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This paper deals with the problem of robust model predictive control (RMPC) for a class of linear time-varying systems with
constraints and data losses. We take the polytopic uncertainties into account to describe the uncertain systems. First, we design
a robust state observer by using the linear matrix inequality (LMI) constraints so that the original system state can be tracked.
Second, the MPC gain is calculated by minimizing the upper bound of infinite horizon robust performance objective in terms of
linear matrix inequality conditions. The method of robust MPC and state observer design is illustrated by a numerical example.

1. Introduction

Model predictive control (MPC) [1, 2] is an important
method to handle control problems with systems having
input, state, and output constraints [3–7]. Its current con-
trol action is obtained by solving an online, at each time
instant, open-loop constrained infinite horizon optimization
problem. The current state of the system is treated as the
initial state of optimal control problems [8], and only the first
optimal control sequence is implemented [9]. In this line of
the research, a model is used to predict the future behavior of
the real system and obtain an optimal control sequencewhich
satisfies the input, state, and output constraints. So the model
quality is very vital in the robust MPC.

From such a viewpoint, it is a significant problem to
develop theMPC algorithms, which are robust against model
uncertainties, and guarantee a certain control performance
objective [10–17]. The type of MPC has been studied for
many years [18–21]. Recently, MPC is an efficient method
in automatic control theory and industrial processes. In
[22], a robust MPC is presented for a class of uncertain
systems and then applied to angular positioning system.
Besides, the robust MPC developed based on explicit model
uncertainty descriptions has been proposed [23]. As one of

such descriptions, polytopic systemmodel is considered to be
an effective one for the uncertainty modeling of linear time-
varying (LTV) systems.

With the increasing requirement of reliability, environ-
mental sustainability, and profitability, we begin to apply the
communication networks to the practical industrial process
[24–31]. However, in the real systems, the measurement data
may be transferred through multiple sensors. The sensors
are connected to the controller via a network, which is
shared by other networked control systems. Due to sensor
aging and sensor temporal failure, the measured data may
be transferred through many sensors in the real process via
networks so that successive packet dropouts are unavoidable
in the real industry process [32–34]. Moreover, another
significant factor, input constraints, which stems from the
restrictions of engineering equipment, cannot be ignored in
industrial processes. Therefore, the robust MPC controller
should be developed by considering packet dropouts and
constraints.

In this paper, we describe an industrial process system as
the linear time-varying systemwith packet dropouts from the
MPC controller and dynamic output controller to the plant.
Furthermore, a Bernoulli random binary distribution with
known probabilities is used to describe the packet dropouts

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 478567, 11 pages
http://dx.doi.org/10.1155/2014/478567

http://dx.doi.org/10.1155/2014/478567


2 Abstract and Applied Analysis

phenomena. Thus, the MPC controller can be analyzed
and designed to guarantee that the closed-loop system is
stochastically stable. Additionally, the Lyapunov function is
adopted to handle the problem of designing the controller
and state observer, which make the result less conservative.
A numerical example is proposed to prove the effectiveness
of the design method. The main merit of this paper is the
following one: a robust MPC controller is developed for a
control system with uncertainties, saturations, and packet
dropouts under time-varying probabilities.

The organization of the paper is given as follows. The
considered problem is denoted in Section 2. Section 3 for-
mulates the infinite horizon robust performance objective.
The procedure of obtaining the state observer gains is
represented in Section 4. And the MPC controller gain and
dynamic output controller are represented in Sections 5 and
6, respectively. We employ two numerical examples to certify
the feasibility of the mentioned method in Section 7. Finally,
Section 8 presents the conclusion.

Notation. The notation used in the paper is standard. The
superscript “𝑇” represents the matrix transposition and R𝑛𝑥

shows the 𝑛
𝑥
-dimensional Euclidean space. And 𝐼 and 0

denote the identity matrix and zero matrix, respectively. The
notations 𝑃 > 0 and 𝑄 > 0 mean that 𝑃 and 𝑄 are real
symmetric and positive definite; the notation ‖𝐴‖ refers to
the norm of matrix 𝐴 that is defined by ‖𝐴‖ = √tr(𝐴𝑇𝐴),
where “tr” stands for the trace operator. ‖ ⋅ ‖

2
refers to the

usual Euclidean vector norm. The symbol “∗” denotes the
elements below the main diagonal of a symmetric block
matrix. Prob{⋅}means the occurrence probability of the event
“⋅”.𝐸{𝑥} and𝐸{𝑥 | 𝑦} represent the expectation of event𝑥 and
the expectation of 𝑥 conditional on 𝑦, respectively.

