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Based on the availability of symbolic computation, the tanh-coth method is used to obtain a number of travelling wave solutions
for several coupled improved Boussinesq equations. The abundant new solutions can be seen as improvement of the previously
known data. The obtained results in this work also demonstrate the efficiency of the method.

1. Introduction

We consider the following two coupled improved Boussinesq
(IMBq) equations of Sobolev type:

2
Uy — QU — Uy = f, W), x€R, >0, "

2
Wy = & Wy — Wy = g, W),,, X ER, £>0,

where f and g are given nonlinear functions, u(x,t) and
w(x,t) are unknown functions, and « is a constant that has
been derived to describe bidirectional wave propagation in
several studies, for instance, in a Toda lattice model with a
transversal degree of freedom, in a two-layered lattice model,
and in a diatomic lattice. Dé Godefroy has studied (1) as the
Cauchy problem under certain conditions and showed that
the solution for the Cauchy problem of this system blows up
in finite time [1]. Wang and Li have considered the Cauchy
problem for (1), proved the existence and uniqueness of the
global solution, and given sufficient conditions of blow-up
of the solution in finite time by convex methods [2]. The
Cauchy problem for (1) has been studied and established the
conditions for the global existence and finite-time blow-up of
solutions in Sobolev spaces H® x H® for s > 1/2 [3]. For more
information, we refer the reader to [3] and references therein.

Chen and Zhang have considered the initial boundary
value problem for the system of the generalized IMBq type
equations:

Uy — Auyy — Bu,yy = m(w),,, 0<x<I, t>0,

)

wy — Bw,,y =n(w),,, 0<x<I, t>0,

where u(x,t) and w(x,t) are unknown functions, A,B > 0
are constants, and 1 and » are the given nonlinear functions.
As a result, they have proved the existence and uniqueness
of the global generalized solution and the global classical
solution [4].

Rosenau is concerned with the problem of how to
describe the dynamics of a dense lattice via the system

1
Uy = (u+ 20uw),, + Euxxtt’
(3)

1
2 2
w,, = (2w + pw’ + au )MC 1y Wt

where «, 5 > 0 are constants, and pointed out that (3) was a
convenient vehicle to study the dynamics of a dense lattice [5].

In [6], a transversal degree of freedom was introduced
in the Toda lattice. For different order of magnitude of the
longitudinal and transversal strains, coupled and uncoupled
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equations for these fields were derived in the discrete case as
well as the continuum limit. The system

2 lZ
gutt = Py, — %(lﬁ)xx + g(uﬂ)xx + gﬁu”“’
(4)

2
gwtt = ﬁ(uw)xx + gﬁwxxtt

has been obtained for the longitudinal and transversal strains.

I'and 1/b are characteristic lengths in the model, 8 is their

ratio (i.e., 8 = Ib), p denotes the linear mass density, and « > 0

is a constant. Besides, travelling wave solutions and numerical

solutions of the system have been found.

Turitsyn has proved the existence of blow-up for the
continuum limit model of the Toda lattice with a transversal
degree of freedom analytically and analysed the coupled IBq
equations

Uy = ﬁuxx - g(uz)xx + %(wz)xx + “Zuxxtt’ (5)

2
Wy = (uw)xx ta Wikt

Turitsyn has showed that the sufficient criterion for the
collapse in this model may be formulated as the requirement
of nonpositively of the system Hamiltonian [7].

Pego et al. have studied the stability of solitary waves of
two coupled improved Boussinesq equations:

Upp = Uyx — ﬁ(uz)xx + (wZ)xx + Uyt (6)

wtt = wxx + z(uw)xx + wxxtt’

which model weakly nonlinear vibrations in a cubic lattice.
They have encountered this system for which the classic
method fails [8].

Fan and Tian have expanded the model in [6] and consid-
ered the following general Toda dense lattice equation which
is governed by the following coupled improved Boussinesq
equation:

= Bt~ 500), + §0)

2 2
Wy = y(uw)xx + p(w )xx ta Wit

They have studied compacton solutions and multicompacton
solutions of transversal degree of freedom by direct sine and
cosine method and found peakon solutions. Moreover, they
have presented more solitary wave solutions for a special
case of (7) using improved sin-cos and improved sinh-cosh
method [9].

