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The management of a car-rental service becomes more complex as long as one-way bookings between different depots are accepted.
These bookings can increase the operational costs due to the necessity of moving vehicles from one depot to another by the company
staff in order to attend previously accepted bookings. We present an iterative model based on flows on networks for the acceptance
of bookings by a car-rental service that permits one-way reservations. Our model lets us also recover the movement of the fleet
of vehicles between the depots over the time. In addition, it also permits including restrictions on the amount of cars managed at
every single depot. These results can be of interest for an electric car-rental service that operates at different depots within a city or

region.

1. Introduction

Car rentals can admit bookings where the pick-up and drop-
offlocation can coincide or not. If bookings are only admitted
when both locations coincide, their management is not as
complicated as if bookings are only accepted when the loca-
tions are different (one-way bookings). When this happens,
these companies face much more difficulties in order to cope
with the management of their fleet of vehicles, since these
bookings could entail a huge increment of operational costs
due to deadhead times. Nevertheless, in order to offer a high
level of service thier policy is to accept bookings without
a deep examination of its consequences on the operational
costs [1].

The use of fully electric vehicles (FEV) is fostered by
government authorities in order to contribute to the lowering
of the current pollution levels [2]. This comes jointly with a
gradual phasing out of conventionally-fuelled vehicles from
the urban environment [3]. Some references concerning the
adoption of these new transportation devices can also be
found in [4, 5].

The easiest way to implement a rental service of electric
vehicles is to make the users return them at the place where
the cars have been picked off. This is done in order to be sure
that every car has its own parking place with a charging point.
Therefore, an improvement in the process of acceptance
of bookings that consider one-way trips between different
stations and try to avoid, as far as possible, the amount of
staft dedicated to the rearrangement of vehicles between the
depotsis of particular interest in order to facilitate and extend
their use among the potential users. Therefore, a social benefit
is obtained as long as the number of reservations of these
shared vehicles is increased and the number of private cars
running is reduced.

Flows and networks were firstly used in the air industry
for solving fleet routing problems, see for instance [6-9].
The problems that can be solved using them range from
schedule design, flight assignment [10], and crew scheduling
[11] to scheduling of air cargo alliances [12]. Their techniques
have been also considered in the management of car-rental
services in order to answer questions of strategic and tactical
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decisions, revenue and capacity management, and pricing,
see for instance [1, 13-15].

We suppose that a simulation of bookings for a car-rental
service is given. We model the process of acceptance/rejection
of those petitions. This depends on having a car available at
the departure point (without leaving unattended any other
previously scheduled booking from that place) and on having
an empty parking space at the arrival destination. We assume
that an answer should be given as fast as possible to the client.
Therefore, we will answer each petition before considering
the next one. We do not consider the case that a rejected
booking can turn to be admissible after some other booking
has been accepted. As we said before, the general practice
in the car-rental industry is to accept bookings and later to
optimize the management of the fleet of vehicles.

The car-rental services considered in the frame of this
paper are managed with a little different policy. We assume
that one of these services does not need to compete with other
services and it is just an optional element inside the mobility
network of an urban area, where other means of transport
are offered to the citizens. Therefore, if a booking should be
rejected because of the lack of available cars or empty parking
slots, then we reject it since we consider that this will have
a low impact on the service perception of prospective users,
as long as other means of transport can be used. In this way
we determine which bookings should be admitted without
falling on deadhead times due to the rearrangement of cars
by the car-rental service staff.

The paper is organized as follows. In Section 2 we intro-
duce some basics of graph theory about flows and networks.
We also present time-expanded networks. Our model for
managing the bookings using a network is presented in
Section 3. Section 4 is devoted to explain the theoretical
background that backs our computational method. A first
algorithmic approach based on Ford-Fulkerson algorithm is
presented in Section 5. We will see that the problem that
arises can be stated in terms of finding an admissible flow on
a network with minimum capacities at certain edges. Later,
an iterative method based on a simplification of the auxiliary
network defined for considering the admissibility of the flow
will be given in Section 6. This method lays on a solution
of certain shortest path problem. An analysis of the results
is reported in Section 7. Finally in Section 8 we discuss the
contribution of the model to the management of a service in
order to offer a cheaper rental service, which will contribute
to extend its use for the movements within an urban area. Our
algorithm helps to determine if it is advisable to increase the
fleet of vehicles or the size of the parking at a certain depot,
attending to the increments of cost and to the number of
additional bookings accepted.