2. Problem Formulation

First, we consider the linear time-varying system as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

[𝐴 (𝑘) 𝐵 (𝑘)] ∈ Ω,

(1)

where 𝑥(𝑘) ∈ R𝑛𝑥 is the plant state vector; 𝑦(𝑘) ∈ R𝑛𝑦 is
the output of the plant; 𝑢(𝑘) ∈ R𝑛𝑢 is the control input; 𝐴(𝑘),
𝐵(𝑘), and 𝐶 are system parameters. Ω is a given set. For the
polytopic systems, the setΩ is the polytope:

Ω = Co {[𝐴
1
𝐵
1
] , [𝐴
2
𝐵
2
] , . . . , [𝐴

𝐿
𝐵
𝐿
]} , (2)

where Co represents the convex hull. Besides, if
[𝐴(𝑘) 𝐵(𝑘)] ∈ Ω, then for 𝜆

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝐿, and

∑
𝐿

𝑖=1
𝜆
𝑖
= 1, [𝐴(𝑘) 𝐵(𝑘)] = ∑

𝐿

𝑖=1
𝜆
𝑖
[𝐴
𝑖
(𝑘) 𝐵

𝑖
(𝑘)]. When

𝐿 = 1, it means that the system in (2) is becoming a linear
time-invariant system.

In this paper, the systemmatrices [𝐴(𝑘) 𝐵(𝑘)] are known
clearly. However, the future matrices [𝐴(𝑘 + 𝑖) 𝐵(𝑘 + 𝑖)],
𝑖 ≥ 1, are indefinite but well known which change in a
given polytope setΩ. We assume that the linear discrete-time

system (1) has input constraints [35], which satisfies at each
instant 𝑘 ≥ 0, as follows:

‖𝑢 (𝑘 + 𝑖)‖
2
≤ 𝑢max, 𝑘, 𝑖 ≥ 0, (3)

where 𝑢max refers to the peak bound of the input 𝑢.
In this paper, we consider a state observer to estimate the

state of the plant (1) as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐿 [𝑦 (𝑘) − 𝐶𝑥 (𝑘)] + 𝐵 (𝑘) 𝑢 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(4)

where 𝑥(𝑘) ∈ R𝑛𝑥 refers to the estimated state of 𝑥(𝑘) and 𝐿
refers to the state observer gain. It is assumed that the initial
estimate state 𝑥

0
= 𝑥(0) and the initial output 𝑦

0
= 𝑦(0)

are known exactly. Note that system matrices [𝐴(𝑘) 𝐵(𝑘)],
output 𝑦(𝑘), and the estimated state 𝑥(𝑘), at each instant 𝑘,
are well known so that 𝑥(𝑘+1) can be calculated by using (4).
However, the estimated state 𝑥(𝑘 + 𝑖 + 1), 𝑖 ≥ 1, is uncertain.

The MPC controller is to be determined as follows:

𝑢
𝑐
(𝑘 + 𝑖 | 𝑘) = 𝐾 (𝑘) 𝑥 (𝑘 + 𝑖 | 𝑘) , 𝑖 ≥ 0, (5)

where 𝐾(𝑘) is the feedback control gain at time instant 𝑘.
In MPC, only the first calculated control input 𝑢

𝑐
(𝑘 | 𝑘) =

𝐾𝑥(𝑘 | 𝑘) is complemented. At the next sampling time 𝑘 + 1,
the state 𝑥(𝑘 + 1) is measured and 𝐾 is repeatedly computed
by the optimization.