The paper is arranged as follows. We described the outline
of the tanh-coth method in the following section and derived
various exact travelling wave solutions of the coupled IBq
equations (3), (4), (5), (6) and (7) in the next sections. Finally,
we summarized our conclusions in the last section.

2. Outline of the tanh-coth Method

Wazwaz has summarized the tanh-coth method [10] in the
following manner.
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(i) First, consider a general form of nonlinear equation

P(u,uy,uy,tyy,...) =0. (8)

(ii) To find the traveling wave solution of (8), the wave
variable £ = x — V't is introduced so that

u(xt) =U(ut). )
Based on this, one may use the following changes:
0 d
~ —_v=,
ot d&
9 _,4
ox Hae
(10)
LY.
o2 M ag
o
o~V ae

and so on for other derivatives. Using (10) changes the
PDE (8) to an ODE:

Q(uU.U",..)=0. (1)

(iil) If all terms of the resulting ODE contain derivatives in

&, then by integrating this equation, and by consider-
ing the constant of integration to be zero, one obtains
a simplified ODE.

(iv) A new independent variable

Y = tanh (p&) (12)
is introduced which leads to the change of derivatives:
d 2 4
B u(1-v?) -
d’ d d’
y ~2u’Y (1-Y?) 5 w(1- Yz)zﬁ,
a’ d
pai 20’ (1-7%)(3v% -1) e
2 3
_ 6M3Y(1 B Yz)Z% . #3(1 B Yzf%’
(13)
4
;—54 =-8u'y (1-Y?) (37 -2) %
2
+at(1-72) (9v? -2) %

d3
- 12y (1- Yz)sﬁ
+¢0—Wf£;

where other derivatives can be derived in a similar
manner.
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(v) The ansatz of the form

M M
U(ug) =S(Y) = Ya ¥ + Y py™ (14)

k=0 k=1

is introduced where M is a positive integer, in most
cases, that will be determined. If M is not an integer,
then a transformation formula is used to overcome
this difficulty. Substituting (13) and (14) into the ODE
(11) yields an equation in powers of Y.

(vi) To determine the parameter M, the linear terms of
the highest order in the resulting equation with the
highest order nonlinear terms are balanced. With M
determined, one collects all coefficients of powers of
Y in the resulting equation where these coefficients
have to vanish. This will give a system of algebraic
equations involving the g, and b, (k = 0,..., M), V,
and p. Having determined these parameters, knowing
that M is a positive integer in most cases, and using
(14), one obtains an analytic solution in a closed form.

3. The Travelling Wave Solutions

3.1. The First Coupled. We first consider the following two
coupled IBq equations:

1
Uy = (U + 2auw),, + Euxm,
(15)

2 2
wy = (Zw + pw” + au )xx 1y Wt

Using the wave variable & = x — Vi, then by integrating this
equation twice and considering the constants of integration
to be zero, the system (15) is carried to a system of ODEs:

12 (V2 - 1) U - 24aUW - V?U" =0,
(16)
- 12aU° -V*W" =0

12(V2-2)W - 128W?

Balancing V2U" with UW and V*W" with U in (16) gives

M+2=M+N,
(17)
2M =N + 2,
so that M = N = 2. We consider solutions in the form
U (ué) =S(Y) = ZakY + Zka*
k=1
(18)

2 2
W (u) =S(Y) = Y Y  + Y dy*

k=0 k=1

Substituting (18) into the two components of (16) and col-
lecting the coeflicients of Y give two systems of algebraic

equations for ay, a,, a,, by, b,, ¢, ¢, ¢, d;, d5, V, and p. Solving
these systems together leads to the following sets:

4 ) 3 ap (V4 -3V2+2)
=Ty AT 402 ’
a B+ 4 B -3p
“Tsaa-p P s p)
Ve 6 ye \I3/3(—3ﬁ+406)
V612 + 18 —3p +4a
a,=b=by=c¢=d =d,=0
_ 9p* (20 - p)
0 z 102403, (a — B)°
3B (V4 - 3V2 +2) ~3B + 8at
b = 1602 T Tea(a- By
3B
d, =c¢,
G = 32(X( ﬁ) 2 )
v 6 ) VB (9B - 12a)
\24p +18 —6p +8ax
a=b=¢=d =0,
L 9B (a-p)
3 102403yt - B)’
. 3\/0c,8(V4—3V2+2) _Bsa
: 1602 ’ RTICE)
_3ﬁ
d = >
“ " a(a-py 279
Vo 6 i \3B (3B + 4ax)
V242 + 18 6B +8a
a=b=¢=d,=0,
9 (a-p) ] 3B (V- 3V2 +2)
640a, (o - B)° ? 4o’
_ —3f+4a B 3B
“Tsa@-p 7 s p)