2. Preliminaries

A directed graph G = (V, E) is given by a set of nodes V and
a set of ordered pairs of nodes (arcs). If an arc connects the
node u with the node v, we will simply denote it by (u, v). We
recall thata 5-tuple N = (V, E, s, ¢, ¢) is named network if it is a
directed weakly connected graph where V is the set of nodes,
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Eisthe set of arcs, s is a node with outgoing degree positive (at
least one edge departs from it) usually called source, t isanode
with ingoing degree positive (at least one edge arrives to it)
usually called sink, and ¢ is a function from E to N that assigns
to every edge (u,v) € E a value c(u, v) that will represent the
maximum capacity permitted on this edge. Given a network
N, we can consider flows on them. A flow f is a function f :
E — N such that f(u,v) < c(u,v) for every (u,v) € E, and
for every v € V' \ {s,t} the sum of the values of the flow on
the edges with v as initial node coincides with the sum of the
flows on the edges with v as final node; that is,

Z fuv)= Z fvu). 0

ueV,(u,v)eE ueV,(v,u)eE

Condition (1) is usually known as the conservation law of
the flow. The value of the flow f on N, f(N), is defined as the
sum of the flows on the adjacent arcs to s (or to t):

fay= Y few= )Y f). (o

u€eV,(s,u)€E ueV,(u,t)eE

A flow f on N is said to be maximum if it has the
maximum value among all possible flows that can be defined
on N. We refer the reader to [16-24] for general information
on flows and networks and graph theory.

In particular, we are going to consider time-expanded
networks, also called time-space networks [18, 25]. In these
networks, the inner nodes of the network (not the sink nor
the source) represent locations at certain times. The source
is connected with all locations at the initial time and all
locations at the final time are connected with the sink. This
is also the structure used for dealing with problems in which
the flow emerges from several sources and leaves at several
sinks.

Now, we transform this network into a one time-
expanded network in which we reply cities as many times as
time periods we are going to consider, see Figure 1. Nodes in
each column represent the same city and each level represents
the same time period for different cities.

In this model we also consider another value associated
with each arc named its minimum capacity. The minimum
capacity is a function m : E — N. The flow through every
edge (u,v) € E must verify m(u,v) < f(u,v) < c(u,v).
We denote a network N with minimum capacities as N =
(V,E,s,t,m,c), where V is the set of nodes, E the set of
edges, s the source, t the sink, and m, ¢ the minimum and
maximum capacities, respectively. Networks with maximum
and minimum capacities cannot always admit a flow that
respects the upper and lower bounds. It is compulsory that,
for every node v € V, the sum of the maximum capacities of
all the edges that arrive to v was greater than or equal to the
sum of the minimum capacities of all the edges that depart
from it. Consider

Z m(v,u) <

ueV,(v,u)€eE

Z c(u,v). 3)

ueV,(u,v)eE

If not, the conservation law never holds.
In the next section, we proceed to explain in detail the
steps that let us construct a model for deciding whether to
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FIGURE 1: A time-expanded network with n depots at m times. Arcs
in green represent bookings of cars and arcs in black represent
staying at the parking of each depot.

accept or reject a booking attending to the distribution of cars
at the departure depot and the existence of empty parking
places at the arrival one.

3. A Car-Rental Booking Model

Suppose that our car-rental service operates with only one
type of car. Let n be the number of locations (depots) and
assume that depot i starts with a given number of cars k;.
Let k, be the total number of cars of the company; that is,
ko = Y@, k; In addition, we suppose that depot i has p;
parking slots at its location to park the cars that are not used
by any client and are recharging and waiting to be reserved.
We assume that this number cannot be increased along the
time.

We also consider the bookings along m consecutive days,
h possible times a day. Then the sequence {¢; : 1 < j < hm}
represents all the possible time periods. For instance, if we
consider the times 9:00, 10:00,. . ., 20:00 then i = 12. So that
Via(a-1)+p> fOr some 1 < a < mand 1 < b < 12, represents
(8+b):00 a.m. of the day a at the location i.