The form of dynamic output controller is as follows:

𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
𝑥
𝑐
(𝑘) + 𝐵

𝑐
𝑦
𝑐
(𝑘) ,

𝑢
𝑐
(𝑘) = 𝐶

𝑐
𝑥
𝑐
(𝑘) ,

(6)

where𝐴
𝑐
, 𝐵
𝑐
, and𝐶

𝑐
are the unknownparameters of dynamic

output controller.
Combining (1), (6), and (10), the augmented system is

given as follows:

𝜃 (𝑘 + 1) = [𝐴 (𝑘) + 𝐴 (𝑘)] 𝜃 (𝑘) ,

𝑦 (𝑘) = 𝐶𝜃 (𝑘) ,

(7)

where 𝜃(𝑘) = [𝑥𝑇(𝑘) 𝑥𝑇(𝑘)]𝑇, 𝐶 = [𝐶 0], and

𝐴 (𝑘) = [
𝐴 (𝑘) 𝛽𝐵 (𝑘) 𝐶

𝑐

𝛼𝐵
𝑐
𝐶 𝐴

𝑐

] ,

𝐴 (𝑘) = [
0 𝛽 (𝑘) 𝐵 (𝑘) 𝐶

𝑐

�̂� (𝑘) 𝐵
𝑐
𝐶 0

] .

(8)

In practical industrial processes, we have to not only
consider the uncertainties in (2), but also consider a more
important factor that is data loss. Data losses are inevitable
in communication networks, because the measurement data
may be transferred through many sensors in the real process.

Here, we consider a stochastic variable 𝛿(𝑘) to describe
successive packet dropouts in a random way. The character-
istic of the successive packet dropouts is the latest received
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data that will be sent to the state observer. If the data is
not updated, the control input will keep unchanged. More
important is that taking the packet dropouts into account
is consistent with the real situation design in industry.
Therefore, signals transmitted through the communication
network to the estimated state observer can be expressed as

𝑢 (𝑘) = 𝛿 (𝑘) 𝑢
𝑐
(𝑘) , (9)

where 𝑢
𝑐
(𝑘) is the control input that is computed by using

the feedback gain 𝐾(𝑘) which is determined at each instant
𝑘. 𝑢(𝑘) is the actual measurement signal of 𝑢

𝑐
(𝑘) and

transmitted to the plant (1) and state observer (4).We assume
that the stochastic variable 𝛿(𝑘) satisfies Prob{𝛿(𝑘) = 1} =
𝐸{𝛿(𝑘)} = 𝛿 and Prob{𝛿(𝑘) = 0} = 1 − 𝛿. Let 𝛿(𝑘) = 𝛿(𝑘) − 𝛿.
Then, 𝐸{𝛿(𝑘)} = 0 and 𝐸{𝛿2(𝑘)} = 𝛿(1 − 𝛿) ≜ 𝜙2.

In a similar situation, we consider stochastic variables
𝛼(𝑘) and 𝛽(𝑘) to describe successive packet dropouts in a
random way:

𝑢 (𝑘) = 𝛽 (𝑘) 𝑢
𝑐
(𝑘) ,

𝑦
𝑐
(𝑘) = 𝛼 (𝑘) 𝑦 (𝑘) ,

(10)

where 𝑢
𝑐
(𝑘) is the control input, 𝑢(𝑘) is the actual measure-

ment signal of 𝑢
𝑐
(𝑘)which is transmitted to the plant (1), and

𝑦
𝑐
(𝑘) is the actual signal of 𝑦(𝑘) which is transmitted to the

dynamic output controller, respectively. We assume that the
stochastic variables 𝛼(𝑘) and 𝛽(𝑘) satisfy Prob{𝛼(𝑘) = 1} =
𝐸{𝛼(𝑘)} = 𝛼 and Prob{𝛼(𝑘) = 0} = 1 − 𝛼 and Prob{𝛽(𝑘) =
1} = 𝐸{𝛽(𝑘)} = 𝛽 and Prob{𝛽(𝑘) = 0} = 1 − 𝛽, respectively.
Let �̂�(𝑘) = 𝛼(𝑘) − 𝛼 and 𝛽(𝑘) = 𝛽(𝑘) − 𝛽, respectively. Then,
𝐸{�̂�(𝑘)} = 𝐸{𝛽(𝑘)} = 0, 𝐸{�̂�2(𝑘)} = 𝛼(1 − 𝛼) ≜ 𝑙

2, and
𝐸{𝛽
2

(𝑘)} = 𝛽(1 − 𝛽) ≜ 𝑚
2, respectively.

The following Lemma is used in the process of proof.