6 ~ \B(9B-12q)

=36+ 4«

(19)
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Consequently, we obtain the following travelling wave solu- 38

tions: coth? POB- 12)

e (a=Pp) -6 + 8«

Vap (V4 -3V2 +2)

(o0 == 12 6
x| x-—0t ],
\/24p% + 18
. 3\aB(V4-3V2+2)  \[3p(-3p+4a)

tanh

42 “3B+4a ) [
. Uy (x,t) = Sl
x| x— ——t |,
< \—-6p% + 18 > . 98 (20 - P) b \3B (=3B + 4a)
102403b,(a - B)’ —6f + 8at
w, (0t = B+ 4a
. 8a (o — f)
6
x| x- ————t
3B 2 (3B (=3B + 4a) ( 2442 + 18 >
8 (a- p) an -3B + 4a
3\aB(V4-3V2+2)  \BB(-3p+4a)
o oo 6 , i 160 coth -6+ 8a
Jer+18 |
X| x— #t
wn 3B (V4 -3V2 +2) NEYEITE
u, (x,t) = —
8a?
wy (x,1) = ﬂ
L BB B (9B - 120) 16a (a - B)
10240%b, (o - B’ 68 + 8o 38 L3 (=3B + 4a)
T a(a-p " —6p3 + 8ax
6
x| x- ———t
< \2442 +18 ) oo 6
\-24p2 + 18
3\aB(V4-3V2+2)  +[B(9B - 12a)
+ e coth ~op T 5a 34 02 \3B (=3B + 4a)
" 32a(a-p)°° —6B + 8at
6
X| x— ———t |, 6
( 2442 + 18 ) x(x—t),
\—24p2 + 18
3B +8a ok
w, (x,t) = Teala—R) @-p) Uy () = 9B (2 — )

" siwa(a- )

B e VP (98 - 124) . 3B (V4-3V2+ 2)ta . B (9B - 12)

+
32a (- B) -6 + 8« 1ol 3+ 4a

6 6
x| x— ——t x| x- t ],
< 2442 + 18 > ( \(6p2 + 18 >
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\B (98 - 12q)

_ —3ﬁ+40¢ 3ﬁ 2
wi(08) = 8a (o — f) i (oc—,B)tanh -3+ 4
6
X| X — —————t

Vou? + 18

(20)

3.2. The Second Coupled. We next consider the system of
equations

2 12
gutt = ﬁuxx - %(uz)xx + g(wz)xx + §Euxxtt’

(21)
2

P P
&wtt = :B(uw)xx + &waxtt‘

Using the wave variable £ = x—Vt and then by integrating this
equation twice and considering the constants of integration to
be zero, the system (21) is carried to a system of ODEs:

12 (af - pV*) U - 6ap’U* + 6apW? + pI’V?U" = 0,
(22)
126BUW + pl*’V*W'" —12pV°W = 0.

Balancing —6af*U* with pl*V?U” and 12aBUW with
plPV2W" in (22) gives

2M =M + 2,
(23)
2N =M+ N,

so that M = N = 2. The tanh-coth method admits the use of

2 2
UuE) =S(¥) = Y ax*+ Y py™,
k=0 k=1
(24)

2 2
W (uE) =S(Y) = YY"+ Y diyr.
k=0 k=1

Substituting (24) into (22), collecting the coefficients of Y,
and solving the resulting system, we find the following sets
of solutions:

- L bh=a
ao_ﬁ+1’ %_2(ﬁ+1)’ 2
A/ 2
d, =+ P+ > 6 =—d,,
2(B+1)

_ 1 _ 3p b =
DEBIT TP 14B+ 8 2=
d, = i—?,ﬁ pr2 > o =—d,,

23+4)(B+1)
\15pa (212422 + 9B + 15)
 p(2Pur+9B+15)
-B (158 +12)
B 5B+ a)
a=b=¢q=¢=4d, =0,
o= 4-p _ 3 _ %
T a(B+1) 4p+1 3’
X 98 \-3p0B (=3 + )
Q=% , =
2\[612u2 + 36 + 18 p(=3+Pu2)
-B(3B+6)

