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We study a class of quasi symmetric seventh degree systems and obtain the conditions that its two singular points can be two centers
at the same step by careful computing and strict proof. In addition, the condition of an isochronous center is also given. In terms
of quasi symmetric systems, our work is interesting and obtained conclusions about bicenters are new.

1. Introduction

One of the open problems for planar polynomial differential
systems

𝑑𝑥

𝑑𝑡
= 𝑃 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑄 (𝑥, 𝑦) (1)

is how to characterize their centers and isochronous centers.
Article [1] pointed out that “a center of an analytic system is
isochronous if and only if there exists an analytic change of
coordinates such that the original system is reduced to a linear
system,” so an isochronous center is also called a linearizable
center. A center is an isochronous center or linearizable center
if the period of all periodic solutions is constant.

The main method to investigate centers and isochronous
centers problem is the computation of focus values and
isochronous constants (see [2–13]), which is a kind of active
effective method. The vanishing of all isochronous constants
or period constants is a necessary and sufficient condition
for the isochronicity. Although theoretically the isochronous
center problem can be solved by using the method letting
all period constants become zero, in fact only the first few
period constants can be given in personal computer. Hence,
up to now the sufficient and necessary condition determining
an isochronous center can only be found by making some
appropriate analytic changes of coordinates which let the
original system be reduced to a linear system. This kind of

appropriate analytic change is very difficult to be obtained,
so only a handful of isochronous systems are investigated.
Several classes of known studied isochronous systems are as
follows: quadratic isochronous centers (see [14]); isochronous
centers of a linear center perturbed by third, fourth, and fifth
degree homogeneous polynomials (see [3, 4, 15]); complex
polynomial systems (see [1]); reversible systems (see [12, 16]);
and isochronous centers of quartic systems with degenerate
infinity (see [17]).

For seventh degree system, [18] studied the limit cycles
bifurcations. In this paper, we investigate the centers and
isochronous centers problem for a class of seventh degree
systems with the following form:

𝑑𝑥

𝑑𝑡
= − (𝑥𝛿 + 𝑦) (𝑥

2
+ 𝑦
2
)
3

− 𝑃
6
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= (𝑥 − 𝑦𝛿) (𝑥

2
+ 𝑦
2
)
3

+ 𝑄
6
(𝑥, 𝑦) ,

(2)

in which

𝑃
6
(𝑥, 𝑦) = (1 + 𝑎

1
) 𝑥
4
𝑦 + (3 + 2𝑎

1
) 𝑥
5
𝑦 + 2𝑎

4
𝑥
3
𝑦
2

+ 4𝑎
4
𝑥
4
𝑦
2
− (𝑎
1
− 𝑎
3
− 2𝑎
5
) 𝑥
2
𝑦
3

+ (3 + 2𝑎
5
) × 𝑥
3
𝑦
3
+ 2𝑥 (𝑎

6
+ 2𝑎
4
𝑥) 𝑦
4
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− (𝑎
3
+ 2𝑎
1
𝑥 − 2𝑎

5
𝑥) 𝑦
5
+

1

2
𝑥
2
(𝑥 − 𝑦)

× (𝑥 + 𝑦) (𝑥 + 3𝑥
2
+ 3𝑦
2
) 𝛿,

𝑄
6
(𝑥, 𝑦) =

1

2
𝑥
5
(1 + 3𝑥) + 𝑎

4
𝑥
4
(1 + 2𝑥) 𝑦

−
1

2
(1 + 4𝑎

1
− 2𝑎
5
) 𝑥
3
𝑦
2
− (4𝑎
1
− 𝑎
5
) 𝑥
4
𝑦
2

− (𝑎
4
− 𝑎
6
) 𝑥
2
𝑦
3
− (2𝑎
3
+ 𝑎
5
) 𝑥𝑦
4

−
1

2
(3 + 8𝑎

1
) 𝑥
2
𝑦
4
− 𝑦
5
(𝑎
6
+ 2𝑎
4
𝑥 + 𝑎
5
𝑦)

− 𝑥
3
𝑦 (𝑥 + 3𝑥

2
+ 3𝑦
2
) 𝛿,

(3)

and 𝛿, 𝑎
𝑖
(𝑖 ∈ {1, 2, 3, 4, 5}) are real numbers.

We obtain that the infinity and the elementary singular
point (−1/2, 0) of (2)|

𝛿=0
have the same center condition

and investigate the isochronous center condition of (−1/2, 0).
What is worth pointing out is that the results of bicenters in
a polynomial system of degree 𝑛 are less seen in published
papers; our work is new and interesting.

In general, our investigations are shown as follows. Firstly,
by making two appropriate transformations (i.e., (32) and
(33)) of system (2), system (2) is transformed into system
(34); hence, the problem of system (2) center problem and
isochronicity is reduced to investigate system (34) center and
the isochronous centers problem. Secondly, we prove that
system (34) is symmetric about (−1, 0). System (34) has two
symmetric elementary singular points (i.e., the origin and
(−2, 0)), which are from the infinity and the elementary focus
(−1/2, 0) of (2) under transformations (32) and (33). Thirdly,
through calculating system (34) focal values when 𝛿 = 0 and
careful analysis, we obtain the condition that the infinity and
the elementary focus (−1/2, 0) of (2)|

𝛿=0
become bicenters

at the same time. Lastly, we study the above isochronicity
problems of (−1/2, 0). During the course of investigating
isochronicity of system (2)|

𝛿=0
, at first we make use of the

method in [19] to compute the first several period constants
and find the isochronous centers’ necessary condition; next
we try to find the sufficient condition.We obtain all sufficient
and necessary conditions that the elementary focus (−1/2, 0)
of (2) become an isochronous center.

The paper is organized as follows. In Section 2, we intro-
duce preliminary methods to calculate focal values (or Lya-
punov constants) and period constants which are necessary
for our study in Sections 3 and 4. In Section 3, we make two
appropriate transformations which let research on system (2)
be reduced to investigate a class of symmetric seventh degree
systems in which the first five focal values with more simple
expressions are given. Being based on it, we find the condition
that the infinity and the elementary singular points of (2)|

𝛿=0

can be bicenters and prove them. In Section 4, by analyzing
all center conditions and all obtained expressions of periodic
constants, we give all sufficient and necessary conditions that
the elementary singular point (−1/2, 0) of (2)|

𝛿=0
becomes an

isochronous center and prove them strictly.

2. Preliminary Method to Compute Focal
Values and Periodic Constant

In order to continue this study, at first we introduce previous
methods to calculate focal values and periodic constants
which are necessary for us to verify centers and isochronous
centers.

Consider the following real system:

𝑑𝑥

𝑑𝑡
= 𝛿𝑥 − 𝑦 +

∞

∑

𝑘=2

𝑋
𝑘
(𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝛿𝑦 +

∞

∑

𝑘=2

𝑌
𝑘
(𝑥, 𝑦) ,

(4)

where 𝑋
𝑘
(𝑥, 𝑦) and 𝑌

𝑘
(𝑥, 𝑦) are homogeneous polynomials

of degree 𝑘 about 𝑥 and 𝑦.
By means of transformation

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦, 𝑇 = 𝑖𝑡, 𝑖 = √−1, (5)

system (4)|
𝛿=0

can be transformed into the following complex
system:

𝑑𝑧

𝑑𝑇
= 𝑧 +

∞

∑

𝑘=2

𝑍
𝑘
(𝑧, 𝑤) = 𝑍 (𝑧, 𝑤) ,

𝑑𝑤

𝑑𝑇
= −𝑤 −

∞

∑

𝑘=2

𝑊
𝑘
(𝑧, 𝑤) = −𝑊 (𝑧, 𝑤) ,

(6)

where 𝑧, 𝑤, 𝑇 are complex variables and

𝑍
𝑘
(𝑧, 𝑤) = ∑

𝛼+𝛽=𝑘

𝑎
𝛼𝛽

𝑧
𝛼
𝑤
𝛽
, 𝑊

𝑘
(𝑧, 𝑤) = ∑

𝛼+𝛽=𝑘

𝑏
𝛼𝛽

𝑤
𝛼
𝑧
𝛽
.

(7)

Obviously, the coefficients of (6) satisfy conjugate condition;
that is,

𝑎
𝛼𝛽

= 𝑏
𝛼𝛽

, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛼 + 𝛽 ≥ 2. (8)

System (4)|
𝛿=0

and system (6) are called concomitant systems
(for the definition see [11, 12]).

