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In the present work, in the presence of magnetic field and with slip boundary condition, squeezing flow of a Newtonian fluid in
a porous medium between two large parallel plates is investigated. The governing equations are transformed to a single nonlinear
boundary value problem. Daftardar Jafari Method (DJM) is used to solve the problem in order to obtain the velocity profile of
the fluid. By using residual of the problem, the validity of solution is established. The velocity profile is argued through graphs for
various values of parameters.

1. Introduction

Movable boundary stressed by vertical velocity causes
squeezing flow [1]. The most practical examples of squeezing
flows are polymer processing, compression, and injection
modeling. The preliminary results in this field are carried
out by Stefan [2]. The Newtonian squeezing fluid flow
between two parallel plates is studied in [3]. The study of
thin Newtonian liquid films squeezed between two plates is
investigated by Grimm (Figure 1) [4]. Squeezing flow, under
the influence of magnetic field, has many applications in the
field of chemical engineering and is experimented by many
researchers [5–8].

Molecules near the boundary show slip at the boundary
when the weight of molecule is high. In case of thin film
problems, rarefied fluid problems, fluids containing concen-
trated suspensions, and flow on multiple interfaces, no-slip
boundary condition does not work. The general boundary
condition, which shows the fluid slip at the surface, is intro-
duced by Navier [9]. The difference of the velocities of fluid
and of the boundary, according to Navier, is proportional
to the shear stress at that boundary. This proportionality
constant is called slip parameter.

The slip condition has its significance when fluids with
elastic character are considered [10]. In medical sciences,
particularly in polishing artificial heart valves and internal
cavities, the slip condition is highly considered [11].The effect
of slip condition on MHD squeezing fluid flow is discussed
in [12]. For rotating flow of a third grade fluid in a nonporous
medium, the effects of slip condition are investigated byHayat
and Abelman [13]. The same model with the extension of
porous medium is argued by Abelman et al. [14]. Newtonian
fluid was considered by Ebaid [15] to study the effects of
magnetic field and wall slip conditions on the peristaltic
transport in an asymmetric channel.

There are many applications of magnetohydrodynamics
(MHD) of an electrically conducting fluid in geophysics,
astrophysics, engineering, and other industrial areas. More to
the point, the flows of electrically conducting fluid through
porous medium have acquired exceptional rank and have
been the spotlight of interest of many researchers.The precise
applications are initiated in the study of ground water flow,
irrigation problems, crude petroleum recovery, heat-storage
beds, thermal and insulating engineering, chromatograph,
and chemical catalytic reactors.
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Table 1: Absolute residuals for different values of 𝛾 keeping Me and Re fixed.

𝑧
Absolute residuals for different values of slip parameter

(𝛾 = 0.2) (𝛾 = 0.4) (𝛾 = 0.6) (𝛾 = 0.8) (𝛾 = 1.0)
0. 0. 0. 0. 0. 0.
0.1 4.15 × 10−10 2.73 × 10−11 7.69 × 10−15 7.60 × 10−14 8.65 × 10−14

0.2 2.00 × 10−7 1.12 × 10−8 2.59 × 10−12 4.12 × 10−11 4.60 × 10−11

0.3 7.04 × 10−6 1.97 × 10−7 2.27 × 10−10 1.74 × 10−9 2.00 × 10−9

0.4 8.48 × 10−5 3.31 × 10−6 1.55 × 10−8 2.66 × 10−8 2.70 × 10−8

0.5 5.87 × 10−4 1.03 × 10−4 3.90 × 10−7 2.35 × 10−7 2.20 × 10−7

0.6 3.04 × 10−3 1.21 × 10−3 3.33 × 10−6 1.50 × 10−6 1.30 × 10−6

0.7 1.38 × 10−2 9.17 × 10−3 2.40 × 10−5 7.66 × 10−6 6.10 × 10−6

0.8 5.79 × 10−2 5.27 × 10−2 1.30 × 10−4 3.40 × 10−5 2.43 × 10−5

0.9 2.26 × 10−1 2.48 × 10−1 5.50 × 10−4 1.30 × 10−4 8.60 × 10−5

1. 8.02 × 10−1 9.96 × 10−1 2.00 × 10−3 5.00 × 10−4 3.00 × 10−4
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Figure 1: Squeezing flow of Newtonian fluid between two large
parallel plates.

