 2
−1

)

<
𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)

2
.

(35)

Similarly, we get

𝑑 (𝑦
2𝑚(𝑖)+1

, 𝑦
2𝑛(𝑖)

) <
𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

)

2
.

(36)

Thus

𝑑 (𝑥
2𝑚(𝑖)+1

, 𝑥
2𝑛(𝑖)

) + 𝑑 (𝑦
2𝑚(𝑖)+1

, 𝑦
2𝑛(𝑖)

)

< 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

)

+ 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

) .

(37)

As 𝑖 → ∞ in (37) we get 𝜀 = 0, which is a contrast. Whence
(25) is verified, possessing

lim
𝑛,𝑚→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) = 0, lim

𝑛,𝑚→∞
𝑑 (𝑦
𝑛
, 𝑦
𝑚
) = 0. (38)

By (3), we have

𝑑
𝑠
(𝑥
𝑛
, 𝑥
𝑚
) ≤ 2𝑑 (𝑥

𝑛
, 𝑥
𝑚
) = 0,

𝑑
𝑠
(𝑦
𝑛
, 𝑦
𝑚
) ≤ 2𝑑 (𝑦

𝑛
, 𝑦
𝑚
) = 0.

(39)

{𝑥
𝑛
} and {𝑦

𝑛
} are Cauchy sequences in the metric space

(𝑋, 𝑑
𝑠
). Because (𝑋, 𝑑) is complete, it is also the case for

(𝑋, 𝑑
𝑠
), then there exist 𝑎, 𝑏 ∈ 𝑋 with

lim
𝑛→∞

𝑑
𝑠
(𝑥
𝑛
, 𝑎) = 0, lim

𝑛→∞
𝑑
𝑠
(𝑦
𝑛
, 𝑏) = 0. (40)

On the other hand, we have

𝑑
𝑠
(𝑥
𝑛
, 𝑎) = 2𝑑 (𝑥

𝑛
, 𝑎) − 𝑑 (𝑥

𝑛
, 𝑥
𝑛
) − 𝑑 (𝑎, 𝑎) . (41)

Getting the limit as 𝑛 → ∞ in the upward equation and
utilizing (40) and (38), we attain

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑎) =

1

2
𝑑 (𝑎, 𝑎) , (42)

in other words, possessing 𝑑(𝑎, 𝑎) ≤ 𝑑(𝑎, 𝑥
𝑛
) for all 𝑛 ∈ N. On

letting 𝑛 → ∞, we achieve

𝑑 (𝑎, 𝑎) ≤ lim
𝑛→∞

𝑑 (𝑎, 𝑥
𝑛
) . (43)

Using (42) and (43), we get that

lim
𝑛→∞

𝑑 (𝑎, 𝑥
𝑛
) = 𝑑 (𝑎, 𝑎) = 0. (44)

Analogously, one can show that

lim
𝑛→∞

𝑑 (𝑏, 𝑦
𝑛
) = 𝑑 (𝑏, 𝑏) = 0, (45)

exposing 𝑎 = 𝐹(𝑎, 𝑏), 𝑎 = 𝐺(𝑎, 𝑏), 𝑏 = 𝐹(𝑏, 𝑎), and 𝑏 =

𝐺(𝑏, 𝑎). To do that we prove the following steps.

Step 1. Demonstrate that 𝑑(𝐹(𝑎, 𝑏), 𝐹(𝑎, 𝑏)) = 0 and
𝑑(𝐺(𝑎, 𝑏), 𝐺(𝑎, 𝑏)) = 0.
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Since 𝑎 ≤ 𝑎 and 𝑏 ≤ 𝑏, we have

𝑑 (𝐹 (𝑎, 𝑏) , 𝐹 (𝑎, 𝑏))

≤ 𝑑 (𝐹 (𝑎, 𝑏) , 𝑥
2𝑛+2

) + 𝑑 (𝑥
2𝑛+2

, 𝐹 (𝑎, 𝑏)) − 𝑑 (𝑥
2𝑛+2

, 𝑥
2𝑛+2

)

≤ 𝑑 (𝐹 (𝑎, 𝑏) , 𝑥
2𝑛+2

) + 𝑑 (𝑥
2𝑛+2

, 𝐹 (𝑎, 𝑏))

= 2𝑑 (𝐹 (𝑎, 𝑏) , 𝐺 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

))

≤ 2𝜑(
𝑑 (𝑎, 𝑥

2𝑛+1
) + 𝑑 (𝑏, 𝑦

2𝑛+1
)

2
)

≤ 𝑑 (𝑎, 𝑥
2𝑛+1

) + 𝑑 (𝑏, 𝑦
2𝑛+1

) .