For the complex analytic system (6), making transforma-
tion

𝑧 = 𝑟𝑒
𝑖𝜃
, 𝑤 = 𝑟𝑒

−𝑖𝜃
, 𝑇 = 𝑖𝑡, (9)

system (6) can be transformed into

𝑑𝑟

𝑑𝑡
= 𝑖

𝑤𝑍 − 𝑧𝑊

2𝑟
= 𝑖𝑟

∞

∑

𝑘=1

𝑤𝑍
𝑘+1

− 𝑧𝑊
𝑘+1

2𝑧𝑤

=
𝑖𝑟

2

∞

∑

𝑚=1

∑

𝛼+𝛽=𝑚+2

(𝑎
𝛼,𝛽−1

− 𝑏
𝛽,𝛼−1

) 𝑒
𝑖(𝛼−𝛽)𝜃

𝑟
𝑚
,
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𝑑𝜃

𝑑𝑡
=

𝑤𝑍 + 𝑧𝑊

2𝑧𝑤
= 1 +

∞

∑

𝑘=1

𝑤𝑍
𝑘+1

+ 𝑧𝑊
𝑘+1

2𝑧𝑤

= 1 +
1

2

∞

∑

𝑚=1

∑

𝛼+𝛽=𝑚+2

(𝑎
𝛼,𝛽−1

+ 𝑏
𝛽,𝛼−1

) 𝑒
𝑖(𝛼−𝛽)𝜃

𝑟
𝑚
.

(10)
According to the relation between systems (4) and (6), in

fact transformation (9) can be regarded as the following real
polar coordinate transformation of (4)|

𝛿=0
:

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃. (11)
Under transformation (11), from (10) we have

𝑑𝑟

𝑑𝜃
=

(𝑖𝑟/2)∑
∞

𝑚=1
∑
𝛼+𝛽=𝑚+2

(𝑎
𝛼,𝛽−1

− 𝑏
𝛽,𝛼−1

) 𝑒
𝑖(𝛼−𝛽)𝜃

𝑟
𝑚

1 + (1/2)∑
∞

𝑚=1
∑
𝛼+𝛽=𝑚+2

(𝑎
𝛼,𝛽−1

+ 𝑏
𝛽,𝛼−1

) 𝑒𝑖(𝛼−𝛽)𝜃𝑟𝑚
.

(12)
For the complex constant ℎ, |ℎ| ≪ 1, we write the solution

of (12) associated with the initial condition 𝑟|
𝜃=0

= ℎ as

𝑟 = 𝑟 (𝜃, ℎ) = ℎ +

∞

∑

𝑘=2

V
𝑘
(𝜃) ℎ
𝑘
, (13)

in which V
2𝑘+1

(2𝜋) (𝑘 = 1, 2, . . .) are called the 𝑘th focal value
of the origin of (4).

From (13), it is clear that the origin of (4) is a center
if and only if all V

2𝑘+1
(2𝜋) = 0 (𝑘 = 1, 2, . . .). Hence the

computation of focal value plays an important role for settling
the center problem. Liu and Li [19] gave some methods to
compute focal values. Next we will introduce our method to
calculate focal value through the following three lemmas.

Lemma 1 (see [20, 21]). For system (6), one can derive
successively the terms of the following formal series:

𝑀 = 1 +

∞

∑

𝛼+𝛽=1

𝑐
𝛼𝛽

𝑧
𝛼
𝑤
𝛽
, (14)

such that
𝜕𝑀

𝜕𝑧
𝑍 −

𝜕𝑀

𝜕𝑤
𝑊 + (

𝜕𝑍

𝜕𝑧
−

𝜕𝑊

𝜕𝑤
)𝑀 =

∞

∑

𝑚=1

(𝑚 + 1) 𝜇
𝑚
(𝑧𝑤)
𝑚
,

(15)
where 𝑐

11
= 1, 𝑐
20

= 𝑐
02

= 0, for all 𝑐
𝑘𝑘

∈ 𝑅, 𝑘 = 2, 3, . . ., and to
any integer𝑚, 𝜇

𝑚
is determined by the following formulas:

𝑐
1,1

= 1, 𝑐
2,0

= 𝑐
0,2

= 0,

𝑖𝑓 (𝛼 = 𝛽 = 0, 𝛽 ̸= 1) 𝑜𝑟 𝛼 < 0, 𝑜𝑟 𝛽 < 0,

𝑡ℎ𝑒𝑛 𝑐
𝛼,𝛽

= 0,

(16)

or else

𝑐
𝛼,𝛽

=
1

𝛽 − 𝛼

×

𝛼+𝛽+2

∑

𝑘+𝑗=3

[(𝛼 − 𝑘 + 1) 𝑎
𝑘,𝑗−1

− (𝛽 − 𝑗 + 1) 𝑏
𝑗,𝑘−1

] 𝑐
𝛼−𝑘+1,𝛽−𝑗+1

,

𝜇
𝑚

=

2𝑚+2

∑

𝑘+𝑗=3

[(𝑚 − 𝑘 + 2) 𝑎
𝑘,𝑗−1

− (𝑚 − 𝑗 + 2) 𝑏
𝑗,𝑘−1

] 𝑐
𝑚−𝑘+2,𝑚−𝑗+2

.

(17)

And 𝜇
𝑘
in Lemma 1 is called 𝑘th order singular point value

at the origin of system (6).

Lemma 2 (see [20]). For system (4) and any positive integer
𝑚, among V

2𝑚
(2𝜋), V

𝑘
(2𝜋), and V

𝑘
(𝜋), there exists the following

relation:

V
2𝑚

(2𝜋) =
1

1 + V
1
(𝜋)

× [𝜉
(0)

𝑚
(V
1
(2𝜋) − 1) +

𝑚−1

∑

𝑘=1

𝜉
(𝑘)

𝑚
V
2𝑘+1

(2𝜋)] ,

(18)

where 𝜉
(𝑘)

𝑚
are all polynomials of V

1
(𝜋), V
2
(𝜋), . . . , V

𝑚
(𝜋) and

V
1
(2𝜋), V

2
(2𝜋), . . . , V

𝑚
(2𝜋) with rational coefficients.

Obviously, We can imply that V
2𝑚

(2𝜋) = 0when V
1
(2𝜋) =

1, V
2𝑘+1

(2𝜋) = 0, 𝑘 = 1, 2, . . . , 𝑚 − 1.

Lemma 3 (see [20]). For system (4)|
𝛿=0

, (6), and any positive
integer 𝑚, the following assertion holds:

V
2𝑘+1

(2𝜋) = 𝑖𝜋(𝜇
𝑚

+

𝑚−1

∑

𝑘=1

𝜉
(𝑘)

𝑚
𝜇
𝑘
) , (19)

where 𝜉
(𝑘)

𝑚
, (𝑘 = 1, 2, . . . , 𝑚 − 1) are polynomial functions of

coefficients of system (6).

Obviously, the origin of system (4) is a center if and only if
its all focal values vanish, namely, V

2𝑘+1
= 0, 𝑘 ∈ N. According

to Lemmas 2 and 3, we have the following lemma.

Lemma 4 (see [20]). For systems (4)|
𝛿=0

and (6), the origin is
a center if and only if the following relation holds:

𝜇
𝑚
(2𝜋) = 0, 𝑚 ∈ N. (20)

Remark 5. In fact, Lemmas 1–4 have given a method to find
original center condition of (4).

What is the isochronous center condition of the origin
of (4) if the origin of (4) is a center? Next we introduce our
method to obtain the isochronous center condition.

We denote that 𝜏(𝜑, ℎ) = ∫
𝜑

0
(𝑑𝑡/𝑑𝜃)𝑑𝜃. From (10), we

have

𝜏 (𝜑, ℎ)

= ∫

𝜑

0

𝑑𝑡

𝑑𝜃
𝑑𝜃
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= ∫

𝜑

0

[

[

1 +
1

2

∞

∑

𝑚=1

∑

𝛼+𝛽=𝑚+2

(𝑎
𝛼,𝛽−1

+ 𝑏
𝛽,𝛼−1

)

× 𝑒
𝑖(𝛼−𝛽)𝜃

𝑟
𝑚
(𝜃, ℎ) ]

]

−1

𝑑𝜃.

