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This paper proposes a nonlinear fuzzy PID control algorithm, whose membership function (MF) is adjustable, is universal, and
has a wide adjustable range. Appling this function to fuzzy control theory will increase system’s tunability. The continuity of this
function is proved.This method was employed in the simulation andHIL experiments. Effectiveness and feasibility of this function
are demonstrated in the results.

1. Introduction

Linear proportional-integral-derivative (PID) controller is
currently the most widely used control method, and about
90% of industrial processes employ this controller [1].
Though PID controller is adequate for linear applications, it
is found that this controller performs poorly for nonlinear
systems, time varying system, and system with time delay.
Thus, nonlinear PID controllers are required to deal with
this problem. Various nonlinear PID controllers have been
proposed for complex plants [2–5], but these controllers are
of less practical applicability due to the fact that the control
gains are fixed.Therefore, nonlinear controllers with variable
gains become the popular research problem.

A variable gain controller is a controller in which at least
one gain varies with input variables. Fuzzy controller is a
kind of variable gain controllers. Fuzzy logic system theory
was first proposed by Zadeh in 1965, which has been widely
applied in control field. In addition, fuzzy controllers have
been proven to be an effective choice to solve many practical
problems with less time [6]. It is proved, in the past 1980s,
that some simple Mamdani fuzzy controllers are essentially
nonlinear PI or PD controllers with variable gains [7, 8].
They all used linear fuzzy sets to fuzzify input variables. The
variable gains enabled the fuzzy controllers to outperform
their linear counterparts when controlling nonlinear or time-
delay systems [9–12].However, since the relationship between
adjustment of the consequents of the rules and properties

of controllers is not explicit, big trouble is caused to adjust
controller parameters. Hence, T-S fuzzy controllers that use
linear or nonlinear input fuzzy sets are related to PID control
so that the adjustment of the consequents of fuzzy controller
rules can be implemented in a similar way of adjusting PID
controller parameters. Haj-Ali and Ying [13] proposed two
types of constraint conditions of theMFs of this kind of fuzzy
controllers and the condition for controller structures that
can be adjusted like PID controller. But, Haj-Ali and Ying
[13] only presented the expressions of one kind of MFs, while
those of other MFs were not presented. Moreover, the format
of these MFs is relatively fixed or of small adjustment range,
making them only available to limited plants.

Aiming at solving the problems above, this paper presents
a new MF. Compared with the MF in Haj-Ali and Ying [13],
this MF satisfies both two constraint conditions, which can,
therefore, compensate the shortage of the second kind of
MF in [13]. The presented MF is of higher tenability and
bigger tunable range.Therefore, it is more general.This paper
demonstrates effectiveness of the proposed method with a
numerical example and a semiphysical experiment.

2. Configuration of Fuzzy Controllers

The error and error rate are selected as inputs for the fuzzy
controller as follows:

𝐸 (𝑛) = 𝑆 (𝑛) − 𝑦 (𝑛) , 𝐷 (𝑛) = 𝐸 (𝑛) − 𝐸 (𝑛 − 1) , (1)
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where 𝑆(𝑛) is the reference output of the plant at sampling
time 𝑛 and 𝑦(𝑛) is the actual output of the plant. Here a two-
dimensional fuzzy controller is considered with the inputs
𝐸(𝑛) and𝐷(𝑛). The fuzzy rules are as follows.

IF 𝐸(𝑛) is 𝑃 AND𝐷(𝑛) is 𝑃 THEN Δ𝑢(𝑛) is 𝑃

IF 𝐸(𝑛) is 𝑃 AND𝐷(𝑛) is𝑁 THEN Δ𝑢(𝑛) is 𝑍

IF 𝐸(𝑛) is𝑁 AND𝐷(𝑛) is 𝑃 THEN Δ𝑢(𝑛) is 𝑍

IF 𝐸(𝑛) is𝑁 AND𝐷(𝑛) is𝑁 THEN Δ𝑢(𝑛) is𝑁,

where Δ𝑢(𝑛) denotes the change in controller output and “𝑃”
stands for positive and “𝑁” for negative. Detailed explanation
of these four rules can be found in [13].

A class-1 fuzzy set satisfies the following conditions:

𝑒
𝑃 (𝑥) = 1 − 𝑒𝑁 (𝑥) , 𝑒

𝑃 (0) = 𝑑𝑁 (0) = 0.5,

𝑒
𝑃 (𝑥) = 1 − 𝑑𝑃 (−𝑥) , 𝑒

𝑁 (𝑥) = 1 − 𝑑𝑁 (−𝑥) ,

(2)

and a class-2 fuzzy set satisfies

𝑒
𝑃 (𝑥) = 𝑒𝑁 (−𝑥) , 𝑒

𝑃 (𝑥) = 𝑑𝑃 (𝑥) ,

𝑒
𝑁 (𝑥) = 𝑑𝑁 (𝑥) .