The set of nodes V will consist of s, t (the source and the
sink) and all the possible combinations of locations and times
{vij: 1 <i<m 1< j< hm}wherev,; represents the
location i at time ¢ ;.

The set E is formed by four types of arcs. The first three
are the following ones.

(i) (s,v;,), 1 < i < n, that connect the source with the
depots at the first instant of time.

(ii) (v;j»vijs1)> 1 i <n 1 < j < hm -1, that represent
staying at a parking between two consecutive times.

(iii) (V; > 1), 1 < i < m, that connect the depots at the last
time to the sink.

Our objective is to know if we can accept a booking of
w cars between two determined depots at two different time
moments under the restrictions of having enough vehicles
at the departure depot and free space at the arrival one. We
define a booking by a 5-tuple r = (ip,tp,id,td,w), where
1<ipig<n1<t,<t;<hm,andn €N, withi, being the
pick-up depot, t; being the pick-up time, i; being the drop-
off city, t; being the drop-off time, and w being the number
of cars to be reserved. Each booking r = (i, 1,4, 4, w) is
converted into a new edge from node Vi, 1O nodev; , . This

will be the fourth type of arcs of our network.

Now, we analyze which capacities are necessary to model
the movement of the cars along the time and to accept only
admissible bookings.

We have supposed that depot i has p; parking spaces. To
set this restriction we assign p; as maximum capacity to the
edge (v; j,v; j;1) 1 <i<n, 1< j<hm,and every node of the
form v;;,,,, 1 < i < n, must be connected with the sink £ by an
edge with p; as maximum capacity.

Finally we must assign a minimum capacity to arcs
(s,v;1). If not, the cars at a depot i could not be considered in
the parking in the future. In Figures 2and 3 every edge (1, v) €
E has a 3-tuple (m(u,v), f(u,v),c(u,v)) associated with it
where m and ¢ are the minimum and maximum capacities,
respectively, and f denotes the flow. If we suppose that arcs
(s,v;1) have assigned minimum capacity equal to the number
of cars of every depot, k;, we will avoid the aforementioned
problem. The following example shows the necessity of a
minimum capacity for the edges that represent the starting
time at every parking.

Example 1. Suppose that we start with 6 cars at depot 1 at
time t = 1 and with 7 cars at depot 2 at time t = 1 too. We
also consider that we have 7 and 8 parking slots, respectively,
at each one of these depots. Let us suppose that we have to
decide whether the booking (2,1,1,2,3) could be accepted
or not.

In Figure 2 we have a piece of a network without
minimum capacities in the edges (s, v, ;) and (s, v, ). In this
case, there is a flow of 3 cars across the edge (v,,, v, ,), and
therefore the booking would be accepted. Nevertheless, there
are 6 cars parked at slot 1 during all periods of time and this
is not taken into account. If they were, then the proposed
booking cannot be accepted as it is indicated in Figure 3, since
we will have a total number of 9 cars that arrive to node v, ,.
This is not possible since the conservation law fails due to the
fact that the maximum capacity of the only edge that departs
from (v, ;) is 7.

For edges representing bookings, we also have to consider
that the minimum and maximum capacity must coincide in
order to be sure that the cars follow the booking itinerary
and do not stay at the parking of the picking up depot. Next
example shows the necessity of minimum capacity for edges
associated with bookings.

Example 2. Suppose that we want to represent a booking of
the form (1, 2,2,3, 1). This is done by considering a flow of 1
car along the edge (v, 5, v,3).
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FIGURE 3: With minimum capacities on the arcs that depart from S.

In Figure 4 we have a piece of a network without
minimum capacities at the edge (v, ,,v,3). In this case, we
cannot be sure that the flow of 1 unit that corresponds to this
booking will traverse the edge, and therefore the car will go
from depot 1 to depot 2 at those times. We can only ensure
this if we assign a minimum capacity of 1 unit to this edge, as
it is shown in Figure 5.