The idea of DJM is introduced by Daftardar-Gejji and
Jafari [16, 17]. This scheme (DJM) is computer-friendly
and effective to deal with highly nonlinear boundary value
problems [18]. The convergence of DJM can be found
in [19] where fractional boundary value problems with
Dirichlet boundary conditions are considered. To com-
pare different analytic solutions for squeezing fluid flow
between two parallel plates, DJM is successfully used [20].
Using this scheme, excellent results are obtained in [21]
for the solution of fifth- and sixth-order boundary value
problems.

The objective of this research paper is to use DJM for
studying, with slip boundary condition, first grade MHD
squeezing fluid flow in a porous medium bounded by two
parallel plates approaching each other slowly. The basic
idea of the proposed scheme is discussed and the modeled
boundary value problem is solved through it. The results
along with residuals, for different values of parameters, are
shown in Tables 1, 2, 3, 4, and 5.The effects on velocity profile
of the fluid, by the influence of different parameters, are
shown in the graphs.

2. Mathematical Model

The Navier-Stokes equations for such fluid flow between two
large parallel plates separated by 2ℎ distance are

div k = 0,

𝜌 [∇(
1

2
k2) − k × 𝜔] = −∇𝑝 + 𝜇 (−∇ × 𝜔) − (

𝜇

𝑘
+ 𝜂𝐵
2

) k,

(1)

where 𝜌 denotes the constant density, 𝜇 is viscosity, k is the
velocity of plates, ∇ denotes the material time derivative, 𝑝
denotes the pressure, 𝑘 is permeability, 𝐵 is the total magnetic
field given by 𝐵 = 𝐵

0

+ 𝑏, and 𝜂 denotes the electrical
conductivity while 𝜔 is given by

𝜔 = ∇ × k. (2)

In the total magnetic field 𝐵, 𝐵
0

and 𝑏 are imposed and
induced magnetic fields respectively. Consider 𝑏 as negligible
as compared to𝐵

0

,𝜌,𝜇, and 𝜂 constant andB is perpendicular
to kwith no electric field in the fluid flow region; the involved
magnetohydrodynamic force can be written as

J × B = −𝜂𝐵
2

0

k. (3)

Here 𝐽 is the electric current density. Magnetic field is applied
along the 𝑧-axis. In cylindrical coordinates, the components
of the velocity k are given by k = (V

𝑟

, 0, V
𝑧

). If V2
𝑟

+V2
𝑧

= 𝑢, then
by comparison we get;
𝑟-component:

𝜌(
𝜕𝑢

𝜕𝑟
− ΩV
𝑧

) +
𝜕𝑝

𝜕𝑟
= −(𝜇

𝜕Ω

𝜕𝑧
+ 𝐴V
𝑟

) , (4)

𝑧-component:

𝜌(
𝜕𝑢

𝜕𝑧
+ ΩV
𝑟

) +
𝜕𝑝

𝜕𝑧
= −(−

𝜇

𝑟

𝜕 (𝑟Ω)

𝜕𝑟
+ 𝐴V
𝑧

) , (5)

where

𝐴 =
𝜇

𝑘
+ 𝜂𝐵
2

0

, Ω (𝑟, 𝑧) =
𝜕V
𝑧

𝜕𝑟
−
𝜕V
𝑟

𝜕𝑧
. (6)
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Table 2: Absolute residuals for different values of Re keeping Me and 𝛾 fixed.