(3)

For a fuzzy controller with the inputs 𝐸(𝑛) and 𝐷(𝑛), the
singleton output fuzzy sets, and the following MFs, consider

𝑒
𝑃 (𝑥) =

1

1 + exp (−𝐾
𝑃
𝑥)
, 𝑒

𝑁 (𝑥) =
1

1 + exp (𝐾
𝑃
𝑥)
,

(4)

𝑑
𝑃 (𝑥) =

1

1 + exp (−𝐾
𝑑
𝑥)
, 𝑑

𝑁 (𝑥) =
1

1 + exp (𝐾
𝑑
𝑥)
.

(5)

We can use the four rules above, product AND operator,
and the centroid defuzzifier to structurally convert it into
a nonlinear PI or PD controller with variable gains [13] as
follows:

Δ𝑢 (𝑛) = (𝑒𝑃 (𝐸) 𝑑𝑃 (𝐷)𝐻 + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷) (−𝐻))

× (𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑃 (𝐸) 𝑑𝑁 (𝐷)

+ 𝑒
𝑁 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷))

−1
.

(6)

Theorem 1. A fuzzy controller that uses 𝐸(𝑛) and 𝐷(𝑛), the
singleton output fuzzy sets, product AND operator, the four
fuzzy rules, and the centroid defuzzifier structurally becomes
a nonlinear PI or PD controller with variable gains in [−𝐿, 𝐿]×
[−𝐿, 𝐿] if and only if 𝑒

𝑝
(𝐸) = 1 − 𝑑

𝑝
(−𝐷), 𝑒

𝑁
(𝐸) = 1 −

𝑑
𝑁
(−𝐷), if the class-1 input fuzzy sets are used, or 𝑒

𝑝
(𝐸) =

𝑑
𝑃
(𝑥), 𝑒
𝑁
(𝑥) = 𝑑

𝑁
(𝑥), if the class-2 input fuzzy sets are

employed.

We will only prove the class-1 input fuzzy sets as follows.
Consider

Δ𝑢 (𝑛) =
𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷)𝐻 + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷) (−𝐻)

𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷)

.

Num
Den

:

Num= 𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷)𝐻 + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷) (−𝐻)

= 𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷) + (1 − 𝑒𝑃 (𝐸)) (1 − 𝑑𝑃 (𝐷))

× (−𝐻)

= 𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷)𝐻 − 𝑒𝑃 (𝐸) 𝑑𝑃 (𝐷)𝐻

+ (𝑒
𝑃 (𝐸) + 𝑑𝑃 (𝐷))𝐻 − 𝐻

+ (𝑒
𝑃 (𝐸) + 𝑑𝑃 (𝐷))𝐻 − 𝐻

= (𝑒
𝑃 (𝐸) + 𝑑𝑃 (𝐷) − 1)𝐻

Den = 𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑃 (𝐸) 𝑑𝑁 (𝐷)

+ 𝑒
𝑁 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑁 (𝐸) 𝑑𝑁 (𝐷)

= 𝑒
𝑃 (𝐸) 𝑑𝑃 (𝐷) + 𝑒𝑃 (𝐸) (1 − 𝑑𝑃 (𝐷))

+ (1 − 𝑒
𝑃 (𝐸)) 𝑑𝑃 (𝐷) + (1 − 𝑒𝑃 (𝐸)) (1 − 𝑑𝑃 (𝐷))

= 1

(7)

Then,

Δ𝑢 = (𝑒
𝑃 (𝐸) + 𝑑𝑃 (𝐷) − 1)𝐻. (8)

Taylor expansion of the fuzzy sets gives

𝑒
𝑃 (𝐸) = 𝑎10 + 𝑎11𝐾𝑒𝐸 (𝑛) + 𝑎12(𝐾𝑒𝐸 (𝑛))

2

+ 𝑎
13
(𝐾
𝑒
𝐸 (𝑛))

3
+ ⋅ ⋅ ⋅ ,

𝑑
𝑃 (𝐷) = 𝑎20 + 𝑎21𝐾𝑑𝐷 (𝑛) + 𝑎22(𝐾𝑑𝐷 (𝑛))

2

+ 𝑎
23
(𝐾
𝑑
𝐷(𝑛))

3
+ ⋅ ⋅ ⋅ .