4. Existence of an Admissible Flow
on the Network

The flow over the network that we have already presented
simulates the movement of the cars over time. As we said
before, a flow through a network with minimum capacities

Journal of Applied Mathematics

V1,1© QVZ,I

0,5,7) (0,7,8)
V1, V22
C O
0,0,1)

0,5,7) (0,7,8)
Y13 V23
O @)
(0,5,7) 0,7,8)
V14 V24

O O

FIGURE 4: Without minimum capacities on the arcs that represent a
booking.
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FIGURE 5: With minimum capacities on the arcs that represent a
booking.

could not be admissible. Firstly, the initial number of cars
at every depot must be smaller or equal to the number of
parking slots at each depot; thatis, k; < p; fori = 1,...,n.
Secondly; a list of bookings, which is in fact a list of new edges
to be added to the former network, could result into a network
without any admissible flow.
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Now, we start with the initial network N that contains
only the first three types of edges that were previously men-
tioned. This network has the following values as maximum
capacities at their edges:

(K, foru=s,v=v,,i=1,...,n

pi foru=v, v=v,, i=1....n
c(wy) = j=1,..hm—1, @

p foru=v,,.,v=ti=1...,n

In addition, we also set the following minimum capaci-
ties:

(K, foru=s,v=v,,i=1,...,n

0 foru=v; v=v, i=1...n
mhv) = 1 j=1,.. hm-1, ©

0 foru=vy,,v=t i=1,...,n

Then, the following flow results in being admissible on
this network:

ki foru=s,v=v,,i=1,...,n
ki foru=v;,;,v=v;,i=1....n
) = _ (6)
j=1...,hm-1,
ki foru=v,, ,v=ti=1..,n

Now, let us suppose that we have an ordered list of L
bookings requests {r,, ..., 7.}, where each booking is given by
its corresponding 5-tuple. Consider that these bookings have
arrived to us in advance to ¢, for instance through the website
of the car-rental company. We have to decide whether we can
accept them or not. The acceptance of each booking depends
on the acceptance or not of the previous ones. We assume that
all bookings must be answered following a first-in/first-out
criterion, which is the closest approach to the management
of bookings that arrive through a web service.

We start with the first booking request r, =
(ip>tp>1q,t4,w;) and we add the corresponding edge
from node Vi, 1O Vi with maximum and minimum
capacities equal to w;.

In order to know if there exists an admissible flow
in the network N = (V,E,s,t,m,c) with the additional
edge corresponding to booking r;, we define an auxiliary
network N and apply Ford-Fulkerson algorithm on it. The
explanation of Ford-Fulkerson algorithm can also be found
in [16, 18, 19, 21].

The use of this network N’ in order to determine the
existence of an admissible flow on a network with minimum
capacities is given by the following result that can be found
either in [16, page 83] or in [21, page 92]. Its application
provides us with a theoretical support for modeling our
problem.

Theorem 3. Let N = (V, E, s,t,m, c) be a network and let one
consider its auxiliary network N' defined as follows.

(1) The set of nodes of N' consists of the nodes of N and two
new auxiliary nodes s',t' that will be the source and the
sink, respectively, of the network N'.

(2) To define E' we consider all the edges of E and we add
a new one from t to s, with infinite capacity.

(3) For every edge (u,v) € E with capacity m(u,v) > 0 we
also change its maximum capacity c(u,v) by c(u,v) —
m(u, v) and we add a new edge (s',v) with maximum
capacity c'(s',v) = m(u, v) and another one (u,t') with
maximum capacity u,t') = m@u, ).

(4) We also set all the minimum capacities of N' to zero.

Let f' be a flow of maximum value f'(N') on N', and let
£'(t,s) be the flow of f' through the edge (t, s). There exists an
admissible flow of value f'(t,s) on N if and only if f'(N') =
Z(u,v)eE m(u’ V)'

Remark 4. The proof of Theorem 3 shows how to construct
the admissible flow; we just have to define f(u,v) = f ", v)+
m(u, v) for every edge (u, v) in the initial network N, and its
value will be f’(t, s).

To sum up, the network N obtained when considering
also the first booking r, has V U {s, '} as the set of nodes, s’
as the source, ¢’ as the sink, and the following edges with their
corresponding maximum capacities. These new capacities are

defined as:

(00, foru=t,v=s,

Zki foru=s,v="t,

! .
k; foru=s,v=v,, i=1...,n
c(u,v)=1p; foru=v;, v=v;,, i=1L...,n
j=1,...,hm—-1,
P foru=v,, v=t, i=1,...,n

!
w, foru= Vit V=L

p— ! p—
| W, foru=s, V=V

7)

We have eliminated the edges that should appear on
N’ with maximum capacity equal to 0. If there exists a
maximum flow on this network of value f'(N') = Y k; +
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FIGURE 6: Network N.

w;, then the booking should be accepted by Theorem 3. If it is

! !
not accepted, we remove the edges (Vipl oo )and (s, Vigta, ).