𝑧
Absolute residuals for different values of Reynolds number

(Re = 1.5) (Re = 2) (Re = 3.5) (Re = 4.0) (Re = 5.0)
0. 0. 0. 0. 0. 0.
0.1 8.72 × 10−14 1.63 × 10−12 7.04 × 10−11 1.44 × 10−10 4.40 × 10−10

0.2 4.53 × 10−11 9.03 × 10−10 3.92 × 10−8 8.03 × 10−8 2.45 × 10−7

0.3 1.98 × 10−9 3.82 × 10−8 1.70 × 10−6 3.52 × 10−6 1.10 × 10−5

0.4 3.67 × 10−8 5.52 × 10−7 2.62 × 10−5 5.47 × 10−5 1.75 × 10−4

0.5 4.50 × 10−7 4.24 × 10−6 2.27 × 10−4 4.83 × 10−4 1.60 × 10−3

0.6 4.05 × 10−6 2.04 × 10−5 1.40 × 10−3 2.00 × 10−3 1.01 × 10−2

0.7 3.00 × 10−5 6.20 × 10−5 6.44 × 10−3 1.43 × 10−2 5.03 × 10−2

0.8 1.60 × 10−4 7.30 × 10−5 2.52 × 10−2 6.00 × 10−2 2.12 × 10−1

0.9 7.31 × 10−4 4.40 × 10−4 8.62 × 10−2 2.05 × 10−1 8.00 × 10−1

1. 3.00 × 10−3 4.00 × 10−3 3.00 × 10−1 7.00 × 10−1 3.00 × 100

Table 3: Absolute residuals for different values of Me keeping Re and 𝛾 fixed.

𝑧
Absolute residuals for different values of Hartmann number

(Me = 1.5) (Me = 2) (Me = 3) (Me = 4.0) (Me = 5.0)
0. 0. 0. 0. 0. 0.
0.1 1.30 × 10−14 1.40 × 10−14 2.00 × 10−12 1.43 × 10−10 1.20 × 10−9

0.2 6.40 × 10−12 6.55 × 10−12 9.32 × 10−10 7.30 × 10−8 6.14 × 10−7

0.3 3.00 × 10−10 2.30 × 10−10 3.50 × 10−8 3.00 × 10−6 2.40 × 10−5

0.4 6.00 × 10−9 3.00 × 10−9 4.44 × 10−7 4.00 × 10−5 3.13 × 10−4

0.5 8.00 × 10−8 2.30 × 10−8 3.20 × 10−6 3.00 × 10−4 2.32 × 10−3

0.6 8.00 × 10−7 1.45 × 10−7 1.60 × 10−5 1.40 × 10−3 1.20 × 10−2

0.7 5.51 × 10−6 7.60 × 10−7 6.20 × 10−5 5.31 × 10−3 5.00 × 10−2

0.8 3.13 × 10−5 3.10 × 10−6 2.12 × 10−4 2.00 × 10−2 1.55 × 10−1

0.9 1.50 × 10−4 9.00 × 10−6 7.00 × 10−4 4.00 × 10−2 4.40 × 10−1

1. 6.00 × 10−4 1.10 × 10−5 2.20 × 10−3 1.10 × 10−1 1.10 × 100

Introducing stream function 𝜓(𝑟, 𝑧) [12] and the generalized
pressure 𝑝 = 𝜌𝑢 + 𝑝, (4) and (5) are reduced to

𝜕𝑝

𝜕𝑟
−
𝜌

𝑟2

𝜕𝜓

𝜕𝑟
𝐸
2

𝜓 =
𝜇

𝑟

𝜕

𝜕𝑧
𝐸
2

𝜓 −
𝐴

𝑟

𝜕𝜓

𝜕𝑧

𝜕𝑝

𝜕𝑟
−
𝜌

𝑟2

𝜕𝜓

𝜕𝑧
𝐸
2

𝜓 = −
𝜇

𝑟

𝜕

𝜕𝑟
𝐸
2

𝜓 +
𝐴

𝑟

𝜕𝜓

𝜕𝑟
,

(7)

where

𝐸
2

=
𝜕
2

𝜕𝑟2
−
1

𝑟

𝜕

𝜕𝑟
+

𝜕
2

𝜕𝑧2
. (8)

Eliminating 𝑝 from (7) and using the transformation
𝜓(𝑟, 𝑧) = 𝑟

2

𝑦(𝑧), we have

𝑦
(𝑖V)

(𝑧) − (
1

𝑘
+
𝜂𝐵
2

0

𝜇
)𝑦
󸀠󸀠

(𝑧) + 2
𝜌

𝜇
𝑦 (𝑧) 𝑦

󸀠󸀠󸀠

(𝑧) = 0, (9)

with boundary conditions

𝑦 (0) = 0, 𝑦
󸀠󸀠

(0) = 0,

𝑦 (ℎ) =
V
2
, 𝑦

󸀠

(ℎ) = 𝛽𝑦
󸀠󸀠

(ℎ) .