(21)

Definition 6. For a sufficiently small complex constant ℎ, the
origin of system (6) is called a complex center if 𝑟(2𝜋, ℎ) ≡ ℎ

of (13), and the origin is a complex isochronous center if

𝑟 (2𝜋, ℎ) ≡ ℎ, 𝜏 (2𝜋, ℎ) ≡ 2𝜋. (22)

Lemma 7 (see [19]). For system (6), one can derive uniquely
the formal series

𝜉 = 𝑧 +

∞

∑

𝑘+𝑗=2

𝑐
𝑘𝑗
𝑧
𝑘
𝑤
𝑗
, 𝜂 = 𝑤 +

∞

∑

𝑘+𝑗=2

𝑑
𝑘,𝑗

𝑤
𝑘
𝑧
𝑗
, (23)

where 𝑐
𝑘+1,𝑘

= 𝑑
𝑘+1,𝑘

= 0, 𝑘 = 1, 2, . . ., 𝑝
𝑘
and 𝑞

𝑘
are

polynomial in 𝑎
𝛼𝛽
, 𝑏
𝛼𝛽

with rational coefficients, such that

𝑑𝜉

𝑑𝑇
= 𝜉 +

∞

∑

𝑗=1

𝑝
𝑗
𝜉
𝑗+1

𝜂
𝑗
,

𝑑𝜂

𝑑𝑇
= −𝜂 −

∞

∑

𝑗=1

𝑞
𝑗
𝜂
𝑗+1

𝜉
𝑗
. (24)

Let 𝜇
0
= 𝜏
0
= 0, 𝜇

𝑘
= 𝑝
𝑘
− 𝑞
𝑘
, 𝜏
𝑘
= 𝑝
𝑘
+ 𝑞
𝑘
, 𝑘 = 1, 2, . . .,

in which 𝜇
𝑘
is 𝑘th singular point value of the origin of system

(6).

Definition 8. For any positive integer 𝑘, one says that 𝜏(𝑘) =

𝑝
𝑘
+𝑞
𝑘
is the 𝑘th complex period constant of origin of system

(6).

Lemma 9 (see [19]). Suppose that the origin of system (6) is a
complex center (i.e., all 𝜇

𝑚
= 0, 𝑚 = 1, 2, . . .) and there exists

a positive integer 𝑘, such that 𝜏
0
= 𝜏
1
= ⋅ ⋅ ⋅ = 𝜏

𝑘−1
= 0, 𝜏

𝑘
̸= 0;

then

𝜏 (2𝜋, ℎ) = 𝜋 [2 − 𝜏
𝑘
ℎ
2𝑘

+ 𝑜 (ℎ
2𝑘
)] . (25)

It is clear that the origin of system (6) is a complex
isochronous center if and only if all 𝜇

𝑘
= 𝜏
𝑘

= 0, 𝑘 =

1, 2, 3, . . ..
For the problem of the computation of 𝜏

𝑘
, [14] gives the

following two theorems.

TheoremA (see [19]). For system (6), one can derive uniquely
the formal series

𝑓 (𝑧, 𝑤) = 𝑧 +

∞

∑

𝑘+𝑗=2

𝑐


𝑘𝑗
𝑧
𝑘
𝑤
𝑗
,

𝑔 (𝑧, 𝑤) = 𝑤 +

∞

∑

𝑘+𝑗=2

𝑑


𝑘,𝑗
𝑤
𝑘
𝑧
𝑗
,

(26)

where 𝑐
𝑘+1,𝑘

= 𝑑


𝑘+1,𝑘
= 0, 𝑘 = 1, 2, . . ., such that

𝑑𝑓

𝑑𝑇
= 𝑓 (𝑧, 𝑤) +

∞

∑

𝑗=1

𝑝


𝑗
𝑧
𝑗+1

𝑤
𝑗
,

𝑑𝑔

𝑑𝑇
= −𝑔 (𝑧, 𝑤) −

∞

∑

𝑗=1

𝑞


𝑗
𝑤
𝑗+1

𝑧
𝑗
,

(27)

and when 𝑘 − 𝑗 − 1 ̸= 0, 𝑐
𝑘𝑗

and 𝑑


𝑘,𝑗
are determined by the

recursive formulas

𝑐


𝑘𝑗
=

1

𝑗 + 1 − 𝑘

×

𝑘+𝑗+1

∑

𝛼+𝛽=3

[(𝑘 − 𝛼 + 1) 𝑎
𝛼,𝛽−1

− (𝑗 − 𝛽 + 1) 𝑏
𝛽,𝛼−1

] 𝑐


𝑘−𝛼+1,𝑗−𝛽+1
,

𝑑


𝑘𝑗
=

1

𝑗 + 1 − 𝑘

×

𝑘+𝑗+1

∑

𝛼+𝛽=3

[(𝑘 − 𝛼 + 1) 𝑏
𝛼,𝛽−1

− (𝑗 − 𝛽 + 1) 𝑎
𝛽,𝛼−1

] 𝑑


𝑘−𝛼+1,𝑗−𝛽+1
,

(28)

and for any positive integer 𝑗, 𝑝
𝑗
, and 𝑞



𝑗
are determined by the

recursive formulas

𝑝


𝑗
=

2𝑗+2

∑

𝛼+𝛽=3

[(𝑗 − 𝛼 + 2) 𝑎
𝛼,𝛽−1

− (𝑗 − 𝛽 + 1) 𝑏
𝛽,𝛼−1

] 𝑐


𝑗−𝛼+2,𝑗−𝛽+1
,

𝑞


𝑗
=

2𝑗+2

∑

𝛼+𝛽=3

[(𝑗 − 𝛼 + 2) 𝑏
𝛼,𝛽−1

− (𝑗 − 𝛽 + 1) 𝑎
𝛽,𝛼−1

] 𝑑


𝑗−𝛼+2,𝑗−𝛽+1
.

(29)

In (28) and (29), we have taken 𝑐


1,0
= 𝑑


1,0
= 1, 𝑐
0,1

= 𝑑


0,1
= 0,

and if 𝛼 < 0 or 𝛽 < 0, we take 𝑎
𝛼𝛽

= 𝑏
𝛼𝛽

= 𝑐


𝛼𝛽
= 𝑑


𝛼𝛽
= 0.

Theorem B (see [19]). Let 𝑝
0
= 𝑞
0
= 𝑝


0
= 𝑞


0
= 0. If there is a

positive integer 𝑚, such that

𝑝
0
= 𝑞
0
= 𝑝
1
= 𝑞
1
= ⋅ ⋅ ⋅ = 𝑝

𝑚−1
= 𝑞
𝑚−1

= 0, (30)

then

𝑝


0
= 𝑞


0
= 𝑝


1
= 𝑞


1
= ⋅ ⋅ ⋅ = 𝑝



𝑚−1
= 𝑞


𝑚−1
= 0,

𝑝
𝑚

= 𝑝


𝑚
, 𝑞

𝑚
= 𝑞


𝑚
,

(31)

and vice versa.

Actually, Lemma 7 and the above two theorems give an
algorithm to compute 𝜏

𝑚
. For any positive integer 𝑚, in
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order to compute 𝜏
𝑚
, we only need to carry out the addition,

subtraction, multiplication, and division to the coefficients
of system (6). The algorithm is recursive. It avoids some
complicated integrating operations and solving equations. In
addition, it can be easily realized by computer algebra systems
such as Mathematica.

Notice that the complex period constants are polynomials
of the coefficients of system (6). According to theHilbert basis
theorem, there exists𝑚 ∈ N such that all 𝜏

𝑘
= 0 (𝑘 = 1, 2, . . .)

if and only if 𝜏
1

= 𝜏
2

= ⋅ ⋅ ⋅ = 𝜏
𝑚

= 0. We say that the
set {𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑚
} is a period constant basis of system (6). To

determine isochronous center of a system, the key idea is to
find a period constant basis.

Remark 10. Lemma 7 andTheorems A and B offer a method
to find a necessary condition of isochronicity.

3. The Reduction and Bicenter Condition of
System (2)

After introducing themethod to calculate the focal values and
period constants of system (4), we try tomake some appropri-
ate transformations so as to carry out our investigation about
system (2).

By means of Bendixson homeomorphous transformation

𝑢 =
𝑥

𝑥2 + 𝑦2
, V =

𝑦

𝑥2 + 𝑦2
, (32)

and time transformation

𝑑𝑡 = (𝑥
2
+ 𝑦
2
)
3

𝑑𝜏, (33)

system (2) can be transformed into the following real system:

𝑑𝑢

𝑑𝜏
= 𝛿𝑢 − V +

3𝛿

2
𝑢
2
+ 2𝑎
1
𝑢V +

𝛿

2
𝑢
3
+ 𝑎
1
𝑢
2V + 𝑎

3
V3,

𝑑V
𝑑𝜏

= 𝑢 + 𝛿V +
3

2
𝑢
2
+ 2𝑎
4
𝑢V + 𝑎

5
V2 +

1

2
𝑢
3

+ 𝑎
4
𝑢
2V + 𝑎

5
𝑢V2 + 𝑎

6
V3.

(34)

After making the above two transformations, the infinity
and the elementary focus point (−1/2, 0) of (2), respectively,
become the origin and (−2, 0) of system (34). For system (34),
we have the following theorem.