If yes, then we keep these two edges on N'.

Example 5. Suppose that we have two depots, 1 and 2, with
k, cars at depot 1 and k, cars at depot 2. We consider each
depot at two different times, t = 1 and t = 2. Suppose
that we have a booking of w, cars from depot 1 at time t,
to depot 2 at time #,. In Figure 6 we have the initial network
N with the minimum and maximum capacities at every edge.
The flow is not indicated at any arc. In Figure 7 we have the
corresponding auxiliary network N' where we have reduced
the minimum capacities 0 of the arcs as it is indicated in (7).
We recall that the arcs with maximum capacity equal to 0 are
also removed.

After dealing with r;, we pass to next booking r, =
(iy5tp, id2>, t4,» w,) and we proceed as before, adding two new
edges to N' with capacity w,:

!

w,, foru=v, , , v=t,
P27 P2

(8)

c(u,v) = for u=s v
Wy, fOru=s,v=yv, ; .

If for dealing with an arbitrary booking r =
(ip,tp, ity w), one (or two) of the edges (vip)tp,t') and
(s, vip,tp) are already defined on N'; what we have to do is
to sum w to the existing maximum capacity of that edge
and test the admissibility of N'. If the booking should not
be accepted, then we just have to decrease the maximum
capacity of that edge on w, leaving the edge with the previous
capacity.

Remark 6. Our model lets us cancel a booking some time
after it was already accepted. It is sufficient to decrease the
maximum capacity along the corresponding edge in as many
units as the booking indicates, removing it if, afterwards, its
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FIGURE 7: Auxiliary network N'.

maximum capacity is 0. But we have to check if doing this
we get a network without an admissible flow. On one hand,
this could happen with one-way bookings when the car was
required to be at another city in the future for being used for
another booking departing from there. In this case, the car
must be moved there by the company staff. On the other hand,
the lack of an admissible flow on the network can also come
from the necessity of needing more parking spaces available
at the departure city during part of the time that the car was
reserved.

5. Algorithm for Computing the
Admissibility of the Network N

In this section we explain how we define the graph of N’
in order to maximize the flow on this network. The Ford-
Fulkerson algorithm provides a solution for the quest of a
maximum flow between a source and a sink on a network.

As we have mentioned in the previous section, the
acceptance of a booking depends on verifying whether a
certain network N with minimum capacities admits a flow
or not, and this can be reduced to find a maximum flow on
an auxiliary network N'. The following algorithm shows how
to define N' and how to use it in order to accept or reject a
reservation.

Step 1. Notation

(1.1) n, number of depots.

(1.2) For every 1 < i < m, p; stands for the number of
parking places available at depot .

(1.3) For every 1 < i < n, k; denotes the initial number of
cars at depot i.

(1.4) hm is the total number of time moments considered,
Elsenos by

(1.5) The network N’ will have fmmn + 4 nodes; that is, n

depots at hm different times plus 4 nodes for s,t,s’,
andt'.
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(16) A = (ai,j) is matrix of capacities in N', whose
dimensions are (hmn + 4) X (hmn + 4). The nodes are
enumerated in the adjacency matrix as follows:

(i) For1<i<mn1<j<hm,

vij — n(j—1)+i,

(i)t — hmn+1,
(iii) s — hmn + 2,
(iv) t' — hmn+3,
(v) s’ > hmn+4.

(1.7) Set {ry,...,r.} as a list of bookings. Set &« = 1, which
will be the counter for the reservations.

(1.8) Set A = 0, which will accumulate the number of cars
in accepted bookings.

Step 2. Initilialize A
For every 1 <, j < hmn + 4, we define the following:

Pe fori=kn+¢, j=i+n 0<k<hm-2,
1<€<n,

Pe fori=(hm-1)n+¢, j=hmn+1,
1<f<n,

Kk, fori=hmn+4, j=¢1<€<n,

ij =

n

Zke fori=hmn+2, j=hmn+3,
e=1

%) fori=hmn+1, j=hmn+?2,

0 elsewhere.