(9)

Substituting them into (8) produces

Δ𝑢 = ( − 1 + 𝑎
10
+ 𝑎
20
+ 𝑎
11
𝐾
𝑒
𝐸 (𝑛) + 𝑎21𝐾𝑑𝐷 (𝑛)

+ 𝑎
12
(𝐾
𝑒
𝐸 (𝑛))

2
+ 𝑎
22
(𝐾
𝑑
𝐷 (𝑛))

2

+ 𝑎
13
(𝐾
𝑒
𝐸 (𝑛))

3
+ 𝑎
23
(𝐾
𝑑
𝐷 (𝑛))

3
+ ⋅ ⋅ ⋅ )𝐻.

(10)

By noting that Δ𝑢 = 0, ∀(𝐾
𝑒
𝐸(𝑛) + 𝐾

𝑑
𝐷(𝑛)) = 0 and

replacing 𝐾
𝑑
𝐷(𝑛) with −𝐾

𝑒
𝐸(𝑛), we can rewrite (10) in a

polynomial of𝐾
𝑒
𝐸(𝑛) as follows:

Δ𝑢 = ( − 1 + 𝑎
10
+ 𝑎
20
+ (𝑎
11
− 𝑎
21
)𝐾
𝑒
𝐸 (𝑛) + (𝑎12 + 𝑎22)

× (𝐾
𝑒
𝐸 (𝑛))

2
+ (𝑎
13
− 𝑎
23
) (𝐾
𝑒
𝐸 (𝑛))

3
+ ⋅ ⋅ ⋅ )𝐻 ≡ 0.

(11)
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Figure 1: Examples of adjustable membership function.
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Figure 2: Membership functions with different values of 𝐾.

The condition the equation above holds is that all the
coefficients of𝐾

𝑒
𝐸(𝑛)must be zero, leading to

𝑎
10
+ 𝑎
20
= 1,

𝑎
1(2𝑘−1)

= 𝑎
2(2𝑘−1)

≜ 𝑎
2𝑘−1
,

𝑎
1(2𝑘)

= −𝑎
2(2𝑘)

≜ 𝑎
2𝑘

𝑘 = 1, 2, 3, . . . ;

(12)

namely, 𝑒
𝑃
(𝐸) = 1 − 𝑑

𝑃
(−𝐷), 𝑒

𝑁
(𝐸) = 1 − 𝑑

𝑁
(−𝐷).

Here, the symbol “≜” stands for “defined as.” Substituting
all these equations back into (10) yields

Δ𝑢 = (𝑎
1
(𝐾
𝑒
𝐸 (𝑛) + 𝐾𝑑𝐷 (𝑛))

+ 𝑎
2
((𝐾
𝑒
𝐸(𝑛))
2
− (𝐾
𝑑
𝐷(𝑛))

2
)

+ 𝑎
3
((𝐾
𝑒
𝐸(𝑛))
3
+ (𝐾
𝑑
𝐷(𝑛))

3
) + ⋅ ⋅ ⋅ ) ⋅ 𝐻.

(13)

The proof is then completed by a direct application of the
binomial rules to this equation, which allows us to factor out
𝐾
𝑒
𝐸(𝑛) + 𝐾

𝑑
𝐷(𝑛) in the following equation:

Δ𝑢 = 𝜕 (𝐸,𝐷) (𝐾𝑒𝐸 (𝑛) + 𝐾𝑑𝐷 (𝑛)) ,

𝜕 (𝐸,𝐷)

= (𝑎
1
+ 𝑎
2
(𝐾
𝑒
𝐸 (𝑛) − 𝐾𝑑𝐷(𝑛))

+ 𝑎
3
((𝐾
𝑒
𝐸 (𝑛))

2
− 𝐾
𝑒
𝐸 (𝑛)𝐾𝑑𝐷 (𝑛) + (𝐾𝑑𝐷 (𝑛))

2
) + 𝜃)

⋅ 𝐻,

(14)

where 𝜃 represents the truncating error in Taylor expan-
sion. The variable proportional gain and integral gain are
𝜕(𝐸,𝐷)𝐾

𝑒
and 𝜕(𝐸,𝐷)𝐾

𝑑
, respectively.

In practical applications, 𝐻 is a design parameter and 𝐻
could be 𝑃 or 0 for𝑍 and −𝐻 for𝑁. The determination of𝐾

𝑃

and𝐾
𝑑
in MFs is similar to that in PID controllers; therefore,

this method can be easily used in practical applications. But,
we can see that the format of the MFs of the fuzzy controller
is fixed and as a consequence, it only applies to limited plants.

