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We study the existence of positive solutions and multiplicity of nontrivial solutions for a class of quasilinear elliptic equations by
using variational methods. Our obtained results extend some existing ones.

1. Introduction and Main Results

Let us consider the following problem:

−Δ𝑝𝑢 − 𝜇

|𝑢|

𝑝
∗

(𝑠)−2

|𝑥|

𝑠 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω \ {0} ,

𝑢 = 0, 𝑥 ∈ 𝜕Ω,

(1)

where Δ𝑝𝑢 = div(|∇𝑢|

𝑝−2
∇𝑢) denotes the 𝑝-Laplacian dif-

ferential operator,Ω is an open bounded domain inR𝑁 (𝑁 ≥

3) with smooth boundary 𝜕Ω and 0 ∈ Ω, 0 ≤ 𝑠 < 𝑝, 𝑝

∗
(𝑠) =

𝑝(𝑁 − 𝑠)/(𝑁 − 𝑝) is the Hardy-Sobolev critical exponent, and
𝑝

∗
= 𝑝

∗
(0) = 𝑁𝑝/(𝑁 − 𝑝) is the Sobolev critical exponent.

Here, we let

‖𝑢‖ := (∫

Ω

|∇𝑢|

𝑝
𝑑𝑥)

1/𝑝

,

(2)

which is equivalent to the usual norm of Sobolev space
𝑊

1,𝑝

0
(Ω) due to the Poincaré inequality. Let

𝐴 𝑠 (Ω) := inf
𝑢∈𝑊
1,𝑝

0
(Ω)\{0}

‖𝑢‖

𝑝

(∫

Ω
(|𝑢|

𝑝∗(𝑠)
/|𝑥|

𝑠
)𝑑𝑥)

𝑝/𝑝∗(𝑠)
, (3)

which is the best Hardy-Sobolev constant.

In the case where 𝑠 = 0 and 𝜇 = 1 hold, then (1) reduces
to the quasilinear elliptic problem:

−Δ𝑝𝑢 − |𝑢|

𝑝
∗

−2
𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω,

𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(4)

Gonçalves and Alves [1] have studied (4) in R𝑁 involving
𝑓(𝑥, 𝑢) = ℎ(𝑥)𝑢

𝑞, 𝑢 ≥ 0 and 𝑢 ̸≡ 0 to obtain existence of
positive solutions where 2 ≤ 𝑝 < 𝑁, 0 < 𝑞 < 𝑝 − 1, or
𝑝 − 1 < 𝑞 < 𝑝

∗
− 1 and a suitable ℎ. We should mention that

problem (4) with 𝑝 = 2 has been widely studied since Brézis
and Nirenberg; see [2–4] and the references therein.

Ghoussoub and Yuan [5] have studied (1) with 𝑓(𝑥, 𝑢) =

𝜆|𝑢|

𝑟−2
𝑢, where 𝑝 < 𝑟 < 𝑝

∗.They obtained a positive solution
in the case where 𝜆 > 0, 𝜇 > 0, and𝑁 > [𝑝(𝑝−1)𝑟+𝑝

2
]/[𝑝+

(𝑝 − 1)(𝑟 − 𝑝)] (in particular if 𝑁 ≥ 𝑝

2) hold. They also
obtained a sign-changing solution in the case where 𝜆 > 0,
𝜇 > 0, and 𝑁 > [𝑝(𝑝 − 1)𝑟 + 𝑝]/[1 + (𝑝 − 1)(𝑟 − 𝑝)] (in
particular if 𝑁 > 𝑝

3
−𝑝

2
+𝑝) hold. For other relevant papers,

see [6–12] and the references therein.
We should mention that the energy functional associated

with (1) is defined on 𝑊

1,𝑝

0
(Ω), which is not a Hilbert space

for 𝑝 ̸= 2. Due to the lack of compactness of the embedding
in 𝑊

1,𝑝

0
(Ω) 󳨅→ 𝐿

𝑝
∗

(Ω) and 𝑊

1,𝑝

0
(Ω) 󳨅→ 𝐿

𝑝
∗

(𝑠)
(Ω, |𝑥|

−𝑠
𝑑𝑥),

we cannot use the standard variational argument directly.The
corresponding energy functional fails to satisfy the classical
Palais-Smale ((PS) for short) condition in𝑊

1,𝑝

0
(Ω). However,
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a local (PS) condition can be established in a suitable range.
Then the existence result is obtained via constructing a
minimax level within this range and the Mountain Pass
Lemma due to Ambrosetti et al. [2] and Rabinowitz [13].