(10)

Using the nondimensional parameters

𝑌
∗

=
𝑦

V/2
, 𝑧

∗

=
𝑧

ℎ
,

Re =
𝜌ℎ

𝜇/V
, Me = ℎ√ 1

𝑘
+
𝜂𝐵
2

0

𝜇

(11)

and omitting the ∗, (9) and (10) can be written as

𝑌
(𝑖V)

(𝑧) −Me2𝑌󸀠󸀠 (𝑧) + Re𝑌 (𝑧) 𝑌󸀠󸀠󸀠 (𝑧) = 0, (12)

𝑌 (0) = 0, 𝑌
󸀠󸀠

(0) = 0,

𝑌 (1) = 1, 𝑌
󸀠

(1) = 𝛾𝑌
󸀠󸀠

(1) ,

(13)

with 𝛾 = 𝛽/ℎ. Re and Me are Reynolds and Hartmann
numbers, respectively.

3. Daftardar Jafari Method

For the function 𝑦(𝑧) = 𝑔(𝑧) + 𝐿(𝑦(𝑧)) + 𝑁(𝑦(𝑧)), let
𝑦(𝑧) = ∑

∞

𝑛=0

𝑦
𝑛

(𝑧) be the series solution. 𝑔(𝑧) denotes the
source term and 𝐿(𝑦(𝑧)) and𝑁(𝑦(𝑧)) are, respectively, linear
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Table 4: Absolute residuals for different values of Me and Re with Re > Me keeping 𝛾 fixed.

𝑧

Residuals for different values of Hartmann and Reynolds numbers
Re = 2 Re = 2.5 Re = 4 Re = 7 Re = 10
Me = 1.5 Me = 2 Me = 3 Me = 5.0 Me = 7.0

0. 0. 0. 0. 0. 0.
0.1 2.70 × 10−12 7.00 × 10−12 1.20 × 10−11 4.00 × 10−10 4.00 × 10−10

0.2 1.50 × 10−9 3.64 × 10−9 7.00 × 10−9 2.00 × 10−7 2.00 × 10−7

0.3 6.15 × 10−8 1.53 × 10−7 3.05 × 10−7 8.00 × 10−6 7.30 × 10−6

0.4 9.22 × 10−7 2.30 × 10−6 5.00 × 10−6 1.05 × 10−4 9.63 × 10−5

0.5 8.00 × 10−6 2.00 × 10−5 4.43 × 10−5 8.04 × 10−4 7.13 × 10−4

0.6 5.00 × 10−5 1.14 × 10−4 3.00 × 10−4 4.32 × 10−3 4.00 × 10−3

0.7 2.32 × 10−4 5.21 × 10−4 1.30 × 10−3 2.00 × 10−2 1.52 × 10−2

0.8 9.45 × 10−4 2.00 × 10−3 5.02 × 10−3 6.40 × 10−2 5.40 × 10−2

0.9 3.41 × 10−3 7.00 × 10−3 2.00 × 10−2 2.00 × 10−1 2.00 × 10−1

1. 1.12 × 10−2 2.00 × 10−2 5.00 × 10−2 6.00 × 10−1 5.43 × 10−1

Table 5: Absolute residuals for different values of Me, Re, and 𝛾 with Re < Me.

𝑧

Residuals for different values of 𝛾 and Hartman and Reynolds numbers
Re = 2 Re = 1.0 Re = 3.5 Re = 4.5 Re = 5.0
Me = 3 Me = 1.5 Me = 4 Me = 6.0 Me = 7.0
𝛾 = 0.1 𝛾 = 0.2 𝛾 = 0.5 𝛾 = 0.8 𝛾 = 1.0

0. 0. 0. 0. 0. 0.
0.1 9.42 × 10−11 8.00 × 10−12 1.22 × 10−11 4.00 × 10−11 4.00 × 10−10