Theorem 11. System (34) is a class of 𝑧
2
-equivariant cubic

systems about point (−1, 0).

Proof. By means of translation transformation

𝑢 = 𝑥 − 1, V = 𝑦, (35)

system (34) turns into the following system:

𝑑𝑥

𝑑𝜏
= −

𝛿

2
𝑥 − (𝑎

1
+ 1) 𝑦 +

𝛿

2
𝑥
3
+ 𝑎
1
𝑥
2
𝑦 + 𝑎
3
𝑦
3
,

𝑑𝑦

𝑑𝜏
+ (𝛿 − 𝑎

4
) 𝑦 +

1

2
𝑥
3
+ 𝑎
4
𝑥
2
𝑦 + 𝑎
5
𝑥𝑦
2
+ 𝑎
6
𝑦
3
.

(36)

Obviously point (−𝑥, −𝑦) satisfies (36) if (𝑥, 𝑦) satisfies
(36); then system (36) is a class of 𝑧

2
-equivariant cubic

systems about the origin. Hence system (34) is a class
of 𝑧
2
-equivariant cubic systems about point (−1, 0). Proof

ends.

After making transformations (32) and (33), system (2)
becomes a symmetric system about point (−1, 0) (i.e., system
(34)), so here we call system (2) a class of quasi symmetric
systems. In fact, through investigating the center condition
of the origin of system (34), those of the infinity and the
elementary focus point (−1/2, 0) of (2) can been forecasted.

In order to investigate the centers problem of (2), we may
as well study system (34) or system (36).

Making the transformation

𝑧 = 𝑢 + 𝑖V, 𝑤 = 𝑢 − 𝑖V, 𝑇 = 𝑖𝜏, 𝑖 = √−1,

(37)

system (34)|
𝛿
= 0 becomes

𝑑𝑧

𝑑𝑇
= 𝑧 + 𝑍

2
(𝑧, 𝑤) + 𝑍

3
(𝑧, 𝑤) ,

𝑑𝑤

𝑑𝑇
= −𝑤 − 𝑊

2
(𝑧, 𝑤) − 𝑊

3
(𝑧, 𝑤) ,

(38)

in which

𝑍
2
(𝑧, 𝑤) =

1

8
(3 − 4𝑎

1
− 4𝑖𝑎
4
− 2𝑎
5
) 𝑧
2
+

1

4
(3 + 2𝑎

5
) 𝑧𝑤

+
1

8
(3 + 4𝑎

1
+ 4𝑖𝑎
4
− 2𝑎
5
) 𝑤
2
,

𝑍
3
(𝑧, 𝑤) =

1

16
(1 − 2𝑎

1
+ 2𝑎
3
− 2𝑖𝑎
4
− 2𝑎
5
+ 2𝑖𝑎
6
) 𝑧
3

+
1

16
(3 − 2𝑎

1
− 6𝑎
3
− 2𝑖𝑎
4
+ 2𝑎
5
− 6𝑖𝑎
6
) 𝑧
2
𝑤

+
1

16
(3 + 2𝑎

1
+ 6𝑎
3
+ 2𝑖𝑎
4
+ 2𝑎
5
+ 6𝑖𝑎
6
) 𝑧𝑤
2

+
1

16
(1 + 2𝑎

1
− 2𝑎
3
+ 2𝑖𝑎
4
− 2𝑎
5
− 2𝑖𝑎
6
) 𝑤
3
,

𝑊
2
(𝑧, 𝑤) =

1

8
(3 − 4𝑎

1
+ 4𝑖𝑎
4
+ 2𝑎
5
) 𝑤
2
+

1

4
(3 + 2𝑎

5
) 𝑧𝑤

+
1

8
(3 + 4𝑎

1
− 4𝑖𝑎
4
− 2𝑎
5
) 𝑤
2
,

𝑊
3
(𝑧, 𝑤) =

1

16
(1 + 2𝑎

1
− 2𝑎
3
− 2𝑖𝑎
4
− 2𝑎
5
+ 2𝑖𝑎
6
) 𝑧
3

+
1

16
(3 + 2𝑎

1
+ 6𝑎
3
− 2𝑖𝑎
4
+ 2𝑎
5
− 6𝑖𝑎
6
) 𝑧
2
𝑤

+
1

16
(3 − 2𝑎

1
− 6𝑎
3
+ 2𝑖𝑎
4
+ 2𝑎
5
+ 6𝑖𝑎
6
) 𝑧𝑤
2

+
1

16
(1 − 2𝑎

1
+ 2𝑎
3
+ 2𝑖𝑎
4
− 2𝑎
5
− 2𝑖𝑎
6
) 𝑤
3
.

(39)
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System (38) is called the complex concomitant system
of system (34). Clearly system (38) belongs to the class of
system (6), so we can use the formulas of Lemma 1 and
the conclusion of Lemma 4 to compute and simplify the
singular points values by using computational software such
as Mathematica; we obtain the following theorem.

Theorem 12. The first 5 singular points’ values of the origin for
(38) are as follows:

𝜇
1
=

𝑖

4
(2𝑎
4
+ 2𝑎
4
𝑎
5
− 3𝑎
6
) ;

𝜇
2
=

𝑖

36
𝑎
4
[(1 + 𝑎

5
) (18 + 18𝑎

1
+ 8𝑎
2

4
)

−𝑎
3
(9 + 12𝑎

1
+ 12𝑎
5
) ] ;

(40)

(1) if 𝑎
5
= −1, then

𝜇
2
= −

𝑖

12
𝑎
3
𝑎
4
(4𝑎
1
− 1) ;

𝜇
3
=

𝑖

384
𝑎
3
𝑎
4
(84𝑎
3
− 16𝑎

2

4
− 45) ;

𝜇
4
=

𝑖

169344
𝑎
4
(3 + 2𝑎

2

4
) (45 + 16𝑎

2

4
)
2

;

(41)

(2) if 𝑎
5

̸= − 1, then

𝜇
3
=

𝑖𝑎
3
𝑎
4

96 (1 + 𝑎
5
)
(4𝑎
1
− 10𝑎
5
− 11) ℎ

0
;

𝜇
4
= −

7𝑖𝑎
3
𝑎
4

1500
(1 + 𝑎

1
− 5𝑎
3
)

× (29𝑎
2

1
− 𝑎
1
− 2 + 28𝑎

3

1
+ 45𝑎
3
− 105𝑎

1
𝑎
3
) ;

𝜇
5
=

7𝑖

36
𝑎
4

3
𝑎
4
(11 − 76𝑎

3
+ 140𝑎

2

3
)

(42)

in which

ℎ
0
= − 6 − 10𝑎

1
− 4𝑎
2

1
+ 3𝑎
3
+ 6𝑎
1
𝑎
3
− 10𝑎
5

− 14𝑎
1
𝑎
5
− 4𝑎
2

1
𝑎
5
+ 6𝑎
3
𝑎
5
− 4𝑎
2

5
− 4𝑎
1
𝑎
2

5
.

(43)

In the above expressions of 𝜇
𝑘
, one lets 𝜇

𝑖
= 0, 𝑖 = 1, 2, . . ., 𝑘−1.

Proof. According to Lemma 1, we have

𝜇
1
=

𝑖

4
(2𝑎
4
+ 2𝑎
4
𝑎
5
− 3𝑎
6
) . (44)

Let 𝑎
6
= (2/3)𝑎

4
(1 + 𝑎

5
); then

𝜇
1
= 0;

𝜇
2
=

𝑖

36
𝑎
4
[(1 + 𝑎

5
) (18 + 18𝑎

1
+ 8𝑎
2

4
)

−𝑎
3
(9 + 12𝑎

1
+ 12𝑎
5
) ] .