In this paper, we study (1) with a general nonlinearity
by using a variational method; besides, we also considerably
generalize the results obtained in [5]. In what follows, we
always assume that the nonlinearity 𝑓 satisfies 𝑓(𝑥, 0) ≡ 0.
Let 𝐹(𝑥, 𝑡) := ∫

𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠, 𝑥 ∈ Ω. To state our main results,

we still need the following assumptions.

(𝐴1) 𝑓 ∈ 𝐶(Ω × R+,R), lim𝑡→0+(𝑓(𝑥, 𝑡)/𝑡

𝑝−1
) = 0, and

lim𝑡→∞(𝑓(𝑥, 𝑡)/𝑡

𝑝
∗

−1
) = 0 uniformly for 𝑥 ∈ Ω.

(𝐴2) There exists a constant 𝜌 with 𝜌 > 𝑝 such that

0 < 𝜌𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡, ∀𝑥 ∈ Ω, ∀𝑡 ∈ R
+

\ {0} .
(5)

(𝐴3) 𝑓 ∈ 𝐶(Ω × R,R), lim𝑡→0(𝑓(𝑥, 𝑡)/|𝑡|

𝑝−1
) = 0, and

lim|𝑡|→∞(𝑓(𝑥, 𝑡)/|𝑡|

𝑝
∗

−1
) = 0 uniformly for 𝑥 ∈ Ω.

(𝐴4) There exists a constant 𝜌 with 𝜌 > 𝑝 such that

0 < 𝜌𝐹 (𝑥, 𝑡) ≤ 𝑓 (𝑥, 𝑡) 𝑡, ∀𝑥 ∈ Ω, ∀𝑡 ∈ R \ {0} .
(6)

Now, our main results read as follows.

Theorem 1. Suppose that 𝑁 ≥ 3, 0 < 𝜇 < ∞, 0 ≤ 𝑠 < 𝑝, and
1 < 𝑝 < 𝑁 hold. If (𝐴1), (𝐴2), and

𝜌 > max{𝑝, 𝑝

∗
(1 −

1

𝑝

) , 𝑝

∗
−

𝑝

𝑝 − 1

} (7)

hold, then (1) has at least one positive solution.

Theorem 2. Suppose that 𝑁 ≥ 3, 0 < 𝜇 < ∞, 0 ≤ 𝑠 < 𝑝, and
1 < 𝑝 < 𝑁 hold. If (𝐴3), (𝐴4), and (7) hold, then (1) has at
least two distinct nontrivial solutions.

Noting that 𝜌 > 𝑝 and 𝑝

2
≤ 𝑁 imply that (7) holds,

therefore, we have the following corollaries.

Corollary 3. Suppose that 0 < 𝜇 < ∞, 0 ≤ 𝑠 < 𝑝, 𝑝

2
≤ 𝑁,

and 1 < 𝑝 < 𝑁. Moreover, (𝐴1) and (𝐴2) hold; then (1) has at
least one positive solution.

Corollary 4. Suppose that 0 < 𝜇 < ∞, 0 ≤ 𝑠 < 𝑝, 𝑝

2
≤ 𝑁,

and 1 < 𝑝 < 𝑁. Moreover, (𝐴3) and (𝐴4) hold; then (1) has at
least two distinct nontrivial solutions.

Remark 5. Theorem 1 generalizes Theorem 1.3 in [5], where
the author only studied the special situation that 𝑓(𝑥, 𝑢) =

𝜆|𝑢|

𝑟−2
𝑢, 𝑝 < 𝑟 < 𝑝

∗. There are functions 𝑓 satisfying the
assumptions of ourTheorem 1 and not satisfying those in [5].
Let

𝑓 (𝑥, 𝑡) := 𝑔 (𝑥) |𝑡|

𝑘−2
𝑡 + 𝑎|𝑡|

𝑙−2
𝑡, (𝑥, 𝑡) ∈ Ω × R,

(8)

where 𝑔(𝑥) > 0, 𝑔 ∈ 𝐿

∞
(Ω), 𝑎 > 0, and 𝑝 < 𝑘 < 𝑙 < 𝑝

∗.
Obviously, 𝑓 satisfies all the conditions of Theorem 1 in this
paper, while it does not satisfy the conditions of Theorem 1.3
in [5].

The rest of this paper is organized as follows. In Section 2,
we give some preliminary lemmas, which are useful in the
proofs of our main results. In Section 3, we give the detailed
proofs of our main results.

2. Preliminaries

In what follows, we let ‖ ⋅ ‖𝑝 denote the norm in 𝐿

𝑝
(Ω). It is

obvious that the values of 𝑓(𝑥, 𝑡) for 𝑡 < 0 are irrelevant in
Theorem 1, so we may define

𝑓 (𝑥, 𝑡) ≡ 0 for 𝑥 ∈ Ω, 𝑡 ≤ 0. (9)

We firstly consider the existence of nontrivial solutions to the
problem:

−Δ𝑝𝑢 = 𝜇

(𝑢

+
)

𝑝
∗

(𝑠)−1

|𝑥|

𝑠 + 𝑓 (𝑥, 𝑢) , 𝑥 ∈ Ω \ {0} ,

𝑢 = 0, 𝑥 ∈ 𝜕Ω.