0.2 4.31 × 10−8 3.00 × 10−9 6.63 × 10−9 2.10 × 10−8 2.00 × 10−7

0.3 1.33 × 10−6 8.40 × 10−8 3.00 × 10−7 8.14 × 10−7 7.01 × 10−6

0.4 1.20 × 10−5 1.61 × 10−6 5.45 × 10−6 8.15 × 10−5 9.21 × 10−5

0.5 4.00 × 10−5 3.00 × 10−5 6.30 × 10−5 9.64 × 10−5 7.00 × 10−4

0.6 1.03 × 10−4 3.55 × 10−4 5.40 × 10−4 6.00 × 10−4 3.30 × 10−3

0.7 1.56 × 10−3 3.00 × 10−3 4.00 × 10−3 3.03 × 10−3 1.20 × 10−2

0.8 8.35 × 10−3 2.00 × 10−2 2.00 × 10−2 1.34 × 10−2 3.34 × 10−2

0.9 3.00 × 10−2 8.00 × 10−2 9.10 × 10−2 5.30 × 10−2 7.00 × 10−2

1. 6.30 × 10−2 3.00 × 10−1 3.63 × 10−1 2.00 × 10−1 6.40 × 10−2

and nonlinear functions [19]. DJM polynomials for nonlinear
term are defined as [20, 21]

𝐺
0

(𝑧) = 𝑁 (𝑦
0

(𝑧)) ,

𝐺
𝑚

(𝑧) = 𝑁(

𝑚

∑

𝑛=0

𝑦
𝑛

(𝑧)) − 𝑁(

𝑚−1

∑

𝑛=0

𝑦
𝑛

(𝑧)) .

(14)

The components of 𝑦(𝑧), for the series solution, can easily be
found by the following recursive process:

𝑦
0

(𝑧) = 𝑔 (𝑧) ,

𝑦
𝑚+1

= 𝐿 (𝑦
𝑚

(𝑧)) + 𝐺
𝑚

(𝑧) , 𝑚 = 0, 1, 2, 3, . . . .

(15)

4. Analysis of Daftardar Jafari Method

Consider fourth-order nonlinear boundary value problem

𝑦
(𝑖V)

(𝑧) = 𝑔 (𝑧) + ℎ (𝑦 (𝑧)) , (16)

with boundary conditions

𝑦 (0) = 𝛼
0

, 𝑦 (ℎ) = 𝛼
1

,

𝑦
󸀠

(ℎ) = 𝛼
2

, 𝑦
󸀠󸀠

(0) = 𝛼
3

.

(17)

Using the operator 𝐿 = 𝑑4/𝑑𝑧4, (16) can be written as

𝐿 (𝑦 (𝑧)) = 𝑔 (𝑧) + ℎ (𝑦 (𝑧)) . (18)

Initial conditions are used when the inverse operator 𝐿−1 is
applied on (18) to get

𝑦 (𝑧) = 𝛼
0

+ 𝛼
1

𝑧 + 𝛼
2

𝑧
2

2!
+ 𝛼
3

𝑧
3

3!
+ 𝐿
−1

𝑔 (𝑧) + 𝐿
−1

ℎ (𝑦 (𝑧)) .

(19)
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In series form (19) can be written as
∞

∑

𝑛=0

𝑦
𝑛

(𝑧) = 𝛼
0

+ 𝛼
1

𝑧 + 𝛼
2

𝑧
2

2!

+ 𝛼
3

𝑧
3

3!
+ 𝐿
−1

𝑔 (𝑧) + 𝐿
−1

(

∞

∑

𝑛=0

𝐺
𝑛

(𝑧)) .

(20)

𝐺
󸀠

𝑛

𝑠 are defined in (14).The components of 𝑦(𝑧) can be found
as

𝑦
0

(𝑧) = 𝛼
0

+ 𝛼
1

𝑧 + 𝛼
2

𝑧
2

2!
+ 𝛼
3

𝑧
3

3!
,

𝑦
𝑛+1

(𝑧) = 𝐿
−1

(𝑔
𝑛

(𝑧) + 𝐺
𝑛

(𝑧)) , 𝑛 = 0, 1, 2, 3, . . . .