3. Adjustable Membership Function

3.1. Construction of NewMembership Function. To overcome
the drawbacks that the MF in Section 2 is of fixed format and
poor adjustability, we propose the following function:

𝑓 (𝑥)

=

{{{{{{{{{

{{{{{{{{{

{

0 𝑥 ≤ −𝑙

𝑥 + 𝑙

1 + 𝐾 (𝐴
0
− 𝑥 − 𝑙)

−𝑙 < 𝑥 ≤ 𝐴
0
− 𝑙

𝐴
0
+

(𝑥 + 𝑙 − 𝐴
0
) (1 + 𝐾̃𝐴)

1 + 𝐾̃ (𝑥 + 𝑙 − 𝐴
0
)

𝐴
0
− 𝑙 < 𝑥 ≤ 𝐴

1
− 𝑙

1 𝑥 > 𝐴
1
− 𝑙,

(15)

where 𝐴 = 𝐴
1
− 𝐴
0
and 𝐴

1
− 𝐴
0
= 1. This function satisfies

membership function constraints in (3), and, in particular,
the function will be moved left or right by changing 𝑙. But,
the range of (15) will be changed with the change of the range
of “𝑥,” that is, changing 𝐴

0
and 𝐴

1
. In order to satisfy the

condition that the range of MF must be limited to [0, 1],
we multiply it by 1/𝐴

1
. Then 𝐴

0
and 𝐴

1
can be set by

arbitrary values. So the final adjustable membership function
is determined as follows:

𝑓 (𝑥)

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

0 𝑥 ≤ −𝑙

1

𝐴
1

(
𝑥 + 𝑙

1 + 𝐾 (𝐴
0
− 𝑥 − 𝑙)

) −𝑙 < 𝑥 ≤ 𝐴
0
− 𝑙

1

𝐴
1

[𝐴
0
+

(𝑥 + 𝑙 − 𝐴
0
) (1 + 𝐾̃𝐴)

1 + 𝐾̃ (𝑥 + 𝑙 − 𝐴
0
)

] 𝐴
0
− 𝑙 < 𝑥

≤ 𝐴
1
− 𝑙

1 𝑥 > 𝐴
1
− 𝑙.

(16)

The shape of the adjustable function is shown in Figure 1.
We defined 𝐺 = 𝐴

0
− 𝑙 as the inflexion point, 𝐴

𝑙
= −𝑙 as

the left endpoint, 𝐴
𝑟
= 𝐴
1
− 𝑙 as the right endpoint, and 𝐾

as function rate. And they can be adjusted by changing 𝐴
𝑙
,

𝐴
𝑟
, and 𝐺. Thereby, control performance is improved. This

membership function satisfies (2) and (3); furthermore, it has
wide adjustment range.

TheMFs with different values of𝐾when𝐴
𝑙
= −0.5,𝐴

𝑟
=

0.5, and 𝐺 = −0.1 are shown in Figure 2. It can be seen that
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Figure 3: The inverted pendulum.

the curves of the functions vary significantly with different
values of 𝐾. Similarly, we can adjust other parameters, such
as 𝐴
𝑙
, 𝐴
𝑟
, and 𝐺, to improve control performance.

A mutation of the controller output may occur if the
membership function is not smooth and continuous, thus
the control performance of the controller. The continuously
derivable condition is given below.

3.2. Continuously Derivable Condition. The partial derivative
of the piecewise function (15) is

𝜕𝑓

𝜕𝑥
=

{{{{{{{{{

{{{{{{{{{

{

0 𝑥 ≤ −𝑙

1 + 𝐾𝐴
0

[1 + 𝐿 (𝐴
0
− 𝑥 − 𝑙)]

2
−𝑙 < 𝑥 ≤ 𝐴

0
− 𝑙

1 + 𝐾̃𝐴

[1 + 𝐾̃ (𝑥 + 𝑙 − 𝐴
0
)]
2
𝐴
0
− 𝑙 < 𝑥 ≤ 𝐴

1
− 𝑙

0 𝑥 > 𝐴
1
− 𝑙.

(17)

As long as (17) is continuous at the subsection points, (15)
will be continuously differentiable. Hence, the continuous
derivable condition is

𝐾𝐴
0
= 𝐾̃𝐴. (18)

In addition, this condition will not reduce the regulation
ability of (16).