(10)

The energy functional corresponding to (10) is given by

𝐼 (𝑢) =

1

𝑝

∫

Ω

|∇𝑢|

𝑝
𝑑𝑥 −

𝜇

𝑝

∗
(𝑠)

∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥, 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) .

(11)

ByHardy-Sobolev inequalities (see [5, 14]) and (𝐴1), we know
𝐼 ∈ 𝐶

1
(𝑊

1,𝑝

0
(Ω),R). Now it is well known that there exists

a one-to-one correspondence between the weak solutions of
(10) and the critical points of 𝐼 on 𝑊

1,𝑝

0
(Ω). More precisely

we say that 𝑢 ∈ 𝑊

1,𝑝

0
(Ω) is a weak solution of (10), if, for any

V ∈ 𝑊

1,𝑝

0
(Ω), there holds

⟨𝐼

󸀠
(𝑢) , V⟩ = ∫

Ω

|∇𝑢|

𝑝−2
(∇𝑢, ∇V) 𝑑𝑥 − 𝜇 ∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)−1

|𝑥|

𝑠 V𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) V𝑑𝑥 = 0.

(12)

Lemma 6 (see [15]). If 𝑓𝑛 → 𝑓 a.e. in Ω and ‖𝑓𝑛‖𝑝
≤ 𝐶 < ∞

for all n and some 0 < 𝑝 < ∞, then

lim
𝑛→∞

(

󵄩

󵄩

󵄩

󵄩

𝑓𝑛

󵄩

󵄩

󵄩

󵄩

𝑝

𝑝
−

󵄩

󵄩

󵄩

󵄩

𝑓𝑛 − 𝑓

󵄩

󵄩

󵄩

󵄩

𝑝

𝑝
) =

󵄩

󵄩

󵄩

󵄩

𝑓

󵄩

󵄩

󵄩

󵄩

𝑝

𝑝
. (13)

Lemma 7. For any 𝑎 > 0, 0 ≤ 𝑏 ≤ 1, and 𝜆 ≥ 1, we have
(𝑎 + 𝑏)

𝜆
≤ 𝑎

𝜆
+ 𝜆(𝑎 + 1)

𝜆−1
𝑏.

Proof. Let

ℎ (𝑥) := (𝑎 + 𝑥)

𝜆
− 𝑎

𝜆
− 𝜆(𝑎 + 1)

𝜆−1
𝑥.

(14)

Clearly, ℎ󸀠(𝑥) < 0, 𝑥 ∈ (0, 1), so ℎ(𝑏) ≤ ℎ(0) = 0.
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Lemma 8 (see [5]). If 0 ≤ 𝑠 < 𝑝 hold, then we have

(i) 𝐴 𝑠(Ω) is independent of Ω, and will henceforth be
denoted by 𝐴 𝑠;

(ii) 𝐴 𝑠(Ω) is attained when Ω = R𝑁 by the functions

𝑙𝜀 (𝑥) = (𝜀 (𝑁 − 𝑠) (

𝑁 − 𝑝

𝑝 − 1

)

𝑝−1

)

(𝑁−𝑝)/𝑝(𝑝−𝑠)

×

(𝜀 + |𝑥|

(𝑝−𝑠)/(𝑝−1)
)

(𝑝−𝑁)/(𝑝−𝑠)

(15)

for some 𝜀 > 0. Moreover, the functions 𝑙𝜀(𝑥) are the only
positive radial solutions of

−Δ𝑝𝑢 =

𝑢

𝑝
∗

(𝑠)−1

|𝑥|

𝑠
(16)

in R𝑁, and satisfy

∫

R𝑁

󵄨

󵄨

󵄨

󵄨

∇𝑙𝜀

󵄨

󵄨

󵄨

󵄨

𝑝
𝑑𝑥 = ∫

R𝑁

󵄨

󵄨

󵄨

󵄨

𝑙𝜀

󵄨

󵄨

󵄨

󵄨

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 = (𝐴 𝑠(Ω))

(𝑁−𝑠)/(𝑝−𝑠)
.

(17)

Lemma 9. If (𝐴1), (𝐴2), and 0 < 𝑐 < ((𝑝 − 𝑠)/𝑝(𝑁 −

𝑠))𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠) hold, then 𝐼 satisfies (PS)𝑐 condition.