(21)

For the solution of our problem, we rewrite (12), using the
inverse operator 𝐿−1 which is a fourfold integral with initial
conditions (i.e., at 𝑧 = 0), as

𝑌 (𝑧) = 𝐴𝑧 + 𝐵
𝑧
3

6
+ 𝐿
−1

(Me2𝑌󸀠󸀠 (𝑧))

− 𝐿
−1

(Re𝑌 (𝑧) ⋅ 𝑌󸀠󸀠󸀠 (𝑧)) .
(22)

In series form, (22) reduces to
∞

∑

𝑛=0

𝑌
𝑛

(𝑧) = 𝐴𝑧 + 𝐵
𝑧
3

6
+ 𝐿
−1

(Me2𝑌󸀠󸀠 (𝑧))

− 𝐿
−1

(Re
∞

∑

𝑛=0

𝐺
𝑛

(𝑧)) .

(23)

The last equation gives the components of 𝑌(𝑧). For the
nonlinear term 𝑁(𝑌) = 𝑌(𝑧) ⋅ 𝑌

󸀠󸀠󸀠

(𝑧), DJM introduces 𝐺󸀠
𝑛

𝑠

which are already defined in (14). The recursive process for
the components of 𝑌(𝑧) is given by

𝑌
0

(𝑧) = 𝐴𝑧 + 𝐵
𝑧
3

6
,

𝑌
𝑚+1

(𝑧) = Me2𝐿−1 (𝑌󸀠󸀠
𝑚

(𝑧)) − Re 𝐿−1 (𝐺
𝑚

(𝑧)) ,

𝑚 = 0, 1, 2, 3, . . . .

(24)

Following the above recursive process, the respective compo-
nents are obtained as follows:

𝑌
1

(𝑧) =
1

120
(Me2𝐵 − Re𝐴𝐵) 𝑧5 − Re𝐵2𝑧7

5040
,

𝑌
2

(𝑧)

=
(𝐵Me4 − 4𝐵𝐴Me2 Re+3𝐵𝐴2Re2) 𝑧7

5040

+ (−
𝐵
2Me2 Re
30240

+
𝐵
2

𝐴Re2

22680
) 𝑧
9

+ ((−7𝐵
2Me4 Re+12𝐵3Re2 + 14𝐵2𝐴Me2Re2

−7𝐵
2

𝐴
2Re3) 𝑧11) (13305600)−1

+
(𝐵
3Me2Re2 − 𝐵3𝐴Re3) 𝑧13

38438400
−

𝐵
4Re3𝑧15

3962649600
,

𝑌
3

(𝑧)

=
(𝐵Me6 − 9𝐵𝐴Me4 Re+23𝐵𝐴2Me2Re2 − 15𝐵𝐴3Re3) 𝑧9

362880

+
(−12𝐵

2Me4 Re+61𝐵2𝐴Me2Re2 − 55𝐵2𝐴2Re3) 𝑧11

9979200

+ ((−183𝐵
2Me6 Re+1056𝐵3Me2Re2 + 1041𝐵2𝐴Me4Re2

−1684𝐵
3

𝐴Re3 − 1533𝐵2𝐴2Me2Re3 + 675𝐵2𝐴3Re4)

× (6227020800)
−1

) 𝑧
13

+ ((−165𝐵
2Me8 Re+5256𝐵3Me4Re2 + 1320𝐵2𝐴Me6Re2

− 2988𝐵
4Re3 − 13016𝐵3𝐴Me2Re3

− 3630𝐵
2

𝐴
2Me4Re3 + 7760𝐵3𝐴2Re4

+3960𝐵
2

𝐴
3Me2Re4 − 1485𝐵2𝐴4Re5)

× (653837184000)
−1

) 𝑧
15

.