#:W) a=b=b=c=d =d,=0,
_ 3B+4 3B _
TY ) 2T aperr 0T

9B \3pap (3 +Pu?)
%:i b} _—’
21/-622 + 36 + 18 p 3+ 1)
V3B (B+2)
e (B+2)1 a=b=b=¢q=d=d,=
o B¥8 3B
8(B+1) 16(B+1)
2d
b =a, =2
h = % 3
9B

G =d,, d, =+

_ \/—3p(xﬁ (-3 +42u?)

p(=3+4Pp?)

8+/2412u% + 36+ 18

\-B(3B+6)

2(B+2)1

>

a=b=¢=d =0,

3(B+38)

%= 8(B+1)

b, =a,,

___ 3B
ERETIC RS

G = —2d,,

>

>



9
d,=+ P ,
8/-24242 + 36 + 18

\3paf (3 +4Pp?) \VB(3B+6)

V: 5 =
p (3 +47u?) “ 2(B+2)1

6 =d,

a=b=¢q=d =0.
(25)

In accordance with these sets of solutions, we have the
following solutions:

1 2 V3
ul(x’t)_ﬂ+l 2(ﬁ+1)tanh ]

o 3pafi (B + l)t
3p(B+1)

- ;cothzﬁ <x -

2(B+1) I 3p(B+1) g

\3paB(B+1) >

g VB2 o33 \/3paﬁ(ﬁ+1)t

BT N ST

, VB2 V3 \3paB(B+1)
et T\ e )

3B . h”Hg(lS/sz)

Tepr14Br8 T (5p14)l

< \/15pa[3(212y2+9[3’+15)>
X| x— t

p (2PPu? + 9B + 15)

3B hf,_ﬁ(lsl“ 12)

6B+ 14p+8 T (5B+4)l

< \/15poc,8(212yz+9[>’+15)>
x| x- t],

p(2PPu? + 9B + 15)

spyFrs B3R 12)

2(38+4)(B+1) (58+4)1

w, (x,t) =F
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< \/15pcxﬂ(212‘u2+9l3+15)>
x| x- t

p(2PPu? + 9B+ 15)

spuFrs RO 1)

BB+ ) T 5B+ )1

< \/15paﬂ(212y2+9[§+15) >
x| x- t],

p(2PPu? + 9B+ 15)

12 NBGE+0)

(B+2)1

4-p 3
2B+ Tapil

\-3pap (=3 +142)
_ t,
" p(=3+1)
3B
24/612u% + 363 + 18

9

+
24/612u% + 36 + 18
\-3pap (-3 +1Pye)
_ t |,
“\ 7 p(=3+1)

N B
u, (x,t) = —4/3+1an

4(B+1) (B+2)1

us (x,t) =

ws(x,t) =F

12 VBB +0)

(B+2)1

tan

3B+4 3B

p(3+Pu?)

9
2-61%2 +36f + 18

wy (x,t)=7F

9p
+
21/-612 + 36 + 18

. 3p0¢/3(3+12u2)t
p(3+Pu2) ’

, \-B(3B+6)

2(B+2)1

B+38 3B

us (x,t) = S(B+1) + 6(B+ 1)tanh
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\/—3poc[§ (=3 +42u?)
C p(-3+ar)

3B ,\-B(3B+6)

i 16(;3+1)COth 2(B+2)1

) \/—3poc[§ (=3 +42u?)

" p(=3+4?)

3

44/241242 + 363 + 18
9B ,\-B(3B+6)

+ tan
81241242 + 36 + 18 2(B+2)1
\/—3p(xﬁ (=3 +42u?)
C p(-3+ar)

ws (x,t) = £

9

+
81[241%4% + 36 + 18 2(B+2)1

\/—3/)04[3 (-3 +42u?)
C p(-3+aR)

>

3(gey y . B (3B +6)
T/ ) R T ( FE) A Y (P
3paf (3 +4l2u?)
 p(3+a?)
T16(B+ 1) " 2(Br2)l
3paf (3 + 417u?)
 p(3+4?) ,

9B
4q[-24142% + 36 + 18

9B ,\B(3B+6)

+ tanh
8/-241%2 + 36 + 18 2(B+2)1

wg (x,1) =F

3paf (3 +417u?)
p(3+4Pu?)