Proof. Suppose that {𝑢𝑛} is a (PS)𝑐 sequence in 𝑊

1,𝑝

0
(Ω). By

(𝐴2), we have

𝑐 + 1 + 𝑜 (1)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

≥ 𝐼 (𝑢𝑛) −

1

𝜃

⟨𝐼

󸀠
(𝑢𝑛) , 𝑢𝑛⟩

= (

1

𝑝

−

1

𝜃

)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
+ (

1

𝜃

−

1

𝑝

∗
(𝑠)

) 𝜇 ∫

Ω

(𝑢

+

𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

− ∫

Ω

(𝐹 (𝑥, 𝑢𝑛) −

1

𝜃

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛) 𝑑𝑥

≥ (

1

𝑝

−

1

𝜃

)

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
,

(18)

where 𝜃 = min{𝜌, 𝑝

∗
(𝑠)}. Hence we conclude that {𝑢𝑛} is a

bounded sequence in 𝑊

1,𝑝

0
(Ω). So there exists 𝑢 ∈ 𝑊

1,𝑝

0
(Ω);

going if necessary to a subsequence, we have

𝑢𝑛 ⇀ 𝑢 in 𝑊

1,𝑝

0
(Ω) ,

𝑢𝑛 󳨀→ 𝑢 in 𝐿

𝛾
(Ω) (1 < 𝛾 < 𝑝

∗
) ,

𝑢𝑛 󳨀→ 𝑢 a.e. in Ω,

𝑛 󳨀→ ∞.

(19)

By the continuity of embedding, we have ‖𝑢𝑛‖
𝑝
∗

𝑝∗
≤ 𝐶1 < ∞.

From [5], going if necessary to a subsequence, one can get that

∇𝑢𝑛 󳨀→ ∇𝑢 a.e. in Ω,

𝑢𝑛

𝑥

⇀

𝑢

𝑥

weakly in 𝐿

𝑝
(Ω) ,

∫

Ω

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
∗

(𝑠)−2
𝑢𝑛

|𝑥|

𝑠 V𝑑𝑥 󳨀→ ∫

Ω

|𝑢|

𝑝
∗

(𝑠)−2
𝑢

|𝑥|

𝑠 V𝑑𝑥, ∀V ∈ 𝑊

1,𝑝

0
(Ω)

(20)

as 𝑛 → ∞. By (𝐴1), we know that for any 𝜀 > 0 there exists
𝑎(𝜀) > 0 such that

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡) 𝑡

󵄨

󵄨

󵄨

󵄨

≤ 𝑎 (𝜀) +

1

2𝐶1

𝜀|𝑡|

𝑝
∗

for (𝑥, 𝑡) ∈ Ω × (0, +∞) .

(21)

Set 𝛿 := 𝜀/2𝑎(𝜀) > 0. When 𝐸 ⊂ Ω, meas(𝐸) < 𝛿, we get

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

𝐸

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ ∫

𝐸

𝑎 (𝜀) 𝑑𝑥 +

𝜀

2𝐶1

∫

𝐸

󵄨

󵄨

󵄨

󵄨

𝑢𝑛

󵄨

󵄨

󵄨

󵄨

𝑝
∗

𝑑𝑥

< 𝜀 󳨀→ 0 as meas (𝐸) 󳨀→ 0.

(22)

It follows from Vitali’s theorem that

∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛𝑑𝑥 󳨀→ ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥 as 𝑛 󳨀→ ∞. (23)

Similarly, we can also get

∫

Ω

𝐹 (𝑥, 𝑢𝑛) 𝑑𝑥 󳨀→ ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 as 𝑛 󳨀→ ∞. (24)

Since 𝐼

󸀠
(𝑢𝑛) → 0, we have

⟨𝐼

󸀠
(𝑢𝑛) , 𝑢𝑛⟩

=

󵄩

󵄩

󵄩

󵄩

𝑢𝑛

󵄩

󵄩

󵄩

󵄩

𝑝
− 𝜇 ∫

Ω

(𝑢

+

𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 − ∫

Ω

𝑓 (𝑥, 𝑢𝑛) 𝑢𝑛 𝑑𝑥 = 𝑜 (1) .

(25)

Let V𝑛 := 𝑢𝑛 − 𝑢, which together with Lemma 6 implies

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
+ ‖𝑢‖

𝑝
− 𝜇 ∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 − 𝜇 ∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥 = 𝑜 (1) .

(26)

From (20), we can obtain

lim
𝑛→∞

⟨𝐼

󸀠
(𝑢𝑛) , 𝑢⟩ = ‖𝑢‖

𝑝
− 𝜇 ∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

− ∫

Ω

𝑓 (𝑥, 𝑢) 𝑢 𝑑𝑥 = 0.