)

Remark. a;; = 0 can represent the lack of an edge or the
existence of an edge with capacity equal to 0.

Step 3. Analyze the bookings.
While a < L, take 1, = (i, 0> p oo T, L a0 Wa)-

(3.1) Update the following elements of A:
aj+w, fori=hmn+d, j=n(ty,—1)+ig

a;j + w,

fori:n(t —1)+ip,“, j=hmn+3.

(10)

por

(3.2) Maximize the flow f(N ") of the network N’ using
Ford-Fulkerson algorithm.

(33) If f(N') = A+ Y k; +w,, then

(i) accept the booking r,,
(ii) update A = A + w,,

elsewhere,

(iii) undo the assignments in A of Step (3.1).

(3.4) Set @ = a + 1 and return to Step 3.
Step 4. We finish when all the bookings have been processed.

In order to reduce the computational cost of the above
algorithm we have analyzed its implementation based on the
notion of a residual network. Let N = (V,E,s,t,c) be a
network with a flow f over N. Without loss of generality,
we assume that each pair of nodes is connected in just one
sense, either (u,v) € E or (v,u) € E but not at the same
time. We define the residual network N  as the network N =
(V, &, s, t, ©), with the same nodes, source, and sink as N. The
set of arcs & consists of all the arcs of the form (1, v) such
that either (u, v) or (v, u) belong to E; that is, every arc of E
is maintained and it has also an associated arc in the opposite
sense. Besides, the new capacities, ¢, on this new set & are
defined as

c(w,v)— f(wv), if (u,v)€E,
clwv) = {f(u,v), if (v,u) € E. ()

We define an f-augmenting path on N as a path from
s to t, namely, p, such that all the edges in this path have
positive capacity. We define the capacity of p, namely, ¢; as
the minimum of the capacities of all the arcs in p. The flow is
maximum when there is not an f-augmenting path on N.

Let us consider the network N} associated with the

network N’ defined in previous algorithm with the initial
flow defined in (6), which results in being admissible in N '

Then, the new adjacency matrix A ; = (a{ ;) that corresponds
to the network N} will be

pe—k, fori=kn+¢, j=i+n 0<k<hm-2,
1<f<n,

k, for j=kn+¢€,i=j-nl1<k<hm-1,
1<f<n,

pe—k, fori=hm-1)n+¢, j=hmn+1,
1<f<n,

k, fori=hmn+1, j=((hm-1)n+¢,

a{j:< 1<€<n,

k, fori=¢, j=hmn+4, 1<€<n,

ike fori=hmn+3, j=hmn+2,

=1

ike fori=hmn+2, j=hmn+1,

e=1

00 fori=hmn+1, j=hmn+2,

L0 elsewhere.

(12)



FIGURE 8: The network of Example 5 after the first iteration of Step
(3.1) in the algorithm. The arcs in black belong to N', and the arcs
with a purple (dashed) line represent the additional edges to be
considered with the former ones of N in order to have the residual
network of N'.

After each booking 1, = (i, £ p o> igas Ld,e Wa)> We look
for an f augmenting path p from s’ to t' in the residual
network associated with the network N'.. The residual one
is updated following the indications in (10). For the sake
of clarity, we provide, in Figure 8, the residual network of
N’ in Example 5 after the first iteration of Step (3.1) in the
algorithm. The edges with 0 capacity and the labels of all the
nodes except s’ and t' have been removed in order to get a
neater picture.

6. A Simplified Algorithm for Computing the
Admissibility of a Flow on a Network

We refer again to Example 5. The nodes that stand for
the drop-oft depot before the drop-off time, the nodes that
refer to the pick-up depot before the pick-up time, and s
can be removed because if some of them appear in an f-
augmenting path, they do it in a cycle, and this cycle can be
erased from the f-augmenting path without decreasing its
capacity. Therefore, the only way to find an f-augmenting
path without cycles from s’ to ¢’ is to consider the following
path: {s, Voot Vigs Vi1 t'}. Therefore, a simplification of the
residual network in what concerns to this booking can be seen
in Figure 9. Such a path exists if the following conditions are
tulfilled whether w, < p; — k; and w; < k,. So by checking
them we can omit the restrictions given by the arcs (s',v,,)
and (v, ;,t'), and the network N is reduced to the time-space
part plus the initial sink ¢, see Figure 10.