(25)

The fifth component 𝑌
4

(𝑧) is also obtained in the same
manner. All the components are truncated to 𝑂(𝑧

17

). The
series solution, using the first five components, is therefore
given as

𝑌 (𝑧) = 𝑌
0

(𝑧) + 𝑌
1

(𝑧) + 𝑌
2

(𝑧) + 𝑌
3

(𝑧) + 𝑌
4

(𝑧) . (26)

This solution involves unknown constants 𝐴, 𝐵. In order to
find the values of these unknowns, we use the boundary
conditions (i.e., at 𝑧 = 1). Let us fix the values of Re and Me
to get the following two equations:

( −
1051𝐴

4

217945728000
+ 𝐵

+ 𝐴
3

(
121223

108972864000
−

6493𝐵

18162144000
+

1357𝐵
2

25147584000
)

+ 𝐴
2

(−
30503023

130767436800
+

344689𝐵

6671808000
−

2292947𝐵
2

326918592000

+
217601𝐵

3

326918592000
−

11𝐵
4

792529920
)

+ 𝐴(
2331157

13305600
−
182663𝐵

19958400
+
157𝐵
2

237600

−
83𝐵
3

1814400
+

𝐵
4

380160
)) = 1,
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Figure 2: Velocity profile for different values of Reynold and
Hartmann numbers with Re ≤ Me.

(
1051𝐴

4

1117670400
+ 𝐵

+ 𝐴
3

(−
407

3386880
+

9103𝐵

167650560
−

17641𝐵
2

1676505600
)

+ 𝐴(−
28319

44800
+
31123𝐵

201600
−
631𝐵
2

25200
+
613𝐵
3

201600
−

𝐵
4

3840
)

+ 𝐴
2

(
30868891

3353011200
−

849203𝐵

239500800
+
1238579𝐵

2

1676505600

−
162581𝐵

3

1676505600
+

11𝐵
4

4064256
)) = 0.

(27)

The above system of nonlinear equations is solved by using
Mathematica software to get

𝐴 = 1.45539, 𝐵 = 0.754966 (28)

and hence solution (26) becomes

𝑌 (𝑧) = 0.754966𝑧 + 0.242565𝑧
3

+ 0.002972𝑧
5

− 0.000510𝑧
7

+ 3.91313 × 10
−6

𝑧
9

+ 3.15301 × 10
−6

𝑧
11

− 1.26484 × 10
−7

𝑧
13

− 2.33163 × 10
−8

𝑧
15

.

(29)

5. Numerical Results and Discussion

The velocity profile of MHD squeezing fluid flow between
two parallel plates in porous medium with slip boundary is
deduced by using Daftardar Jafari method. All the calcula-
tions, tables, and figures are carried out by usingMathematica
7.0. The residuals for different values of slip parameter and
Reynolds and Hartmann numbers show the efficiency of the
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Re = 5.0, Me = 4.0, 𝛾 = 0.01

Figure 3: Velocity profile for different values of slip parameter and
Reynold and Hartmann numbers with Re ≥ Me.
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Figure 4: Velocity profile for different values of slip parameter and
Reynold and Hartmann numbers with Re < Me.
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Figure 5: Velocity profile for different values of Reynold and
Hartmann numbers with Re = Me and 𝛾 = 0.
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Figure 6: Velocity profile for different values of Hartmann number
with Re = 1 and 𝛾 = 0.
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Figure 7: Velocity profile for different values of Reynold number
with Me = 1 and 𝛾 = 0.

scheme.This technique requires less computational effort and
the convergence of this method to the exact solution is fast
enough. The comparison of DJM with other techniques can
be found in [12, 21]. For getting the insight of the problem, we
discuss the velocity profile 𝑌(𝑧) of the fluid as follows.

(1) In Figure 2 the influence of Hartmann and Reynolds
numbers with constant slip parameter is shown. By
decreasing Hartmann number with Me ≥ Re, we
observe from Figure 2 that the velocity of the fluid
decreases.

(2) The influence of Reynolds and Hartmann numbers
for different values of slip parameter is shown in
Figure 3. It can be seen in Figure 3 that by increasing
Reynolds and Hartmann numbers with Re ≥ Me
and decreasing the slip parameter 𝛾, the velocity
decreases. The same effect on the velocity profile
is shown in Figure 4 by decreasing Reynolds and
Hartmann numbers with Re < Me.

(3) Figures 5, 6, and 7 are special cases when the slip
parameter 𝛾 vanishes. From Figure 5 we conclude
that the velocity increases with equal increase in Me
and Re. In the same way the increase in velocity is
observed in Figures 6 and 7 while increasing Me and
Re, keeping Reynolds and Hartmann numbers fixed,
respectively.
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