(27)
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Note that 𝐼(𝑢𝑛) → 𝑐 as 𝑛 → ∞, which together with
Lemma 6 implies

𝐼 (𝑢𝑛) =

1

𝑝

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
+

1

𝑝

‖𝑢‖

𝑝
−

𝜇

𝑝

∗
(𝑠)

∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

−

𝜇

𝑝

∗
(𝑠)

∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 + 𝑜 (1)

= 𝐼 (𝑢) +

1

𝑝

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
−

𝜇

𝑝

∗
(𝑠)

∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 + 𝑜 (1)

= 𝑐 + 𝑜 (1) .

(28)

Therefore, one gets that

𝐼 (𝑢) +

1

𝑝

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
−

𝜇

𝑝

∗
(𝑠)

∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 = 𝑐 + 𝑜 (1) .

(29)

From (26) and (27), we have

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
− 𝜇 ∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 = 𝑜 (1) ;

(30)

then ‖V𝑛‖
𝑝

→ 0 as 𝑛 → ∞. Otherwise, there exists a sub-
sequence (still denoted by V𝑛) such that

lim
𝑛→∞

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
= 𝑘, lim

𝑛→∞
𝜇 ∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 = 𝑘, 𝑘 > 0.

(31)

By (3), we have

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
≥ 𝐴 𝑠(∫

Ω

(V+
𝑛
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥)

𝑝/𝑝
∗

(𝑠)

, ∀𝑛 ∈ N;

(32)

then 𝑘 ≥ 𝐴 𝑠(𝑘/𝜇)

𝑝/𝑝
∗

(𝑠). That is, 𝑘 ≥ 𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠).
It follows from (29) and 𝑐 < ((𝑝 − 𝑠)/𝑝(𝑁 −

𝑠))𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠) that 𝐼(𝑢) < 0. However, we
have 𝐼(𝑢) ≥ 0 by (27) and (𝐴2). We get a contradiction.
Therefore, we can obtain

󵄩

󵄩

󵄩

󵄩

V𝑛
󵄩

󵄩

󵄩

󵄩

𝑝
󳨀→ 0 as 𝑛 󳨀→ ∞.

(33)

From the discussion above, 𝐼 satisfies (PS)𝑐 condition.

In the following, we shall give some estimates for the
extremal functions. Let

𝐶𝜀 := [𝜀(𝑁 − 𝑠)(

𝑁 − 𝑝

𝑝 − 1

)

𝑝−1

]

(𝑁−𝑝)/𝑝(𝑝−𝑠)

,

𝑈𝜀 (𝑥) :=

𝑙𝜀 (𝑥)

𝐶𝜀

.

(34)

Define a function 𝜑 ∈ 𝐶

∞

0
(Ω) such that 𝜑(𝑥) = 1 for |𝑥| ≤ 𝑅,

𝜑(𝑥) = 0 for |𝑥| ≥ 2𝑅, 0 ≤ 𝜑(𝑥) ≤ 1, where 𝐵2𝑅(0) ⊂ Ω. Set

𝑢𝜀 (𝑥) = 𝜑 (𝑥) 𝑈𝜀 (𝑥) ,

V𝜀 (𝑥) =

𝑢𝜀 (𝑥)

(∫

Ω
(

󵄨

󵄨

󵄨

󵄨

𝑢𝜀

󵄨

󵄨

󵄨

󵄨

𝑝∗(𝑠)
/|𝑥|

𝑠
))

1/𝑝∗(𝑠)
,

(35)

so that ∫

Ω
(|V𝜀|
𝑝
∗

(𝑠)
/|𝑥|

𝑠
) = 1. Then, by using the argument as

used in [5], we can get the following results:

𝐴 𝑠 + 𝐶2𝜀
(𝑁−𝑝)/(𝑝−𝑠)

≤

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
≤ 𝐴 𝑠 + 𝐶3𝜀

(𝑁−𝑝)/(𝑝−𝑠)
,

(36)

𝐶4𝜀
(𝑁−𝑝)𝑟/𝑝(𝑝−𝑠)

≤ ∫

Ω

󵄨

󵄨

󵄨

󵄨

V𝜀
󵄨

󵄨

󵄨

󵄨

𝑟
𝑑𝑥 ≤ 𝐶5𝜀

(𝑁−𝑝)𝑟/𝑝(𝑝−𝑠)
,

1 ≤ 𝑟 < 𝑝

∗
(1 −

1

𝑝

) ,

𝐶4𝜀
(𝑁−𝑝)𝑟/𝑝(𝑝−𝑠)

|ln 𝜀| ≤ ∫

Ω

󵄨

󵄨

󵄨

󵄨

V𝜀
󵄨

󵄨

󵄨

󵄨

𝑟
𝑑𝑥 ≤ 𝐶5𝜀

(𝑁−𝑝)𝑟/𝑝(𝑝−𝑠)
|ln 𝜀| ,

𝑟 = 𝑝

∗
(1 −

1

𝑝

) ,

𝐶4𝜀
((𝑝−1)/(𝑝−𝑠))(𝑁−𝑟(𝑁−𝑝)/𝑝)