(46)

Letting 𝑛 → ∞ in (46) we get 𝑑(𝐹(𝑎, 𝑏), 𝐹(𝑎, 𝑏)) = 0. The
same one can demonstrate that 𝑑(𝐺(𝑎, 𝑏), 𝐺(𝑎, 𝑏)) = 0.

Step 2. We show that lim
𝑛→∞

𝑑(𝑥
2𝑛+1

, 𝐹(𝑎, 𝑏)) = 𝑑(𝐹(𝑎, 𝑏),

𝐹(𝑎, 𝑏)) and lim
𝑛→∞

𝑑(𝑥
2𝑛+2

, 𝐺(𝑎, 𝑏)) = 𝑑(𝐺(𝑎, 𝑏), 𝐺(𝑎, 𝑏)).
We have 𝑑(𝑥

2𝑛+1
, 𝐹(𝑎, 𝑏)) = 𝑑(𝐹(𝑥

2𝑛
, 𝑦
2𝑛
), 𝐹(𝑎, 𝑏)). Since

𝑥
𝑛

→ 𝑎 and 𝑦
𝑛

→ 𝑏 as 𝑛 → ∞ in (𝑋, 𝑑) and 𝐹 is contin-
uous as 𝑛 → ∞ in (𝑋, 𝑑), then we get

𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) 󳨀→ 𝐹 (𝑎, 𝑏) . (47)

That is,

lim
𝑛→∞

𝑑 (𝑥
2𝑛+1

, 𝐹 (𝑎, 𝑏)) = lim
𝑛→∞

𝑑 (𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) , 𝐹 (𝑎, 𝑏))

= 𝑑 (𝐹 (𝑎, 𝑏) , 𝐹 (𝑎, 𝑏)) .

(48)

Similarly one can show that 𝐺(𝑥
2𝑛+1

, 𝑦
2𝑛+1

) → 𝐺(𝑎, 𝑏).

Step 3. Indicating 𝑎 = 𝐹(𝑎, 𝑏) and 𝑎 = 𝐺(𝑎, 𝑏), we have

𝑑 (𝑎, 𝐹 (𝑎, 𝑏)) ≤ 𝑑 (𝑎, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝐹 (𝑎, 𝑏))

− 𝑑 (𝑥
2𝑛+1

, 𝑥
2𝑛+1

)

≤ 𝑑 (𝑎, 𝑥
2𝑛+1

) + 𝑑 (𝑥
2𝑛+1

, 𝐹 (𝑎, 𝑏)) ,

(49)

While 𝑛 → ∞ in (49) and employing (46) and Steps 1
and 2, we obtain 𝑑(𝑎, 𝐹(𝑎, 𝑏)) = 0. By (pms

1
) and (pms

2
) in

Definition 3, we have 𝑎 = 𝐹(𝑎, 𝑏). Similarly one can show that
𝑎 = 𝐺(𝑎, 𝑏), 𝑏 = 𝐹(𝑏, 𝑎), and 𝑏 = 𝐺(𝑏, 𝑎).

Theorem 11. Intercalarily to the supposition of Theorem 10
assume that there exist 𝑥∗, 𝑦∗ such that 𝑥∗ is compared with
𝑦
∗. Then 𝑥

∗
= 𝑦
∗ for (𝑥

∗
, 𝑦
∗
) is couple common fixed point.

To wit, 𝐹 and 𝐺 possess a couple common fixed point and
𝐹(𝑥
∗
, 𝑥
∗
) = 𝑥
∗

= 𝐺(𝑥
∗
, 𝑥
∗
).

Proof. If 𝑥∗ is comparable to 𝑦
∗, at the time 𝐹(𝑥

∗
, 𝑦
∗
) = 𝑥
∗

is comparable to 𝐹(𝑦
∗
, 𝑥
∗
) = 𝑦
∗. So if we substitute 𝑥 = 𝑥

∗,
𝑦 = 𝑦

∗, 𝑢 = 𝑦
∗, and V = 𝑥

∗ in (8), then we obtain

𝑑 (𝑥
∗
, 𝑦
∗
) = 𝑑 (𝐹 (𝑥

∗
, 𝑦
∗
) , 𝐺 (𝑥

∗
, 𝑦
∗
))

≤ 𝜑 ( (𝑑 (𝑥
∗
, 𝑦
∗
) + 𝑑 (𝑦

∗
, 𝑥
∗
)

+ 𝑑 (𝑥
∗
, 𝑥
∗
) + 𝑑 (𝑦

∗
, 𝑦
∗
)) × 2

−1
)

≤ 𝜑(
𝑑 (𝑥
∗
, 𝑦
∗
)

2
)

<
𝑑 (𝑥
∗
, 𝑦
∗
)

2
.

(50)

Therefore 𝑥
∗

= 𝑦
∗.
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