(45)

(1) If 𝑎
5
= −1, then

𝜇
2
= −

𝑖

12
𝑎
3
𝑎
4
(4𝑎
1
− 1) ; (46)

if 𝑎
3
𝑎
4

= 0, from Lemma 1, we obtain that 𝜇
𝑘

= 0, 𝑘 =

2, 3, 4, 5. Hence let 𝑎
1
= 1/4; then

𝜇
3
=

𝑖

384
𝑎
3
𝑎
4
(84𝑎
3
− 16𝑎

2

4
− 45) . (47)

Moreover let 𝑎
3
= (1/84) (45 + 16𝑎

2

4
); then

𝜇
3
= 0, 𝜇

4
=

𝑖

169344
𝑎
4
(3 + 2𝑎

2

4
) (45 + 16𝑎

2

4
)
2

;

(48)

while if 𝑎
4

̸= 0, then𝜇
4

̸= 0; at this time only four singular point
values can be obtained.

(2) If 𝑎
5

̸= − 1, letting

𝑎
2

4
=

3 (4𝑎
3
𝑎
5
− 6𝑎
1
𝑎
5
− 6𝑎
5
+ 4𝑎
1
𝑎
3
+ 3𝑎
3
− 6𝑎
1
− 6)

(8 + 8𝑎
5
)

,

(49)

then

𝜇
2
= 0; 𝜇

3
=

𝑖𝑎
3
𝑎
4

96 (1 + 𝑎
5
)
(4𝑎
1
− 10𝑎
5
− 11) ℎ

0
. (50)

Because 𝑎
3
𝑎
4
ℎ
0
= 0 will induce 𝜇

3
= 𝜇
4
= 𝜇
5
= 0, let 𝑎

5
=

(1/10) (4𝑎
1
− 11); at this time

𝜇
4
= −

7𝑖𝑎
3
𝑎
4

1500
(1 + 𝑎

1
− 5𝑎
3
)

× (29𝑎
2

1
− 𝑎
1
− 2 + 28𝑎

3

1
+ 45𝑎
3
− 105𝑎

1
𝑎
3
) ,

(51)

while 𝑎
3
𝑎
4
(29𝑎
2

1
− 𝑎
1
− 2 + 28𝑎

3

1
+ 45𝑎

3
− 105𝑎

1
𝑎
3
) = 0 will

induce 𝜇
4
= 𝜇
5
= 0, let 𝑎

1
= 5𝑎
3
− 1; then

𝜇
5
=

7𝑖

36
𝑎
4

3
𝑎
4
(11 − 76𝑎

3
+ 140𝑎

2

3
) . (52)

Proof ends.

Remark.Theequation 11−76𝑎
3
+140𝑎

2

3
= 0 has not real roots,

so only five singular point values exist.
From Theorem 12 and Lemma 4, we have the following

theorem.

Theorem 13. The first 5 focal values of the origin of (21) (or
the first 5 general focal values of the infinity and the elementary
focus (−1/2, 0) of (4)) are as follows:

V
3
= −

𝜋

4
(2𝑎
4
+ 2𝑎
4
𝑎
5
− 3𝑎
6
) ;

V
5
= −

𝜋

36
𝑎
4
[(1 + 𝑎

5
) (18 + 18𝑎

1
+ 8𝑎
2

4
)

−𝑎
3
(9 + 12𝑎

1
+ 12𝑎
5
) ] .

(53)

(1) If 𝑎
5
= −1, then

V
5
=

𝜋

12
𝑎
3
𝑎
4
(4𝑎
1
− 1) ;

V
7
= −

𝜋

384
𝑎
3
𝑎
4
(84𝑎
3
− 16𝑎

2

4
− 45) .

V
9
= −

𝜋

169344
𝑎
4
(3 + 2𝑎

2

4
) (45 + 16𝑎

2

4
)
2

.

(54)
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(2) If 𝑎
5

̸= − 1, then

V
7
= −

𝜋𝑎
3
𝑎
4

96 (1 + 𝑎
5
)
(4𝑎
1
− 10𝑎
5
− 11) ℎ

0
,

V
9
=

7𝜋𝑎
3
𝑎
4

1500
(1 + 𝑎

1
− 5𝑎
3
)

× (29𝑎
2

1
− 𝑎
1
− 2 + 28𝑎

3

1
+ 45𝑎
3
− 105𝑎

1
𝑎
3
) ,

V
11

= −
7𝜋

36
𝑎
4

3
𝑎
4
(11 − 76𝑎

3
+ 140𝑎

2

3
) .

(55)

in which

ℎ
0
= − 6 − 10𝑎

1
− 4𝑎
2

1
+ 3𝑎
3
+ 6𝑎
1
𝑎
3
− 10𝑎
5

− 14𝑎
1
𝑎
5
− 4𝑎
2

1
𝑎
5
+ 6𝑎
3
𝑎
5
− 4𝑎
2

5
− 4𝑎
1
𝑎
2

5
.

(56)

In the above expressions of V
2𝑘+1

, we have let V
2𝑖−1

= 0, 𝑖 =

2, . . . , 𝑘.

According toTheorem 13, it is easy to obtain the following
theorem.

Theorem 14. The first 5 focal values of the origin of (34) (or
the first 5 focal values of the infinity and the elementary focus
(−1/2, 0) of (2)) vanish if and only if one of the following
conditions holds:

(𝐻
1
) 𝑎
4
= 𝑎
6
= 0;

(𝐻
2
) 𝑎
2

4
= −(9/4)(1 + 𝑎

1
) > 0, 𝑎

3
= 0, 𝑎

6
= (2/3)𝑎

4
(1 + 𝑎
5
),

𝑎
5

̸= − 1;
(𝐻
3
) 𝑎
6
= (2/3)𝑎

4
(1 + 𝑎
5
), 𝑎
5

̸= − 1, 𝑎
3

̸= 0, 𝑎2
4
= 3 (4𝑎

3
𝑎
5
−

6𝑎
1
𝑎
5
− 6𝑎
5
+ 4𝑎
1
𝑎
3
+ 3𝑎
3
− 6𝑎
1
− 6)/(8 + 8𝑎

5
) > 0,

ℎ
0
= 0.

Theorem 15. The origin of (34) is a center (the infinity and the
elementary focus (−1/2, 0) of (2) are two centers), if and only
if one of the conditions (𝐻

1
), (𝐻
2
), and (𝐻

3
) holds.

Proof. (1) According to Theorem 14, if the origin of (34) is
a center (the infinity and the elementary focus (−1/2, 0) of
(2) are two general centers), then one of the conditions (𝐻

1
),

(𝐻
2
), and (𝐻

3
) holds. So necessary condition is correct.

(2) Next we prove sufficient condition.
(2.1) If (𝐻

1
) holds, then (36)|

𝛿=0
becomes

𝑑𝑥

𝑑𝜏
= − (𝑎

1
+ 1) 𝑦 + 𝑎

1
𝑥
2
𝑦 + 𝑎
3
𝑦
3
.

𝑑𝑦

𝑑𝜏
= −

1

2
𝑥 +

1

2
𝑥
3
+ 𝑎
5
𝑥𝑦
2

(57)

Letting

𝑔
1
(𝑥, 𝑦) = 2 + 𝑎

1
+ 𝑎
5
− 𝑎
1
𝑥
2
− 𝑎
5
𝑥
2
− 2𝑎
3
𝑦
2

+ 2𝑎
1
𝑎
5
𝑦
2
− 2𝑎
2

5
𝑦
2
,

𝑔
2
(𝑥, 𝑦) = −1 + 𝑥

2
+ 2𝑎
5
𝑦
2
,

(58)

then system (57) has an integral factor 𝑀
1
(𝑥, 𝑦) = 𝑓

−1

1
and a

first integral 𝐹
1
(𝑥, 𝑦) = 𝑓

1
𝑓
(𝑎
1
+𝑎
5
)

2
, in which

𝑓
1
= 𝑔
2

1
− [2𝑎
3
+ (𝑎
1
− 𝑎
5
)
2

] 𝑔
2

2
, (59)

𝑓
2
=

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

(
𝑔
1
+ √2𝑎

3
+ (𝑎
1
− 𝑎
5
)
2

𝑔
2

𝑔
1
− √2𝑎

3
+ (𝑎
1
− 𝑎
5
)
2

𝑔
2

)

1/√2𝑎
3
+(𝑎
1
−𝑎
5
)
2

,

if 2𝑎
3
+ (𝑎
1
− 𝑎
5
)
2

> 0;

exp
2 (−1 + 𝑥

2
+ 2𝑎
5
𝑦
2
)

2 + (𝑎
1
+ 𝑎
5
) (1 − 𝑥2 + 𝑎

1
𝑦2 − 𝑎

5
𝑦2)

,

if 2𝑎
3
+ (𝑎
1
− 𝑎
5
)
2

= 0;

exp(
2

√−2𝑎
3
− (𝑎
1
− 𝑎
5
)
2

arctan
𝑔
2

𝑔
1

),

if 2𝑎
3
+ (𝑎
1
− 𝑎
5
)
2

< 0.