9B , VB3R +6)
+ coth
8/-242u2 + 36 + 18 2(B+2)1

\[3paf (3 + 4lzp¢2)t

p(3+4Pu?)

X X —

(26)

3.3. The Third Coupled. We now examine the coupled equa-
tions

Uy = Pby = g(”z)xx + %(wz)xx + ‘xzuxxm 27)

2
wtt = (uw)xx ta wxxtt'

Using the wave variable £ = x — Vi, the system (27) is carried
to a system of ODEs. Integrating these equations twice and
neglecting constants of integration we find

2(V2=B)U + pU* - pW? - 22°V?U" = 0,
(28)
VW - UW - a*V*W" = 0.

Balancing fW? with 2a’V2U" and V*W" with UW in (28)
gives

2N =M + 2,
(29)
2+ N=M+N,
so that
M=N-=2. (30)
As a result, we seek solutions to (27) in the form
: - k
U(uE) =S(Y) = Y aq¥*+ Ypy™
k=0 k=1
(31)

2 2
W (uE) =S(Y) = YY"+ Y d Yk,
k=0 k=1

Substitution of (31) into (28) leads to an algebraic system in
the unknowns a,, a,, a,, by, b, &, ¢}, &, dy, dy, V, and p.



Collecting the coefficients of Y and solving the resulting

system, we find the following sets of solutions:

L _ PGB+ Lo 3P
T 8(B+1)’ 2T 16(p+1)

b, = a,, ¢ = —2d,, ¢ =dy,

£3-4V* - 4V2 + 26" + 4B

% 16 ’
VB (16a7p? +1) \B(B+2)
62z +1 > YT aa(Br2)
a=b=¢=d =0,
. =ﬁ(l3+8) o 3p° b —
"7 8(B+1)’ 2T 16(B+1) 2 = O
2d
COZTZ’ ¢ =dy,

£30/-4V4 - 4V2 1 2B + 4B

d, ,
16
A6’y ~ 1) _\-B(B+2)
6oy -1 H= da(f+2)
a=b=¢=d =0,
_-B(B-4) _ 3 _ 9
TR 2Ty 0T
£3\-4V4 - 4V2 +26% + 4B
6 = 1 ,
G
T a1 0 YT (g2
a=b=b=c=d =d, =0,
_B(BB+4) _ 3 _
YTuEen il 007
£31-4V4 - 4V2 4 2B + 4B
G = 1 ,
Vo VB (4e?p? +1) _\VB(B+2)
42+l “= 20(B+2)°
g =b=b=c=d =d,=0,
a B 3p°

:ﬁ+1’ a2:2(3[§2+7ﬁ+4)’
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b, = a,, ¢ =—d,,

£3\[-42V4B — 58V — 2V — 120V2 + 1208
d, = ,
8

o \/5B (8a2u? + 3B +5) —B(58+4)

8a2u? +3B+5
a=b=¢q=¢=d =0,

B -

= 5 = > b = >
% B+1 “ 2(B+1) 2=
+V9V2 +6
Gedy 4= 0
_\3B(B+1) -1
EEI T
a=b=¢q=¢=d =0
(32)
Consequently, we obtain the following solutions:
- B(3B+38) 3, hz\/ﬁ(ﬁ”)
,t) = - an
e 8(B+1) 16(B+1) da (B +2)
VB (16a2p% + 1)
-t
1602u? + 1
3B \VB(B+2)
- co
16(B+1) 4o (B +2)
B(16a2u* +1)
X————5 1t
1602u? + 1
¥3\-4V4 - 4V2 + 247 + 4B
wy (xr t) =
8
3\-AVE-aV2 2B 1 4B \B(B+2)
+ tanh
§ 16 s (B+2)
\B(16a2u% +1)
X————————1
16a?u? + 1

) 34V - 4V2 4 2 + 4B . VB (B+2)

16 O 4 (B+2)

B(16a2u? +1)
1602u? + 1
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( t)_ﬁ(ﬁ+8) 3p° 2 \-B(B+2)
Ha 1% _8(ﬁ+1)+16(/3+1) an 4o (B +2)
\-B(16a%u> — 1)
o B T
3p 2 \-B(B+2)