≤ ∫

Ω

󵄨

󵄨

󵄨

󵄨

V𝜀
󵄨

󵄨

󵄨

󵄨

𝑟
𝑑𝑥 ≤ 𝐶5𝜀

((𝑝−1)/(𝑝−𝑠))(𝑁−𝑟(𝑁−𝑝)/𝑝)
,

𝑝

∗
(1 −

1

𝑝

) < 𝑟 < 𝑝

∗
.

(37)

Moreover, by using the Sobolev embedding theoremand (36),
one can deduce

∫

Ω

󵄨

󵄨

󵄨

󵄨

V𝜀
󵄨

󵄨

󵄨

󵄨

𝑝
∗

𝑑𝑥 ≤ 𝐶6𝐴
𝑁/(𝑁−𝑝)

𝑠
for 𝜀 󳨀→ 0

+
. (38)

Lemma 10. Suppose that 0 ≤ 𝑠 < 𝑝. If (𝐴1), (𝐴2) and (7)
hold, then there exists 𝑢0 ∈ 𝑊

1,𝑝

0
(Ω), 𝑢0 ̸≡ 0, such that

sup
𝑡≥0

𝐼 (𝑡𝑢0) <

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠)
. (39)

Proof. We consider the functions

𝑔 (𝑡) = 𝐼 (𝑡V𝜀) =

𝑡

𝑝

𝑝

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
− 𝜇

𝑡

𝑝
∗

(𝑠)

𝑝

∗
(𝑠)

− ∫

Ω

𝐹 (𝑥, 𝑡V𝜀) 𝑑𝑥,

𝑔 (𝑡) =

𝑡

𝑝

𝑝

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
− 𝜇

𝑡

𝑝
∗

(𝑠)

𝑝

∗
(𝑠)

.

(40)

Since lim𝑡→∞𝑔(𝑡) = −∞, 𝑔(0) = 0, and 𝑔(𝑡) > 0 for 𝑡 small
enough, sup

𝑡≥0
𝑔(𝑡) is attained for some 𝑡𝜀 > 0. Therefore, we

have

0 = 𝑔

󸀠
(𝑡𝜀)

= 𝑡

𝑝−1

𝜀
(

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
− 𝜇𝑡

𝑝
∗

(𝑠)−𝑝

𝜀
−

1

𝑡

𝑝−1

𝜀

∫

Ω

𝑓 (𝑥, 𝑡𝜀V𝜀) V𝜀𝑑𝑥) ,

(41)

and hence

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
= 𝜇𝑡

𝑝
∗

(𝑠)−𝑝

𝜀
+

1

𝑡

𝑝−1

𝜀

∫

Ω

𝑓 (𝑥, 𝑡𝜀V𝜀) V𝜀𝑑𝑥 ≥ 𝜇𝑡

𝑝
∗

(𝑠)−𝑝

𝜀
.

(42)
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Therefore, we obtain

𝑡𝜀 ≤ (

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝

𝜇

)

1/(𝑝
∗

(𝑠)−𝑝)

:= 𝑡

0

𝜀
.

(43)

By (𝐴1), we can easily get

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝜀𝑡

𝑝
∗

−1
+ 𝑑 (𝜀) 𝑡

𝑝−1
, 𝑑 (𝜀) > 0.

(44)

Hence, we can get

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝
≤ 𝜇𝑡

𝑝
∗

(𝑠)−𝑝

𝜀
+ 𝜀 ∫

Ω

|𝑡𝜀|
𝑝
∗

−𝑝
|V𝜀|
𝑝
∗

𝑑𝑥 + 𝑑 (𝜀) ∫

Ω

|V𝜀|
𝑝
𝑑𝑥.

(45)

By (36)–(38), when 𝜀 is small enough, we conclude that

𝑡

𝑝
∗

(𝑠)−𝑝

𝜀
≥

𝐴 𝑠

2

.
(46)

On the one hand, from Lemma 7 and (36), it follows that
󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝(𝑁−𝑠)/(𝑝−𝑠)
≤ 𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
+ 𝐶7𝜀

(𝑁−𝑠)/(𝑝−𝑠)
.