(60)

Considering that system (34) can turn into system (36) by
making transformations, hence the origin of (34) is a center
when (𝐻

1
) holds; moreover, the infinity and the elementary

focus (−1/2, 0) of (2) are two centers.
(2.2) If (𝐻

2
) holds, then (36)|

𝛿=0
becomes

𝑑𝑥

𝑑𝜏
=

4

9
𝑎
2

4
𝑦 −

1

9
(9 + 4𝑎

2

4
) 𝑥
2
𝑦,

𝑑𝑦

𝑑𝜏
= −

1

2
𝑥 − 𝑎
4
𝑦 +

1

2
𝑥
3
+ 𝑎
4
𝑥
2
𝑦 + 𝑎
5
𝑥𝑦
2

+
2

3
𝑎
4
(1 + 𝑎

5
) 𝑦
3
,

(61)

while system (61) has an integral factor

𝑀
2
(𝑥, 𝑦) = 𝑓

−3

3
𝑓
(9−8𝑎

2

4
+18𝑎
5
)/2

4
(62)

and a first integral

𝐹
2
= (3𝑥 + 4𝑎

4
𝑦)𝑓
−2

3
𝑓
9(3+2𝑎

5
)/2

4

−6 (1 + 𝑎
5
) ∫

𝑓
9(3+2𝑎

5
)/2

4
𝑑𝑥

9 + (9 + 4𝑎2
4
) (−1 + 𝑥2)

,

(63)

in which

𝑓
3
= 3𝑥 + 2𝑎

4
𝑦,

𝑓
4
=

{

{

{

[9 + (9 + 4𝑎
2

4
) (−1 + 𝑥

2
)]
1/(9+4𝑎

2

4
)

, if 9 + 4𝑎
2

4
̸= 0;

𝑒
(−1+𝑥

2
)/9

, if 9 + 4𝑎
2

4
= 0.

(64)

Considering that system (34) can turn into system (36) by
making transformations, hence the origin of (34) is a center
when (𝐻

2
) holds; moreover, the infinity and the elementary

focus (−1/2, 0) of (2) are two centers.
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(2.3) If (𝐻
3
) holds, then (34)|

𝛿=0
has an integral fac-

tor 𝑀
3
(𝑥, 𝑦) = 𝑓

2(𝑎
1
+𝑎
5
)

5
and a first integral 𝐹

3
(𝑥, 𝑦) =

𝑓
(1+2𝑎

1
+2𝑎
5
)

5
𝑓
6
, in which

𝑓
5
= (𝑎
1
+ 𝑎
5
) 𝑥 − 𝑎

4
𝑦,

𝑓
6
= (2 + 𝑎

1
+ 𝑎
5
) [𝑎
4
𝑥 + 2 (1 + 𝑎

1
) (𝑎
1
+ 𝑎
5
) 𝑦]

− (1 + 𝑎
1
+ 𝑎
5
)

× [𝑎
4
𝑥
3
+ 2 (1 + 𝑎

1
) (𝑎
1
+ 𝑎
5
) 𝑥
2
𝑦

+ 2𝑎
4
(1 + 𝑎

5
) 𝑥𝑦
2
+ 2𝑎
3
(𝑎
1
+ 𝑎
5
) 𝑦
3
] .

(65)

Considering that system (34) can turn into system (36) by
making transformations, hence the origin of (34) is a center
when (𝐻

3
) holds; moreover, the infinity and the elementary

focus (−1/2, 0) of (2) are two centers. Proof ends.

4. Isochronous Center Condition of (−1/2, 0) of
System (2)

After obtaining the conditions that the infinity and the
elementary focus (−1/2, 0) are two centers, next we continue
to investigate isochronicity of the elementary focus (−1/2, 0)
according to three different cases (i.e., (𝐻

1
), (𝐻
2
), and (𝐻

3
))

in order.

4.1. The Isochronicity of Case (𝐻
1
). If condition (𝐻

1
) holds,

then system (34)|
𝛿=0

becomes

𝑑𝑢

𝑑𝜏
= −V + 2𝑎

1
𝑢V + 𝑎

1
𝑢
2V + 𝑎

3
V3,

𝑑V
𝑑𝜏

= 𝑢 +
3

2
𝑢
2
+ 𝑎
5
V2 +

1

2
𝑢
3
+ 𝑎
5
𝑢V2.

(66)

System (66) complex concomitant system is as follows:

𝑑𝑧

𝑑𝑇
= 𝑧 + 𝑍

2
(𝑧, 𝑤) + 𝑍

3
(𝑧, 𝑤) ,

𝑑𝑤

𝑑𝑇
= −𝑤 − 𝑊

2
(𝑧, 𝑤) − 𝑊

3
(𝑧, 𝑤) ,

(67)

in which

𝑍
2
(𝑧, 𝑤) =

1

8
(3 − 4𝑎

1
− 2𝑎
5
) 𝑧
2
+

1

4
(3 + 2𝑎

5
) 𝑧𝑤

+
1

8
(3 + 4𝑎

1
− 2𝑎
5
) 𝑤
2
,

𝑍
3
(𝑧, 𝑤) =

1

16
(1 − 2𝑎

1
+ 2𝑎
3
− 2𝑎
5
) 𝑧
3

+
1

16
(3 − 2𝑎

1
− 6𝑎
3
+ 2𝑎
5
) 𝑧
2
𝑤

+
1

16
(3 + 2𝑎

1
+ 6𝑎
3
+ 2𝑎
5
) 𝑧𝑤
2

+
1

16
(1 + 2𝑎

1
− 2𝑎
3
− 2𝑎
5
) 𝑤
3
,

𝑊
2
(𝑧, 𝑤) =

1

8
(3 − 4𝑎

1
+ 2𝑎
5
) 𝑤
2
+

1

4
(3 + 2𝑎

5
) 𝑧𝑤

+
1

8
(3 + 4𝑎

1
− 2𝑎
5
) 𝑤
2
,

𝑊
3
(𝑧, 𝑤) =

1

16
(1 + 2𝑎

1
− 2𝑎
3
− 2𝑎
5
) 𝑧
3

+
1

16
(3 + 2𝑎

1
+ 6𝑎
3
+ 2𝑎
5
) 𝑧
2
𝑤

+
1

16
(3 − 2𝑎

1
− 6𝑎
3
+ 2𝑎
5
) 𝑧𝑤
2

+
1

16
(1 − 2𝑎

1
+ 2𝑎
3
− 2𝑎
5
) 𝑤
3
.

(68)

According to formulas (28) and (29) of Theorem A and
𝜏
𝑘
= 𝑝
𝑘
+ 𝑞
𝑘
= 𝑝


𝑘
+ 𝑞


𝑘
, we can compute periodic constants of

systems (66) and (67).

Theorem 16. The first four period constants of the origin of
system (66) or (67) are as follows:

𝜏
1
=

1

12
(−18 − 4𝑎

2

1
− 9𝑎
3
− 12𝑎
5
+ 10𝑎
1
𝑎
5
− 4𝑎
2

5
) ,

𝜏
2
=

1

18
(−108 − 45𝑎

1
− 12𝑎

2

1
− 117𝑎

5
− 24𝑎
1
𝑎
5

−2𝑎
2

1
𝑎
5
− 36𝑎

2

5
− 4𝑎
1
𝑎
2

5
− 2𝑎
2

5
) ,

𝜏
3
=

1

1080
ℎ
1
,

𝜏
4
= −

1

1782606477375000000
(9 + 𝑎

5
) (3 + 2𝑎

5
)
2

ℎ
2
.

(69)

in which

ℎ
1
= (9720 + 4050𝑎

1
+ 27𝑎

2

1
− 300𝑎

3

1
− 100𝑎

4

1

+ 8802𝑎
5
+ 1134𝑎

1
𝑎
5
− 1416𝑎

2

1
𝑎
5

−200𝑎
3

1
𝑎
5
+ 2115𝑎

2

5
+ 468𝑎

1
𝑎
2

5
− 100𝑎

2

1
𝑎
2

5
) ,

ℎ
2
= 441227872054417689 + 969414967442849922𝑎

5

+ 729276873221792484𝑎
2

5
+ 232198402133252079𝑎

3

5

+ 40172927013408528𝑎
4

5
+ 3428874437224704𝑎

5

5

+ 49018338325504𝑎
6

5
,

(70)

In the above expression of 𝜏
𝑚
, we have let 𝜏

1
= ⋅ ⋅ ⋅ 𝜏

𝑚−1
= 0,

𝑚 = 2, 3, 4.