! 16(/3+1)CO da(B+2)

VB (16a%u? — 1)

l6a?u? — 1

\/—4V4

w, (x,t) =+

—4V2 + 282 + 4P

8

. 34V - 4V2 + 267 + B J-B(B+2)

16

16a2u? - 1

4a(B+2)

)

. 34V - 4V2 + 267 + B J-B(B+2)

16

16a2u? - 1

da (B +2)

u(xt)—_ﬂ(ﬁ_4)+ 3ﬁ2 tanh? FB+2)
T 4 (B1)  4(B1) 20 (B +2)

d0u? — 1

R

—4V2 4282 + 4P

ws(x,t) =7F

4

34V - 4V2 42 + 4B
*

-B(B+2)

4

4otu? -1

2a(B+2)

BB+ 3 VB(B+2)

4(Br1) 4B+ " 2a(fr2)

B (4a’ps? + 1)
X x—-—————71 |,
d02u? + 1

34V - 4V2 1 2B + 4B
wy (x,t)=7F 1

uy (x,t) =

. 34V - 4V2 427 + 4B . VB(B+2)

4 tan 2a(B+2)
\B (4a?u? + 1)
N e )
u5(x,t)=ﬁ€1

s PGB

! 2038 +7B+4) . 2a (56 +4)

< \/5ﬁ(8a2y2+3ﬂ+5) >
X x- t

8au? +3B+5

s o\ BB

+2(3/32+7,8+4)C° 20 (58 +4)

< \/5/3 (8a%u? +3B+5) >

x| x- t],
8a2u? +3B+5

ws (x, 1)

3\/—42V4ﬂ — 58V% - 2V2 - 120V2 + 1208
=7
8

\-B(5B+4)

20 (58 +4)

. <x \/Sﬁ(&x 7 +3ﬁ+5)t>

x tanh?

8a2u? +3B+5

3-42V4B - 58V4 - 2V2B — 120V + 1208
+
8
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A= B(5B+4) The tanh-coth method substitutes the finite expansions

th> ————~
xeo 2a (58 +4)

2 2
UuE) =S(Y) =Y ay*+ Yy
\/Sﬁ (8a2u? +3B+5) k=0 k=1
X - t

X , (38)
8a2u? +3B+5 2 2 ;
W (uE) =S(Y) = Y g¥* + Y d,v*.
k=0 k=1
ug (x,t) = p
6\ X, 1) =
B+1 In (35), collecting the coeflicients of each power of Y and
solving the resulting system, we obtain
B ,-1 3B(B+1)
- tanh®— | x - ———— 2,2 _3,2
2(B+1) 20 3(B+1) P .
1642 + 1 1642 + 1
- P cothz_—1 x——3/3(/3+1)t CO:%’ 6 = dy,
2(B+1) 2a 3(B+1) ’ 3
BV +HV-1)yB+2 B 1

d - "
we (x, 1) ? 16 \1l6p? +1
-1 \/3ﬁ(ﬁ+1) a=b=¢=d =0,

=F— “tanh*— [ x- ———¢
2 2« 3(B+1) 6 32
a°:16u2—1’ a2:16”2_1, a, = b,
+/ 4/ 1
VOVZ+6 L a-l _m ¢ = —2d,, 6 =d,,
+ 5 coth 5 x S+ t]. 0 2 2
o +
p 3 (VD) (V-1)yBt2 Vo 1
33 2= ’ T T
33) 16 V162 +1
3.4. The Fourth Coupled. We now consider the coupled 1Bq a=b=¢=d =0,
equations 5 5
u —3u 5
4= T QT 3o
2 2 u-+1 4us+1 3
Upp = Uyx — ﬁ(l/l )xx + (LU )xx T Usexrr>
(34) C#3 (V1) (V-1)\/B+2 Ve 1
Wy = Wy + z(uw)xx T Wiexyt- Q= 4 > - 2+ 1’
U
Using the wave variable £ = x — Vt, (34) can be converted to a,=b=b=¢=d,=d,=0,
a system of ODEs:
3,2 342
G =75 D=7 G =%
(VZ—I)U+[3U2—W2—V2U":0, - 4us -1 4us -1
35 3 (V+1)(V-1)/B+2 1
(V?-1)w-20w-v*W" =0. 6 = 1 LEES Vz\/:,
—4p? + 1
Balancing W? with U" and UW with W" in (35) gives a=b=b=¢=d =d,=0,
-3u 3u?
2N =M +2, ay= —t—, =, G =—d,
M+ N =N +2,
* " L BVENV-DVErz 1
, = , =
4 A2
so that 4t +1