Lemma 1. Let 𝐹 and 𝐺 and 𝐻 and 𝐸 be the real matrices of
appropriate dimensions; then 𝐹 + 𝐺𝐻𝐸 + 𝐸𝑇𝐻𝑇𝐺𝑇 < 0 if and
only if there exists a positive scalar 𝜀 > 0 such that𝐹+𝜀−1𝐺𝐺𝑇+
𝜀𝐸
𝑇

𝐸 < 0 or, equivalently,

[

[

𝐹 ∗ ∗

𝐺
𝑇

−𝜀𝐼 0

𝜀𝐸 0 −𝜀𝐼

]

]

< 0. (11)

3. Infinite Horizon Robust Performance
Objective Analysis

In this paper, the aim of the robust MPC is to determine the
model predictive control law {𝑢(𝑘 | 𝑘), 𝑢(𝑘 + 1 | 𝑘), . . . , 𝑢(𝑘 +
𝑖 | 𝑘)}, 𝑖 ≥ 1, which regulates the initial state of system
reaching the origin,making the robust performance objective
minimum in the worst case and ensuring that the closed-
loop system is asymptotically stable. In order to determine the
control input 𝑢(𝑘) under input constraints, we minimize the
performance objective 𝐽

∞
(𝑘) through minimizing its upper

bound. Consider the performance objective by minimizing
the infinite horizon objective function 𝐽

∞
(𝑘) as follows:

min
𝑢(𝑘+𝑖|𝑘)

max
[𝐴(𝑘+𝑖|𝑘) 𝐵(𝑘+𝑖|𝑘)]∈Ω

𝐽
∞
(𝑘) , (12)

where

𝐽
∞
(𝑘) = 𝐸{

∞

∑

𝑖=0

[𝑦
𝑇

(𝑘 + 𝑖 | 𝑘) 𝑅
1
𝑦 (𝑘 + 𝑖 | 𝑘)

+𝑢
𝑇

(𝑘 + 𝑖𝑘) 𝑅
2
𝑢 (𝑘 + 𝑖𝑘)]} ,

(13)

in which 𝑅
1
and 𝑅

2
are the positive-definite matrices that

should be given firstly. It is worth noting that the choices of
𝑅
1
and 𝑅

2
are unclear, which are usually adjusted according

to the practical situation.
We consider transferring the minimization of 𝐽

∞
(𝑘) into

minimizing its upper bound. Therefore, we assume that the
following inequality holds for all 𝑦(𝑘 | 𝑘), 𝑢(𝑘 | 𝑘), 𝑖 ≥ 0,
satisfying the input constraints (3), and for any [𝐴(𝑘+𝑖) 𝐵(𝑘+
𝑖)] ∈ Ω, 𝑖 ≥ 0:

𝐸 {𝑉 (𝑥 (𝑘 + 𝑖 + 1 | 𝑘)) | 𝑥 (𝑘 + 𝑖 | 𝑘)}

− 𝑉 (𝑥 (𝑘 + 𝑖 | 𝑘))

≤ −𝐸 {𝑦
𝑇

(𝑘 + 𝑖 | 𝑘) 𝑅
1
𝑦 (𝑘 + 𝑖 | 𝑘)

+ 𝑢
𝑇

(𝑘 + 𝑖 | 𝑘) 𝑅
2
𝑢 (𝑘 + 𝑖 | 𝑘)} ,

(14)

where 𝑉(𝑥(𝑘)) = 𝑥
𝑇

(𝑘)𝑃𝑥(𝑘) and 𝑃 > 0 is a symmetric
matrix.

Proof. Firstly, we construct a Lyapunov function 𝑉(𝑥(𝑘)) =
𝑥
𝑇

(𝑘)𝑃𝑥(𝑘), where 𝑃 > 0 is a symmetric matrix. We assume
that 𝐸{𝑉(𝑥(∞ | 𝑘))} = 0. By summing (14) from 𝑖 = 0 to
𝑖 = ∞, we can obtain the following inequality:

max
[𝐴(𝑘+𝑖) 𝐵(𝑘+𝑖)]∈Ω,𝑖≥0

𝐽
∞
(𝑘) ≤ 𝑉 (𝑥 (𝑘 | 𝑘))

− 𝐸 {𝑉 (𝑥 (∞ | 𝑘))} ≤ 𝑥
𝑇

(𝑘 | 𝑘) 𝑃𝑥 (𝑘 | 𝑘) .