(47)

On the other hand, the function 𝑔(𝑡) attains its maximum
at 𝑡

0

𝜀
and is increasing in the interval [0, 𝑡

0

𝜀
]. Note that (𝐴2)

implies 𝐹(𝑥, 𝑡) ≥ 𝐶8|𝑡|
𝜌, which together with (36), (46), and

(47) implies that

𝑔 (𝑡𝜀) ≤ 𝑔 (𝑡

0

𝜀
) − ∫

Ω

𝐹 (𝑥, 𝑡𝜀V𝜀) 𝑑𝑥

=

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

󵄩

󵄩

󵄩

󵄩

V𝜀
󵄩

󵄩

󵄩

󵄩

𝑝(𝑁−𝑠)/(𝑝−𝑠)
𝜇

(𝑝−𝑁)/(𝑝−𝑠)

− ∫

Ω

𝐹 (𝑥, 𝑡𝜀V𝜀) 𝑑𝑥

≤

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠)

+ 𝐶9𝜇
(𝑝−𝑁)/(𝑝−𝑠)

𝜀

(𝑁−𝑝)/(𝑝−𝑠)

− 𝐶8(
𝐴 𝑠

2

)

𝜌/(𝑝
∗

(𝑠)−𝑝)

∫

Ω

|V𝜀|
𝜌
𝑑𝑥.

(48)

Furthermore, from (7) and (37), we get

∫

Ω

|V𝜀|
𝜌
𝑑𝑥 ≥ 𝐶4𝜀

((𝑝−1)/(𝑝−𝑠))(𝑁−𝜌(𝑁−𝑝)/𝑝)
. (49)

By (7), we have 𝜌 > 𝑝

∗
− 𝑝/(𝑝 − 1), which implies

𝑁 − 𝑝

𝑝 − 𝑠

>

𝑝 − 1

𝑝 − 𝑠

(𝑁 −

𝜌 (𝑁 − 𝑝)

𝑝

) . (50)

Therefore, by choosing 𝜀 small enough, we have

sup
𝑡≥0

𝐼 (𝑡V𝜀) = 𝑔 (𝑡𝜀) <

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠)
.

(51)

Hence, the proof of the lemma is completed by taking 𝑢0 =

V𝜀.

3. Proofs of Main Results

Proof of Theorem 1. Let 𝑋 := 𝑊

1,𝑝

0
(Ω). From the Sobolev and

Hardy-Sobolev inequalities, we can easily get

‖𝑢‖

𝑝

𝑝
≤ 𝐶‖𝑢‖

𝑝
, ∫

Ω

|𝑢|

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 ≤ 𝐶‖𝑢‖

𝑝
∗

(𝑠)
,

‖𝑢‖

𝑝
∗

𝑝∗
≤ 𝐶‖𝑢‖

𝑝
∗

,

∀𝑢 ∈ 𝑋.

(52)

It follows from (𝐴1) that

∃𝛿1 > 0, s.t. 󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

< 𝑡

𝑝
∗

−1
, ∀𝑡 > 𝛿1;

∀𝜀 > 0, ∃0 < 𝛿2 < 𝛿1, s.t. 󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

< 𝜀𝑡

𝑝−1
,

∀𝑡 ∈ (0, 𝛿2)

∃𝑀 > 0, s.t. 󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑀, ∀𝑡 ∈ [𝛿2, 𝛿1]

(53)

uniformly for all 𝑥 ∈ Ω. Therefore, we deduce that
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑡

𝑝
∗

−1
+ 𝜀𝑡

𝑝−1
+ 𝑀 ≤ 𝜀𝑡

𝑝−1
+ (1 + 𝑀𝛿

1−𝑝
∗

2
) 𝑡

𝑝
∗

−1

(54)

for all 𝑡 ∈ R+ and for 𝑥 ∈ Ω. Then one gets

|𝐹 (𝑥, 𝑡)| ≤

1

𝑝

𝜀|𝑡|

𝑝
+ 𝐶10|𝑡|

𝑝
∗

(55)

for all 𝑡 ∈ R and for 𝑥 ∈ Ω. By (52) and (55) we have

𝐼 (𝑢) =

1

𝑝

‖𝑢‖

𝑝
−

𝜇

𝑝

∗
(𝑠)

∫

Ω

(𝑢

+
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥

1

𝑝

‖𝑢‖

𝑝
−

𝐶𝜇

𝑝

∗
(𝑠)

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

𝑝
∗

(𝑠)
−

𝐶

𝑝

𝜀‖𝑢‖

𝑝
− 𝐶𝐶10‖𝑢‖

𝑝
∗

(56)

for 𝜀 small enough. So there exists 𝛽 > 0 such that

𝐼 (𝑢) ≥ 𝛽 ∀𝑢 ∈ 𝜕𝐵𝑟 = {𝑢 ∈ 𝑊

1,𝑝

0
(Ω) , ‖𝑢‖ = 𝑟} ,

𝑟 > 0 small enough.