M=N-=2. (37) (39)
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where y is left as a free parameter. Consequently, we obtain
the following travelling wave solutions:

2[42
U (xat) = _16‘142 i1
3‘142 2 1
- tanh“p | x - ———t
16[42 +1 16 2
\J16p? + 1
3[/{2 2 1
- COth X — —t N
16”2 +1 “ 16[/42 +1

V+D)(V-1)yp+2
8

. 3(V+1) (XZ; 1)B+ 2tanh2y

w; (x,t) =+

1
X| x— ——¢

\1l6p? +1

. 3(V+1) (\16— ) +B+ 2coth2y

6
Hy (1) = _16;4!;— 1
3;42 2 1
+ tanh“p | x - ——¢
16u* -1 162
—1léu” +1
3u 1
+ Tycothz‘u X =t |,
1642 — 1

\-16p2 + 1

BV+D)(V-1)p+2

w, (x,t) =7

8
3(V+1)(V-1)+
RIS IUa) ﬁ+2tanhzy
16
1
X X — ———t

N 3(V+1) (116— 1)/B+ zcothzy

1

w00 =
3;42 2 1
- tanh“p | x - ——¢t |,
4 + 1 ’4#2 41

_(V+D)(V-1+B+2

wy (x,t) =F

4
L3V (V-1 VB2
B 4
2 1
xtanh“py| x - —t |,
\Ap? + 1
3,2
o) =
3u? ) 1
+ tanh“p | x - ——¢ |,
-1 V-4 + 1

3(V+1)(V-1)\B+2

wy (x,t)=7F

4
+3(V+1)(V—1)\/ﬁ+2
a 4
2 1
xtanh“p| x - ——t |,
\ -4t +1
3(/12 3;42 2 1
us (x,t) = ————— + coth"u| x - —t |,
° 42 -1 4P -1 a2 +1
3(V+1)(V-1)+ 2
ws (x,t) =F v+ 1 JVB+
4
+3(V+1)(V—1)w/ﬁ+2
B 4
2 1
xcoth®y| x — ———t

\—4u? +1

(40)

3.5. The Fifth Coupled. We finally consider the coupled IBq
equations

= Bt 500), 50,

2 2
wy = Y(Uw),, + P(w )xx T O Wyist-
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This system of equations (41) can be converted to the follow-
ing system of ODEs by using the wave variable £ = x — Vi

(2v? - 2B)U + U - pW?* - 2a°V?U" = 0,

VW —yUW — pW? - 2V?W" = 0.
Using the balancing procedure in (42) gives

2M =M + N,
2N =M+N,

so that
M =N =2.

We consider solutions in the following form:

U(u€) =S(Y) = ZakY +Zka*"

k=1

2 2
W (u) =S(Y) = Y Y  + Y dy*

k=0 k=1

(42)

(43)

(44)

(45)

Substituting (45) into (42), collecting the coefficients of Y,
and solving the resulting system, we find the following sets

of solutions:

ay = (=B (8pc,B’y — 8Py’ pe, — 189 B + 24Bp’c,
+12ﬁ2y2
x (4(-8Bp’cy - 4"y’ - 4B’ p'c, + 3’
+3p"yp + 4PY402 + 48y’ pe,
8By, - 3% - 3y°B))

— (4pc,B + 4c,py - 3%)
4y (u+B)

a2=

= (ﬁ <le3202 +Y° 0+ Boy’ +2y°pc,
3 3
+3yp’Be, - Epﬁzy - Zpﬁ3>>

x (-8Bp’°c,y - 4p’y’c, - 4B°p ’

o +3p”B
+3p°yB" + 4py’c, + 4By’ pe,

8By’ pe, 36y -3y’ B)

- 16Y3P02 +24p’cyy - 398))
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6= <¢3 <_ B+ (- + 4B - 4V