(15)

Let 𝛾 be the upper bound of 𝐽
∞
(𝑘) and we have the following

inequality:

𝑥
𝑇

(𝑘 | 𝑘) 𝑃𝑥 (𝑘 | 𝑘) ≤ 𝛾. (16)

In a similar situation, we consider transferring the minimiza-
tion of 𝐽

∞
(𝑘) into minimizing its upper bound.Therefore, we

assume that the following inequality holds for all 𝑦(𝑘 | 𝑘),
𝑢(𝑘 | 𝑘), 𝑖 ≥ 0, satisfying the input constraints (3), and for
any [𝐴(𝑘 + 𝑖) 𝐵(𝑘 + 𝑖)] ∈ Ω, 𝑖 ≥ 0:

𝐸 {𝑉 (𝜃 (𝑘 + 𝑖 + 1 | 𝑘)) | 𝜃 (𝑘 + 𝑖 | 𝑘)}

− 𝑉 (𝜃 (𝑘 + 𝑖 | 𝑘))

≤ −𝐸 {𝑦
𝑇

(𝑘 + 𝑖 | 𝑘) 𝑅
1
𝑦 (𝑘 + 𝑖 | 𝑘)

+ 𝑢
𝑇

(𝑘 + 𝑖 | 𝑘) 𝑅
2
𝑢 (𝑘 + 𝑖 | 𝑘)} .

(17)
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4. State Observer Design

In this section, we consider the design of state observer. The
form of state observer is (4). Therefore, the state estimation
error is 𝑒(𝑘) = 𝑥(𝑘) − 𝑥(𝑘). Combining (1) with (4), we can
derive the error dynamics as follows:

𝑒 (𝑘 + 1) = (𝐴 − 𝐿𝐶) 𝑒 (𝑘) . (18)

Next we use LMI to determine the state observer gain 𝐿.
First, we should construct a Lyapunov function �̃�(𝑒(𝑘)) as
follows:

�̃� (𝑒 (𝑘)) = 𝑒
𝑇

(𝑘) �̃�𝑒 (𝑘) , �̃� > 0. (19)

We assume that the Lyapunov function �̃�(𝑒(𝑘)) satisfies the
following inequality:

�̃� (𝑒 (𝑘 + 1)) − 𝜌
2

�̃� (𝑒 (𝑘)) < −𝑒
𝑇

(𝑘) �̃�𝑒 (𝑘) , (20)

where 𝜌 (0 < 𝜌 < 1) is a decay rate and �̃� ≥ 0 is a weighting
matrix which are determined by the designer. According to
the assumption (20), the state observer gain𝐿 can be obtained
by the following theorem.

Theorem 2. If there exist �̃� > 0 and 𝑄 = �̃�𝐿, one can derive
the following inequality:

[
𝜌
2

�̃� − �̃� ∗

�̃�𝐴 − 𝑄𝐶 �̃�
] > 0, (21)

where the state observer gain is derived by 𝐿 = �̃�
−1

𝑄.
Therefore, the estimated state 𝑥 can track the original system
states 𝑥 and 𝑥(𝑘) → 𝑥(𝑘) when 𝑘 → ∞.

Proof. Inequality (20) is equivalent to

𝜌
2

�̃� − �̃� − Π
𝑇

(𝑘) �̃�Π (𝑘) > 0, (22)

where Π(𝑘) = 𝐴(𝑘) − 𝐿𝐶. However, inequality (22) can be
converted into the following form:

𝜌
2

�̃� − �̃� − (�̃�Π (𝑘))
𝑇

�̃�
−1

(�̃�Π (𝑘)) > 0. (23)

By using Schur complement, we can obtain the following LMI
constraint:

[
𝜌
2

�̃� − �̃� ∗

�̃�Π (𝑘) �̃�
] > 0. (24)

Let 𝑄 = �̃�𝐿; inequality (24) is equivalent to

[
𝜌
2

�̃� − �̃� ∗

�̃�𝐴 (𝑘) − 𝑄𝐶 �̃�
] > 0. (25)

It is established for all [𝐴(𝑘) 𝐵(𝑘)] ∈ Ω. And the state
observer gain 𝐿 is obtained by 𝐿 = �̃�−1𝑄.