(57)

By Lemma 10, there exists 𝑢0 ∈ 𝑊

1,𝑝

0
(Ω) with 𝑢0 ̸≡ 0 such

that

sup
𝑡≥0

𝐼 (𝑡𝑢0) <

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠)
. (58)

It follows from the nonnegativity of 𝐹(𝑥, 𝑡) that

𝐼 (𝑡𝑢0) =

1

𝑝

𝑡

𝑝󵄩
󵄩

󵄩

󵄩

𝑢0

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝜇

𝑝

∗
(𝑠)

𝑡

𝑝
∗

(𝑠)
∫

Ω

(𝑢

+

0
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑡𝑢0) 𝑑𝑥

≤

1

𝑝

𝑡

𝑝󵄩
󵄩

󵄩

󵄩

𝑢0

󵄩

󵄩

󵄩

󵄩

𝑝
−

𝜇

𝑝

∗
(𝑠)

𝑡

𝑝
∗

(𝑠)
∫

Ω

(𝑢

+

0
)

𝑝
∗

(𝑠)

|𝑥|

𝑠 𝑑𝑥.

(59)
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Therefore, lim𝑡→+∞𝐼(𝑡𝑢0) → −∞, so we can choose 𝑡0 > 0

such that
󵄩

󵄩

󵄩

󵄩

𝑡0𝑢0

󵄩

󵄩

󵄩

󵄩

> 𝑟, 𝐼 (𝑡0𝑢0) ≤ 0. (60)

By virtue of the Mountain Pass Lemma in [16], there is a
sequence {𝑢𝑛} ⊂ 𝑋 satisfying

𝐼 (𝑢𝑛) 󳨀→ 𝑐 ≥ 𝛽, 𝐼

󸀠
(𝑢𝑛) 󳨀→ 0,

(61)

where
𝑐 = inf
ℎ∈Γ

max
𝑡∈[0,1]

𝐼 (ℎ (𝑡)) ,

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝑋) | ℎ (0) = 0, ℎ (1) = 𝑡0𝑢0} .

(62)

Note that
0 < 𝛽 ≤ 𝑐 = inf

ℎ∈Γ
max
𝑡∈[0,1]

𝐼 (ℎ (𝑡)) ≤ max
𝑡∈[0,1]

𝐼 (𝑡𝑡0𝑢0) ≤ sup
𝑡≥0

𝐼 (𝑡𝑢0)

<

𝑝 − 𝑠

𝑝 (𝑁 − 𝑠)

𝐴

(𝑁−𝑠)/(𝑝−𝑠)

𝑠
𝜇

(𝑝−𝑁)/(𝑝−𝑠)
.

(63)

By Lemma 9 we can assume that 𝑢𝑛 → 𝑢 in 𝑊

1,𝑝

0
(Ω). From

the continuity of 𝐼

󸀠, we know that 𝑢 is a weak solution of
problem (10). Then ⟨𝐼

󸀠
(𝑢), 𝑢

−
⟩ = 0, where 𝑢

−
= min{𝑢, 0}.

Thus 𝑢 ≥ 0. Therefore, 𝑢 is a nonnegative solution of (1). By
the StrongMaximumPrinciple [17], 𝑢 is a positive solution of
problem (1). Therefore, Theorem 1 holds.

Proof of Theorem 2. By Theorem 1, we know that (1) has a
positive solution 𝑢1. Set

𝑔 (𝑥, 𝑡) := −𝑓 (𝑥, −𝑡) for 𝑡 ∈ R. (64)

It follows fromTheorem 1 that the equation

−Δ𝑝𝑢 = 𝜇

|𝑢

+
|

𝑝
∗

(𝑠)−2

|𝑥|

𝑠 𝑢 + 𝑔 (𝑥, 𝑢)

(65)

has at least one positive solution V. Let 𝑢2 = −V; then 𝑢2 is a
solution of

−Δ𝑝𝑢 = 𝜇

|𝑢

+
|

𝑝
∗

(𝑠)−2

|𝑥|

𝑠 𝑢 + 𝑓 (𝑥, 𝑢) .

(66)

It is obvious that 𝑢1 ̸= 0, 𝑢2 ̸= 0, and 𝑢1 ̸= 𝑢2. So (1) has at least
two nontrivial solutions. Therefore, Theorem 2 holds.
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[1] J. V. Gonçalves and C. O. Alves, “Existence of positive solutions
for 𝑚-Laplacian equations in R𝑁 involving critical Sobolev
exponents,”NonlinearAnalysis:Theory,Methods&Applications,
vol. 32, no. 1, pp. 53–70, 1998.

[2] A. Ambrosetti, H. Brezis, and G. Cerami, “Combined effects of
concave and convex nonlinearities in some elliptic problems,”
Journal of Functional Analysis, vol. 122, no. 2, pp. 519–543, 1994.
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