Taking this into account, Step 3 in the algorithm of
Section 5 can be significantly simplified. Let us take a booking
(ipstyigrtg w). In order to accept it, we only have to find, if
there exists, a path that connects the node v; , with the node
Vit with capacity greater than or equal to w. Such a path can

be easily found using a shortest path algorithm, like Dijkstras,
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FIGURE 9: A simplified version of the residual network of Example 5
is to be considered in order to decide whether to accept or not the
booking (v;, 1, v,, 2, w, ). This is accepted if we find an f-augmenting
path from S’ to T’ to be increased in w, units. The arcs in the f-
augmenting path are represented in green.

V1,1 O’z,l

ky

k, /

FIGURE 10: A more simplified version of the residual network of
Example 5. The booking (v;, 1,v,,2,w,) will be accepted if there is
an f-augmenting path from v, at time t = 2 to v, at time ¢ = 1
to be increased in w, units. The arcs in the f-augmenting path are
represented in green.

in the residual network associated with N'. This path will be
of the form

Vip,t},’ v,»p,tp+1 yeees Vip’thm, t, Vit Vigtan® Viats® (13)

Further information concerning Dijkstra’s algorithm can
be found, for instance, in [16, 18, 19, 21, 24].

We point out that the use of a shortest path algorithm
prevents us from getting an f-augmenting path with cycles.
With respect to the previous algorithm, we modify the steps
indicated below but considering the matrix A ; previously
defined.

Step 1'. Notation

(1.6.bis) Af= (a{j) a matrix of dimensions (hmn+1) x (hmn+
1). The nodes are enumerated in the adjacency matrix
as follows:

i) v — n(Gi-1) +i,
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(i) t — hmn+1;

that is, we have removed the vertex s,t’, and s’ and the
adjacent arcs to them. In addition, Step (1.8) is removed.

Step 2'. Initialization of A

In the same way as in (12), but restricting ourselves to the
new dimensions of A ;, we omit s, s',t', and their adjacent
arcs.

Step 3'. Analyze the bookings
While a < L, take r, = (i, 0> £ p oo I, L0 Wa)-

(3.1) Find a shortest path p between the nodes n(t;, — 1) +
igeand n(t,, —1) +i,,.

(3.2) Compute the capacity of p, namely, G-

(3.3) Ifw, < C; then do the following.

(i) Accept the booking r,,.

(ii) Update the following elements of A ;:

-al{j

fori=n(ty, —1)+iz, +kn,
jEit(k+)n k=0,....;hm—ty,,

a{j + W,

fori=j+(k+1D)n j=n(ty,—1)+ig, +kn,
k= 0,...,hm—td,lx,

— W,

— W,

"
fori=n(hm-1)+iz,, j=hmn+]l,
f

a; ; + W,
o] fori=hmn+1, j=n(hm-1)+iy,,
» a{j+w“
fori=n(hm-1)+i,, j=hmn+]l,
a{j—wa
fori=hmn+1, j=nhm-1)+i,,,
a{j+wa
fori= n(tp,“ - 1) +i,q +kn,
j=it(k+1)n k=0,....hm—t,,,
a{j—wa
fori=j+(k+1)nj=n(t,,—1)+iy,+kn,
k=0,....hm—t,,.
(14)

elsewhere
(iii) Reject the booking 7.

(3.4)" Set @ = « + 1 and return to Step 3.

Step 4'. We finish when all the bookings have been processed.

7. Some Additional Considerations
about the Model

In our assumptions we have considered that we start the
scheduling of bookings from scratch starting on time ¢,, but
this is only the real case once in the company lifetime. The
interval of time t,,...,t,,, must be finite. Nevertheless, we
can consider that before running the algorithm on the model
we have already confirmed some bookings that started before
t, and some that will finish after ¢;,,,. In order to introduce
them in our model:

(i) for every existing booking (ip, torigtas w) with t, <
tyandt, <t; <ty,,, weadd a new edge (s,v; , ) with
maximum and minimum capacity equal to w,

(ii) for every existing booking (i,, 14,4, w) with ; <
t, < ty, and ty,, < t; we add a new edge (vip,tp,t)
with maximum and minimum capacity equal to w.