5. MPC Controller Design

Now our goal is to design a robust MPC to generate an
optimal control law so that the performance objective can be
achieved. In the following, Theorem 3 is given to guarantee
that the desired performance objective can be implemented
by computing 𝐾(𝑘) in (5) for linear discrete-time systems (1)
under constraints (3) and packet dropouts (9). We can obtain
the following theorem.

Theorem 3. Assume that the uncertainty Ω is a prescribed
polytope and the probabilities 𝛿 take values from 0 to 1. The
control input (5) under a series of constrained input (3) that
minimizes 𝐽

∞
(𝑘) is obtained by

𝐾 = 𝑌𝑄
−1

, (26)

where𝑄 > 0 is symmetric and the upper bound 𝛾 of 𝐽
∞
(𝑘) can

be solved by the following minimization problem:

min
𝑢(𝑘|𝑘),𝑄,𝑌

𝛾 (27)

subject to

[
1 𝑥
𝑇

(𝑘 | 𝑘)

∗ 𝑄
] ≥ 0, (28)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑄 0 Γ 𝑌
𝑇

𝐵
𝑇

𝑌
𝑇

𝑅
1/2

2
𝑄
𝑇

𝐶
𝑇

𝑅
1/2

1
𝑄
𝑇

𝐶
𝑇

0

∗ −Λ 0 0 0 0 𝑄
𝑇

𝐶
𝑇

0

∗ ∗ −𝑄 0 0 0 0 𝐿

∗ ∗ ∗
−𝑄

𝜙2
0 0 0 0

∗ ∗ ∗ ∗
−𝛾𝐼

𝛿
2

+ 𝜙2
0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

[
𝑢
2

max𝐼 𝑌
∗ 𝑄

] ≥ 0,

(29)
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where 𝐿 = 𝜀𝐿 and 𝜀 > 0 is a positive scalar and Γ = 𝑄𝑇𝐴 +
𝛿𝑌
𝑇

𝐵
𝑇.

At each future time instant, there exists the optimal
control law to minimize the performance objective. Finally,
the closed-loop system will be asymptotically stable.

Proof. In order to achieve the robust MPC performance
objective under input constraint and packet dropouts, there
exist three LMIs that need to be feasible. The first LMI is
obtained by (16); by minimizing the upper bound of 𝛾, we
can get the second LMI; the third LMI is obtained by solving
the input constraint (3). In the following, we give the proof.

Let 𝑄 = 𝛾𝑃
−1

> 0 and use Schur complement we can
obtain inequality (28). Combining (4), (5), and (9) with (14),
we have

𝐸 {𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [(𝐴 − 𝐿𝐶)
𝑇

𝑃 (𝐴 − 𝐿𝐶)

+ 𝛿(𝐴 − 𝐿𝐶)
𝑇

𝑃𝐵𝐾

+ 𝛿𝐾
𝑇

𝐵
𝑇

𝑃 (𝐴 − 𝐿𝐶)

+ (𝛿
2

+ 𝜙
2

)𝐾
𝑇

𝐵
𝑇

𝑃𝐵𝐾

+ 𝐶
𝑇

𝑅
1
𝐶 + (𝛿

2

+ 𝜙
2

)𝐾
𝑇

𝑅
2
𝐾 − 𝑃]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [(𝐴 − 𝐿𝐶)
𝑇

𝑃𝐿𝐶

+𝛿𝐾
𝑇

𝐵
𝑇

𝑃𝐿𝐶]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [𝐶
𝑇

𝐿
𝑇

𝑃 (𝐴 − 𝐿𝐶)

+𝛿𝐶
𝑇

𝐿
𝑇

𝑃𝐵𝐾]

×𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) 𝐶
𝑇

𝐿
𝑇

𝑃𝐿𝐶𝑥 (𝑘 + 𝑖 | 𝑘) }

< 0.