Theorem 17. The first four period constants of the origin of
system (66) or (67) are zero, if and only if one of the following
two conditions holds:

(𝐶
1
) 𝑎
1
= 𝑎
5
= −3/2, 𝑎

3
= 1/2;
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(𝐶
2
) 𝑎
1
= −3, 𝑎

3
= 0, 𝑎

5
= −9.

Proof. By computing the resultant of 𝜏
2
and 𝜏
3
about variable

𝑎
1
, we have

Resultant [𝜏
3
, 𝜏
2
, 𝑎
1
] =

1

212576400
(9 + 𝑎

5
) (3 + 2𝑎

5
)
2

𝑅,

(71)

in which

𝑅 = 4214349 + 14258511𝑎
5
+ 18779526𝑎

2

5
+ 12158343𝑎

3

5

+ 4086747𝑎
4

5
+ 727632𝑎

5

5
+ 69888𝑎

6

5
+ 1024𝑎

7

5
.

(72)

Also the resultant of 𝑅 and ℎ
2
about 𝑎

5
is as follows:

Resultant [𝑅, ℎ
2
, 𝑎
5
] = −28488259 ⋅ ⋅ ⋅ ̸= 0, (73)

which shows that 𝑅 = 0 cannot deduce 𝜏
2
= 𝜏
3
= 𝜏
4
= 0.

From (71), let 𝜏
2

= 𝜏
3

= 𝜏
4

= 0; then
Resultant[𝜏

3
, 𝜏
2
, 𝑎
1
] = 0; hence 𝑎

5
= −3/2 or 𝑎

5
= −9.

If 𝑎
5

= −3/2, then 𝜏
4

= 0; continue to let 𝜏
3

= 0 (i.e.,
ℎ
1

= 0); then 𝑎
1

= −3/2; next let 𝜏
1

= 0; then 𝑎
3

= 1/2.
Hence condition (𝐶

1
) holds. At the same time, if condition

(𝐶
1
) holds, it is easy to obtain that 𝜏

1
= 𝜏
2
= 𝜏
3
= 𝜏
4
= 0.

If 𝑎
5
= −9, then 𝜏

4
= 0; continue to let 𝜏

3
= 0 (i.e., ℎ

1
= 0);

then 𝑎
1
= −3; next let 𝜏

1
= 0; then 𝑎

3
= 0. Hence condition

(𝐶
2
) holds. At the same time, if condition (𝐶

2
) holds, it is easy

to obtain that 𝜏
1
= 𝜏
2
= 𝜏
3
= 𝜏
4
= 0.

Clearly, condition (𝐶
1
) or (𝐶

2
) is necessary for the

isochronicity of the origin of system (66) or (67). Moreover,
we will prove that condition (𝐶

1
) or (𝐶

2
) is sufficient

condition for the isochronicity of the origin of system (66)
or (67).

Theorem 18. The origin of system (66) or (67) is an
isochronous center if and only if one of (𝐶

1
) and (𝐶

2
) holds.

Proof. If the origin of system (66) or (67) is an isochronous
center, according to Theorem 17, then one of (𝐶

1
) and (𝐶

2
)

holds. Hence, the necessary condition is proved.
Next we will prove the sufficient condition.
(1) If (𝐶

1
) holds, then system (66) becomes

𝑑𝑢

𝑑𝜏
= −

1

2
V (2 + 6𝑢 + 3𝑢

2
− V2) ,

𝑑V
𝑑𝜏

=
1

2
(1 + 𝑢) (2𝑢 + 𝑢

2
− 3V2) .

(74)

For (74), make the following analytic polar transformations:

𝑢
1
=

2𝑢 + 5𝑢
2
+ 4𝑢
3
+ 𝑢
4
+ 3V2 + 4𝑢V2 + 2𝑢

2V2 + V4

2(1 + 2𝑢 + 𝑢2 + V2)2
,

V
1
=

(1 + 𝑢) V

(1 + 2𝑢 + 𝑢2 + V2)2
,

(75)

which satisfy 𝑑𝑢
1
/𝑑𝜏 = 𝑢

1
, 𝑑V
1
/𝑑𝜏 = −V

1
, so the origin of

system (74) is an isochronous center.
(2) If (𝐶

2
) holds, then system (66) becomes

𝑑𝑢

𝑑𝜏
= −V − 6𝑢V − 3𝑢

2V,
𝑑V
𝑑𝜏

= 𝑢 +
3

2
𝑢
2
− 9V2 +

1

2
𝑢
3
− 9𝑢V2.

(76)

For (76), make the following analytic polar transformations:

𝑢
2
=

𝑢 (𝑢 − 1) (𝑢 − 2)

√2(3𝑢 − (3/2)𝑢2 − 1/2)
3/2

,

V
2
=

√2V

(3𝑢 − (3/2)𝑢2 − 1/2)
3/2

,

(77)

which satisfy 𝑑𝑢
2
/𝑑𝜏 = 𝑢

2
, 𝑑V
2
/𝑑𝜏 = −V

2
, so the origin of

system (76) is an isochronous center.

Considering that system (34) is a class of 𝑧
2
-equivariant

cubic systems about point (−1, 0), we have the following
Theorem.

Theorem19. If one of the conditions (𝐶
1
) and (𝐶

2
) holds under

condition (𝐻
1
), then the origin and point (−2, 0) of system (34)

are two isochronous centers.

Considering that system (2) can be changed into system
(34) under the transformations (32) and (33), ulteriorly, we
have the followingTheorem.

Theorem 20. If one of the conditions (𝐶
1
) and (𝐶

2
) holds

under condition (𝐻
1
), then the singular point (−1/2, 0) of

system (2) is an isochronous center.

4.2. The Isochronicity of Case (𝐻
2
). If condition (𝐻

2
) holds,

then system (34)|
𝛿=0

becomes

𝑑𝑢

𝑑𝜏
= −

1

9
V (9 + 18𝑢 + 8𝑎

2

4
𝑢 + 9𝑢

2
+ 4𝑎
2

4
𝑢
2
) ,

𝑑V
𝑑𝜏

=
1

6
(6𝑢 + 9𝑢

2
+ 3𝑢
3
+ 12𝑎
4
𝑢V + 6𝑎

4
𝑢
2V

+6𝑎
5
V2 + 6𝑎

5
𝑢V2 + 4𝑎

4
V3 + 4𝑎

4
𝑎
5
V3) .

(78)

System (78) complex concomitant system belongs to the
form of (38). Hence we can use formulas (28) and (29) of
Theorem A and 𝜏

𝑘
= 𝑝
𝑘
+ 𝑞
𝑘
= 𝑝


𝑘
+ 𝑞


𝑘
to compute periodic

constants of system (78).

Theorem 21. The first three period constants of the origin of
system (78) are as follows:

𝜏
1
=

1

486
(−891 − 306𝑎

2

4
− 32𝑎

4

4
− 891𝑎

5

−180𝑎
2

4
𝑎
5
− 162𝑎

2

5
) ,
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𝜏
2
=

1

2916
(9 + 4𝑎

2

4
)

× (729 + 234𝑎
2

4
+ 32𝑎

4

4
+ 567𝑎

5
+ 108𝑎

2

4
𝑎
5
) ,

𝜏
3
= −

1

3346110
(9 + 𝑎

2

4
) (9 + 4𝑎

2

4
) (999 + 165𝑎

2

4
+ 16𝑎

4

4
) .

(79)

In the above expression of 𝜏
𝑚
, we have let 𝜏

1
= ⋅ ⋅ ⋅ 𝜏

𝑚−1
= 0,

𝑚 = 2, 3.

From Theorem 21, 𝜏
3

= 0 has not real number roots.
Hence under condition (𝐻

2
), the origin of system (78) cannot

become an isochronous center. Accordingly, the singular
point (−1/2, 0) of system (2) cannot become an isochronous
center under condition (𝐻

2
).