We have also considered that we are dealing with only one
type of car. If our fleet has several types of cars ordered in
increasing category as x; < x, < --- < x;, we will propose a
model with [-layers. In the lower one we have a network for
cars of type x;, in the one above of it we deal with the cars
of type x,, and so on. We should point out that in this case
the number of parking spaces is shared by several types of
cars. Sometimes the clients could ask for a car of low type,
for instance x;, and the company could have none of those
cars available of this layer for renting. However, we can try to
see if we can offer him a car of type x,. If this is the case, we
can confirm the booking and grant the client with an upgrade
when he arrives to the pick-up depot. The client will be happy
and the service have accepted a booking that otherwise could
be lost.

8. Results and Discussion

The proposed model simulates the flow of the fleet of vehicles
of a car-rental service without staff dedicated to move cars
from one location to another one, as could sometimes be
needed to do due to one-way bookings. This model has the
advantage that let us recover the flow of cars across the depots
along the time, as it is indicated in Remark 6.

The model is based on determining the admissibility of
a flow on a network with minimum capacities. Its imple-
mentation is backed by Theorem 3. In our first model every
new booking only requires defining at most one new edge
on the auxiliary network and applying the well-known Ford-
Fulkerson algorithm on it. Later, a simplification of the
network permits us to solve the problem using a shortest path
algorithm.

On one hand, Ford-Fulkerson algorithm can be easily
computed on a network with Mathematica® by using the
command NetworkFlow [network, source, sink] of the Com-
binatorica package. In our case, network would be the graph
associated with N’, s’ would be the source, and t' would
be the sink. The complexity of Ford-Fulkerson algorithm is
o(&] - f(N')), where & is the set of edges in the network N’
and f(N ") is the maximum flow on it, see for instance [19,
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TaBLE 1: Comparison between the 2 algorithms for 6 cities at 20
different times.

bN;l(:E);grsof With NetworkFlow (s.) With FindShortestPath (s.)
1 0.125 0.062
5 0.718 0.266
10 1.828 0.515
15 3.265 0.782
30 9.235 1.562
75 34.609 4.078
125 61.547 6.765
200 100.265 11.00
300 139.593 16.657
400 163.484 22.422
500 207.984 28.281

20, 26]. Therefore, every time a booking r = (i), t,, iy, t 4, W)
is accepted we add at most two more new edges and the flow
is increased in w, which is the number of cars in the booking.
An implementation using Edmonds-Karp algorithm has a
complexity O(|V]- |€|?), which is independent of the number
of cars considered and only depends on the set of vertex V'
and the set of edges &, [19, 20, 26].

On the other hand, the shortest path between two nodes
in a network can be easily computed with Mathematica using
FindShortestPath [network, source, sink] of the Combinatorica
package, with the same values for network, source, and sink as
before. There are several algorithms for solving the shortest
path problem between two points. The well-known Dijkstra
algorithm has a cost O6(IV]?*) when it is implemented with
lists. The order of the cost can be reduced if it is implemented
with binary heaps, O((|&]) log [V|), or with Fibonacci heaps,
O(€] + |V]log|V]), see [19, 20, 26]. Therefore, the simpli-
fication proposed of the algorithm shown in Section 6 can
provide much more better computational results.

This can be seen on a simulation carried out over time-
expanded network of 6 depots at 20 different times and 500
bookings. The computations were performed on a computer
with a processor of 2.50 GHz and 3.25Gb of RAM using
Mathematica® 8.0. The comparison of the execution times
of each one of these methods is presented in Table 1. We
observe a significant improvement in the computational
time required to solve the problem if we use the simplified
algorithm based on the search of shortest paths using the
residual network.

Finally, this model let us simulate if it is profitable for the
company that manages the service to invest or not, either in
more cars or in more parking slots, taking into account the
historic of petitions of bookings received. This can be done
using a list of all the requests of bookings received during a
period of time, despite they were accepted or not. We analyze,
with the historical data of petitions, if when we increase the
maximum and minimum capacities at one or some of the
edges (s, v;,) the number of accepted bookings is increased,
and whether the new expected incomes coming from these

Journal of Applied Mathematics

bookings are enough to invite us to invest. Analogously, we
can consider if there is a significant increment of benefits if we
augment the number of parking spaces at one or some depots.
Both types of analysis can be jointly considered.
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