(30)

Since 𝑄 = 𝛾𝑃−1, inequality (30) is equivalent to

𝐸 {𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [(𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ 𝛿(𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

𝐵𝐾

+ 𝛿𝐾
𝑇

𝐵
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ (𝛿
2

+ 𝜙
2

)𝐾
𝑇

𝐵
𝑇

𝑄
−1

𝐵𝐾

+ 𝛾
−1

𝐶
𝑇

𝑅
1
𝐶

+ (𝛿
2

+ 𝜙
2

) 𝛾
−1

𝐾
𝑇

𝑅
2
𝐾 − 𝑄

−1

]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [ (𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

𝐿𝐶

+ 𝛿𝐾
𝑇

𝐵
𝑇

𝑄
−1

𝐿𝐶]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘)

× [𝐶
𝑇

𝐿
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶) + 𝛿𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐵𝐾] 𝑥 (𝑘 + 𝑖 | 𝑘)

+𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) 𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐿𝐶𝑥 (𝑘 + 𝑖 | 𝑘) }

< 0,

(31)

by pre-multiplying and post-multiplying (31) by 𝑄𝑇 and 𝑄,
respectively. And (31) is satisfied if there exists a weighting
positive-definite matrix Λ such that

𝐸 {𝑄
𝑇

{𝑥
𝑇

(𝑘 + 𝑖 | 𝑘) [(𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ 𝛿(𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

𝐵𝐾

+ 𝛿𝐾
𝑇

𝐵
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ (𝛿
2

+ 𝜙
2

)𝐾
𝑇

𝐵
𝑇

𝑄
−1

𝐵𝐾

+ 𝛾
−1

𝐶
𝑇

𝑅
1
𝐶

+ (𝛿
2

+ 𝜙
2

) 𝛾
−1

𝐾
𝑇

𝑅
2
𝐾 − 𝑄

−1

]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘)

× [(𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

𝐿𝐶 + 𝛿𝐾
𝑇

𝐵
𝑇

𝑄
−1

𝐿𝐶]

× 𝑥 (𝑘 + 𝑖 | 𝑘) + 𝑥
𝑇

(𝑘 + 𝑖 | 𝑘)

× [𝐶
𝑇

𝐿
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶) + 𝛿𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐵𝐾] 𝑥 (𝑘 + 𝑖 | 𝑘)

+𝑥
𝑇

(𝑘 + 𝑖𝑘) [𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐿𝐶 − Λ] 𝑥 (𝑘 + 𝑖 | 𝑘) }𝑄}

< 0.

(32)

Inequality (32) is equivalent to

𝐸
{

{

{

𝜃
𝑇

(𝑘 + 𝑖 | 𝑘) [

[

𝑄
𝑇

Φ𝑄 𝑄
𝑇

Ψ
𝑇

𝑄
−1

𝐿𝐶𝑄

𝑄
𝑇

𝐶
𝑇

𝐿
𝑇

𝑄
−1

Ψ𝑄 𝑄
𝑇

𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐿𝐶𝑄 − Λ

]

]

×𝜃 (𝑘 + 𝑖 | 𝑘)
}

}

}

< 0,

(33)
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where

Φ = (𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ 𝛿 (𝐴 − 𝐿𝐶)
𝑇

𝑄
−1

𝐵𝐾

+ 𝛿𝐾
𝑇

𝐵
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶)

+ (𝛿
2

+ 𝜙
2

)𝐾
𝑇

𝐵
𝑇

𝑄
−1

𝐵𝐾

+ 𝛾
−1

𝐶
𝑇

𝑅
1
𝐶 + (𝛿

2

+ 𝜙
2

) 𝛾
−1

𝐾
𝑇

𝑅
2
𝐾 − 𝑄

−1

,

Ψ = 𝐴 − 𝐿𝐶 + 𝛿𝐵𝐾,

𝜃 (𝑘 + 𝑖 | 𝑘) = [𝑥
𝑇

(𝑘 + 𝑖 | 𝑘)𝑥
𝑇

(𝑘 + 𝑖 | 𝑘)]
𝑇

.