4.3. The Isochronicity of Case (𝐻
3
). If condition (𝐻

3
) holds,

then system (34)|
𝛿=0

becomes

𝑑𝑢

𝑑𝜏
= −V + 2𝑎

1
𝑢V + 𝑎

1
𝑢
2V + 𝑎

3
V3,

𝑑V
𝑑𝜏

= 𝑢 +
3

2
𝑢
2
+ 2𝑎
4
𝑢V + 𝑎

5
V2 +

1

2
𝑢
3
+ 𝑎
4
𝑢
2V

+ 𝑎
5
𝑢V2 + 𝑎

6
V3,

(80)

in which the coefficients satisfy condition (𝐻
3
).

For convenience, we let 𝑎
4

= 𝑏
4
𝑟; then condition (𝐻

3
)

becomes

𝑎
1
=

1

2
(𝑏
2

4
+ 2𝑏
2

4
𝑟 − 2) ,

𝑎
3
= −

1

6
𝑏
4
(3𝑏
3

4
− 12𝑏
4
− 14𝑏
4
𝑟 + 8𝑏

3

4
𝑟 − 4𝑏

4
𝑟
2
+ 4𝑏
3

4
𝑟
2
) ,

𝑎
5
=

1

2
(2 − 𝑏

2

4
+ 2𝑟 − 2𝑏

2

4
𝑟) ,

𝑎
6
=

1

3
(4𝑏
4
𝑟 − 𝑏
3

4
𝑟 + 2𝑏

4
𝑟
2
− 2𝑏
3

4
𝑟
2
) .

(81)

System (80) complex concomitant system belongs to the
form of (38). Hence we can use formulas (28) and (29) of
Theorem A and 𝜏

𝑘
= 𝑝
𝑘
+ 𝑞
𝑘
= 𝑝


𝑘
+ 𝑞


𝑘
to compute periodic

constants of system (80).

Theorem 22. If condition (81) holds (i.e., (𝐻
3
) holds), then the

first three period constants of the origin of system (80) are as
follows:

𝜏
1
=

1

6
𝑙
1
, 𝜏

2
=

1

96
𝑙
2
, 𝜏

3
=

1

414720
𝑙
3
, (82)

in which 𝑙
𝑖
, 𝑖 = 1, 2, 3, 4 are the polynomials of 𝑏

4
, 𝑟. These

expressions of 𝑙
𝑖
are as follows:

𝑙
1
= − 24 + 3𝑏

2

4
− 15𝑟 + 18𝑏

2

4
𝑟 − 3𝑏

4

4
𝑟 − 2𝑟

2

+ 4𝑏
2

4
𝑟
2
− 6𝑏
4

4
𝑟
2
;

𝑙
2
= 336 − 234𝑏

2

4
+ 63𝑏
4

4
− 6𝑏
6

4
+ 1650𝑟 − 1284𝑏

2

4
𝑟

+ 486𝑏
4

4
𝑟 − 90𝑏

6

4
𝑟 + 6𝑏

8

4
𝑟 + 1565𝑟

2
− 2370𝑏

2

4
𝑟
2

+ 1124𝑏
4

4
𝑟
2
− 234𝑏

6

4
𝑟
2
+ 19𝑏
8

4
𝑟
2
+ 516𝑟

3

− 1224𝑏
2

4
𝑟
3
+ 1184𝑏

4

4
𝑟
3
− 224𝑏

6

4
𝑟
3
+ 4𝑏
8

4
𝑟
3

+ 52𝑟
4
− 168𝑏

2

4
𝑟
4
+ 320𝑏

4

4
𝑟
4
− 136𝑏

6

4
𝑟
4
− 20𝑏
8

4
𝑟
4
;

𝑙
3
= − 12414600 + 10901385𝑏

2

4
− 4216185𝑏

4

4

+ 963495𝑏
6

4
− 131355𝑏

8

4
+ 8100𝑏

10

4

− 43826805𝑟 + 68754285𝑏
2

4
𝑟 − 37919070𝑏

4

4
𝑟

+ 11032200𝑏
6

4
𝑟 − 1939005𝑏

8

4
𝑟 + 195615𝑏

10

4
𝑟

− 8100𝑏
12

4
𝑟 − 80932512𝑟

2
+ 169994130𝑏

2

4
𝑟
2

− 121184220𝑏
4

4
𝑟
2
+ 41520240𝑏

6

4
𝑟
2
− 7909800𝑏

8

4
𝑟
2

+ 903798𝑏
10

4
𝑟
2
− 53460𝑏

12

4
𝑟
2
− 78594084𝑟

3

+ 200907300𝑏
2

4
𝑟
3
− 192468840𝑏

4

4
𝑟
3
+ 78954480𝑏

6

4
𝑟
3

− 15231180𝑏
8

4
𝑟
3
+ 1650156𝑏

10

4
𝑟
3
− 138600𝑏

12

4
𝑟
3

− 38815064𝑟
4
+ 119144360𝑏

2

4
𝑟
4
− 150195520𝑏

4

4
𝑟
4

+ 82363760𝑏
6

4
𝑟
4
− 17141720𝑏

8

4
𝑟
4
+ 1412136𝑏

10

4
𝑟
4

− 196560𝑏
12

4
𝑟
4
− 9033312𝑟

5
+ 33223520𝑏

2

4
𝑟
5

− 55560320𝑏
4

4
𝑟
5
+ 40281280𝑏

6

4
𝑟
5
− 11183680𝑏

8

4
𝑟
5

+ 674208𝑏
10

4
𝑟
5
− 185760𝑏

12

4
𝑟
5
− 754208𝑟

6

+ 3300480𝑏
2

4
𝑟
6
− 7720960𝑏

4

4
𝑟
6
+ 7271040𝑏

6

4
𝑟
6

− 2734560𝑏
8

4
𝑟
6
+ 181632𝑏

10

4
𝑟
6
− 97920𝑏

12

4
𝑟
6
.

(83)

Through analyzing the expressions of 𝜏
𝑖
, 𝑖 = 1, 2, 3 of

Theorem 22, we have the following theorem.

Theorem 23. Note that 𝜏
1
= 𝜏
2
= 𝜏
3
= 0 of Theorem 22 have

not solutions.

Proof. By computing carefully in personal computer, we
obtain

𝑅
1
= Resultant [𝑙

1
, 𝑙
2
, 𝑟]

= 9216(1 + 𝑏
2

4
)
2

(4 + 5𝑏
2

4
+ 8𝑏
4

4
+ 𝑏
6

4
)

× (1 − 15𝑏
2

4
− 72𝑏
4

4
+ 731𝑏

6

4
+ 581𝑏

8

4

−218𝑏
10

4
− 2𝑏
12

4
+ 4𝑏
14

4
) ,

(84)
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𝑅
2
= Resultant [𝑙

1
, 𝑙
3
, 𝑟] = −2654208(1 + 𝑏

2

4
)
2

× (−349081952 + 4306069852𝑏
2

4

+ 41094839709𝑏
4

4
− 169659957471𝑏

6

4

− 996450752748𝑏
8

4
− 1647467327229𝑏

10

4

− 1097111490891𝑏
12

4
+ 618270753348𝑏

14

4

+ 1604753703528𝑏
16

4
+ 406555036384𝑏

18

4

− 507767377067𝑏
20

4
− 144869567793𝑏

22

4

+ 23948931114𝑏
24

4
+ 2359097649𝑏

26

4

−735877143𝑏
28

4
− 4379940𝑏

30

4
+ 7310250𝑏

32

4
) ,

(85)

in which Resultant[𝑙
𝑖
, 𝑙
𝑚
, 𝑟] is the resultant of 𝑙

𝑖
and 𝑙
𝑚
with

respect to 𝑟.
Clearly, 𝑅

1
= 𝑅
2

= 0 hold only if 1 + 𝑏
2

4
= 0; namely,

𝑏
4

= ±𝑖. If 𝑏
4

= ±𝑖, letting 𝜏
1

= 0, then 𝑟 = −3/2. At this
time, 𝑎

4
= 𝑏
4
𝑟 = ±(3/2)𝑖, which contradict 𝑎

4
∈ R. Hence the

conclusion of Theorem 23 holds. Proof ends.

From Theorem 23, equation groups 𝜏
1

= 𝜏
2

= 𝜏
3

=

0 have not solutions. Hence under condition (𝐻
3
), the

origin of system (80) cannot become an isochronous center.
Accordingly, singular point (−1/2, 0) of system (2) cannot
become an isochronous center under condition (𝐻

3
).

Remark 24. Through the above analysis, it is clear that the sin-
gular point (−1/2, 0) of system (2) becomes an isochronous
center if and only if (𝐻

1
) and one of the conditions (𝐶

1
) and

(𝐶
2
) hold.
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