4. Simulation and Experiment

4.1. Simulation. Simulation on an inverted pendulum system
shown in Figure 3 is conducted.

The dynamics of the system is given by

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= [𝑔 ⋅ sin𝑥

1
−
𝑚 ⋅ 𝑙 ⋅ 𝑥

2

2
⋅ cos𝑥

1
⋅ sin𝑥

1

𝑚
𝑐
+ 𝑚

] +
cos𝑥
1

𝑚
𝑐
+ 𝑚

⋅
𝑢

𝑙 (4/3 − 𝑚cos2𝑥
1
/ (𝑚
𝑐
+ 𝑚))

𝑦 = 𝑥
1
,

(19)

in which 𝑥
1
is the angular position of the pendulum, 𝑥

2
is the

angular velocity, 𝑚
𝑐
is the mass of the cart, and 𝑚 is mass of

the pendulum.
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Figure 4: Position and velocity tracking curves; (a) position
tracking curves and (b) velocity tracking curves.

A sinusoidal signal is chosen as input signal in the
simulation. Control parameters are as follows:𝐻 = 21,𝐾 = 1,
𝐴
1
= 0.4, 𝐴

2
= 1.8, and 𝑙 = 0.6. The simulation results are

shown in Figures 4, 5, and 6.
From Figures 4 and 5, it can be found that the tracking

error at the initial stage is relatively large since the initial posi-
tion error is somewhat big. Then tracking curve essentially
coincides with the ideal curve after 1 s and is in a steady state.

Furthermore, a comparison with the control result using
the membership function given in literature [13] is made
to illustrate the effectiveness of the method proposed. A
comparison of the tracking error under the same conditions
is shown in Figure 6.

We can conclude from Figure 6 that tracking errors
fluctuate up and down around zero. The simulation results
show that the position error of the controller with the
adjustable MF is about 0.005 rad; on the other hand, that
using the MF presented in literature [13] is about 0.01 rad, as
shown in Figure 6(a). Control performance of the adjustable
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Figure 5: System input 𝑢.

membership function can be demonstrated in this compari-
son.

4.2. Experiment. A typical industrial mechatronic drives unit
(IMDU) is depicted in Figure 7. This is a versatile system
that can be used to illustrate fundamentals of servo control
as well as advanced topics, such as haptics and teleopera-
tion, web winding control, backlash compensation, friction
compensation, and high order coupling of complex industrial
processes. The unit contains 4 shafts configured in a square
pattern. Two of the shafts are motor driven while the other
two can freely rotate. All shafts are instrumented with optical
encoders. Each motor is driven by a linear current control
amplifier with the capability of 100watts.

In this paper, fuzzy controller and adjustablemembership
function are used to control one shaft of IMDU to track
step signal and sinusoidal signal. Tracking errors of reference
step signal and sinusoidal signal are shown in Figures 8 and
9, respectively. These figures are drawn based on the data
collected from real system.

We can conclude from Figures 8 and 9 that the con-
trol performance of controller using adjustable membership
function is in the experiment’s permissible error range. The
rise time is about 0.1 s and the steady-state error is around
0 when tracking step signal. The system error is within four
degrees when tracking sinusoidal signal. Although the result
does not reach our expectation, it still shows its practicality.

5. Conclusion

(1) This paper presents a novel membership function, that is,
adjustable membership function. This membership function
is a supplement to the structural study of fuzzy controller
and PID controller. This function can be adjusted flexibly,
including the adjustment of the left and right endpoints 𝐴

𝑙

and 𝐴
𝑟
, inflexion point 𝐺, and the function rate 𝐾 to meet

the control requirements.
(2) When 𝐺 point is in the 𝑦-axis and 𝐴

𝑙
= −𝐴

𝑟
, this

function becomes class-1 MF in literature [13]. So class-1 MF
can also be seen as a special case of adjustable membership
function.
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Figure 6: Comparison of position and velocity tracking errors; (a)
position tracking error and (b) velocity tracking error.

Figure 7: IMDU.
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Figure 8: IMDU tracking step signal and tracking error; (a) IMDU tracking step signal and (b) IMDU tracking error.
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Figure 9: IMDU tracking sinusoidal signal and tracking error; (a) IMDU tracking sinusoidal signal and (b) IMDU tracking error.

(3) Although this membership function can be adjusted
flexibly, the structure of this fuzzy controller is too simple to
satisfy the strong nonlinear control tasks’ requirements, due
to the fact that nonlinear fuzzy PID are better in handling
nonlinear control problems and type-2 fuzzy controllers have
better performance compared with type-1 fuzzy controllers.
So our future work is extending the nonlinear fuzzy PID
controller to type-2 fuzzy PID controller and analyzing the
internal relations between the fuzzy controllers and nonlinear
PID controller.
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