_4Y3V2 + 2ﬁ2)/2

—4p2y,8 + 4p2V4 + 4p2V2y)1/2>)

x(4(y*-p%))

o VBt - 1) By +p)
o datyr-1 “= 202y +p) °
4 =b =b=c =d, =d, =0,

3
a0 = (B(6pes’ + 10By’pey + 2" + 2%,
2 2 3 3 9 3
+3f7y" +4ypc, + 2p w+;1y/3 ))
2 n3
x (-8Bp’cy - 4py’c, - 4B%p’c, - 3p° B
= 3p°yB + 4py'e, + 4B%y pe,
n 3)}3[32)—1’

— (4pc,B +4c,py + 35%)
4y (u+B)

+8By’pe, + 38°y°

a2=

¢ = (/5' (— 3p° B, — 3y’ - 3Bey’
9 9
~6y*p’c, = 0yp" By — S By - ;Lplf))
x (-8Bp’cy - 4p™y’c, - 4B°pc,
= 3p%yB + 4py'c, + 487y pe,

+ 3)/3[32)_1,

-3p’°
+8By’pe, + 3%y

6 = (i3 <ﬁp +(-p’ B +4y°B - 4y’V*
—4y’V? + 2By - 4p"yp

+4p2V4 + 4p2V2y)1/2>>

x(4(r* =)

o VBl +1) By +p)
T2 “= 202y + B)’
a =b=b=c=d =d,=0.

(46)
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In view of this, we obtain the following travelling wave
solutions:

up (% 1) = (=B (8pcaB’y — 8By’ pey = 18p° B° + 24PBp’c,
+128%y" — 16y’ pe, + 24p’cy = 3yp°))
x (4 (-8Bp’cy —4p’y'c, — 4B’ p’c, +3p° B’
+3p"yB* +dpy'e, + 487y pe,
8By’ pe, 3% ~3y°FY))

- \-B2y+p)

2a 2y + B)

(4pc, B + 4c,py - 3P7)
4y (u+B)

d02p? — 1

w, (x,1) = (ﬁ (PzﬁZQ +1’6B + Boy’ + 2y Pl
+3yp° Be, - %Pﬁz)’ - ip/f))

x (-8Bp°cy — 4p’y’c, — 4B’ p’c, + 3p° B°
+3p%yB + 4py'c, + 4B°y’ pe,
88y’ pe, 3% ~3y°BY)

= (3 (— Bp+(-p'B* +4y’ - 4'V*

—4y°V? + 2B - 4p”yp
+4/)2V4 + 4p2V2y)1/2>)
x(4(r*-¢")"
LBy +B)

tanh
Y Sy p)
\-B(de’? - 1)
X| x-—————7-—¢ |,
dou? — 1

3
Uy (x,t) = (/3 <6P02/32Y +10By’pe + Zp*B +2pp°c,
BEY 4o+ 2pay + f ) )
x (-8Bp’cy - 4p’y’c, - 4B°p’c, - 3p°B°
- 3p"yB” + 4py’c, + 4By’ pe,

8By’ pe, + 38 + 3y°B)

13
(4pc,B + 4c,py + 35%)
4y (u+B)

B (4a?u? +1)
—_—t
d02p? + 1

. B2y +p)

2a (2y + B)

X X —

w, (x,1) = (/3 (— 3p° B, — 37’6, - 3Bey’
—6y°p’c, = 9yp’ e, - gpﬁzy - Zpﬁ3)>
x (-8Bp’cy —4p’y’c, = 4B%p’c, - 3p” B’
= 3p%yB + 4py'c, + 4B°y’pe,
8By’ pe, + 357 + 3B
+ <3 <ﬁp + (—pzﬁz + 4y3ﬁ - 4)/2V4
—4y’V? + 287y — 4p")B

+4p2V4 + 4p2V2Y)1/2>>
x(4(r’-¢")"
ANBCr+B) [ \BUa+n)

ti —
< (2y+B) do2u? + 1

(47)

4. Conclusion

In summary, the tanh-coth method has been successfully
implemented to find new travelling wave solutions for several
kinds of two coupled improved Boussinesq equations. The
solutions that have been found can be seen as an expansion
and verification of the previously known data. However, this
study confirmed again the belief that the tanh-coth method
is a powerful and reliable technique to handle nonlinear
dispersive-dissipative equations and system of equations.
Throughout the work, Maple has been used to overcome the
tedious algebraic calculations.
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