(34)

Inequality (33) is equivalent to

[

[

𝑄
𝑇

Φ𝑄 𝑄
𝑇

[(𝐴 − 𝐿𝐶 + 𝛿𝐵𝐾)𝑄
−1

𝐿𝐶]𝑄

𝑄
𝑇

𝐶
𝑇

𝐿
𝑇

𝑄
−1

(𝐴 − 𝐿𝐶 + 𝛿𝐵𝐾)𝑄 𝑄
𝑇

𝐶
𝑇

𝐿
𝑇

𝑄
−1

𝐿𝐶𝑄 − Λ

]

]

< 0. (35)

By using Schur complement repeatedly and Lemma 1, we can
obtain the following inequality:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑄 0 𝑄
𝑇

𝐴 + 𝛿𝑌
𝑇

𝐵
𝑇

𝑌
𝑇

𝐵
𝑇

𝑌
𝑇

𝑅
1/2

2
𝑄
𝑇

𝐶
𝑇

𝑅
1/2

1
𝑄
𝑇

𝐶
𝑇

0

∗ −Λ 0 0 0 0 𝑄
𝑇

𝐶
𝑇

0

∗ ∗ −𝑄 0 0 0 0 𝐿

∗ ∗ ∗
−𝑄

𝜙2
0 0 0 0

∗ ∗ ∗ ∗
−𝛾𝐼

𝛿
2

+ 𝜙2
0 0 0

∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (36)

where 𝑌 = 𝐾𝑄 and 𝐿 = 𝜀𝐿 and 𝜀 > 0 is a positive scalar.
Combining (3), (5), (9), (16), and (26), we have

max
𝑖≥0

‖𝑢(𝑘 + 𝑖 | 𝑘)‖
2

2

≤ max
𝑖≥0

𝑢𝑐(𝑘 + 𝑖 | 𝑘)


2

2

= max
𝑖≥0


𝑌𝑄
−1

𝑥(𝑘 + 𝑖 | 𝑘)


2

2

≤ max
𝑖≥0


𝑌𝑄
−1/2

𝑄
−1/2

𝑥(𝑘 + 𝑖 | 𝑘)


2

2

= 𝜆max (𝑄
−1/2

𝑌
𝑇

𝑌𝑄
−1/2

) ≤ 𝑢
2

max.

(37)

By using Schur complement, we can obtain

[

[

𝑢
2

max𝐼 ∗

𝑌
𝑇

𝑄

]

]

≥ 0. (38)

6. Dynamic Output Controller

Theorem 4. Assume that the uncertainty Ω is a prescribed
polytope and the probabilities 𝛼 and 𝛽 take values from 0 to 1.

The control input (5) under a series of constrained inputs (3)
that minimizes 𝐽

∞
(𝑘) is obtained by

𝐴
𝑐
= 𝐺
1
𝑊
−1

2
,

𝐵
𝑐
= 𝐵𝐶
−1

,

𝐶
𝑐
= 𝐺
2
𝑊
−1

2
,

(39)

where𝑊
2
> 0 is symmetric and the upper bound 𝛾 of 𝐽

∞
(𝑘)

can be solved by the following minimization problem:

min
𝑢(𝑘|𝑘),𝑄,𝑌

𝛾 (40)

subject to

[
1 𝜃
𝑇

(𝑘 | 𝑘)

∗ 𝑊
] > 0, (41)

[
Υ
1
Υ
2

∗ Υ
3

] > 0, (42)

[
𝑊 𝐺

𝑇

2

∗ 𝑢
2

max𝐼
] ≥ 0, (43)

where
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Υ
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑊
1

0 𝑊
𝑇

1
𝐴
𝑇

0 0 0 𝑊
𝑇

1
𝐶
𝑇

𝑅
1/2

1
0

∗ −𝑊
2
𝛽𝐺
𝑇

2
𝐵
𝑇

𝐺
𝑇

1
𝑞𝐺
𝑇

2
𝐵
𝑇

0 0 𝑊
𝑇

2
𝐶
𝑇

𝑐
𝑅
1/2

2

∗ ∗ −𝑊
1

0 0 0 0 0

∗ ∗ ∗ −𝑊
2

0 0 0 0

∗ ∗ ∗ ∗ −𝑊
1

0 0 0

∗ ∗ ∗ ∗ ∗ −𝑊
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗
−𝛾𝐼

𝑆

]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (44)

Υ
2
= [

[

𝐶𝑊
1
0 0 0 0 0 0 0

0 0 0 𝛼𝐵
𝑇

0 𝑙𝐵
𝑇

0 0

]

]

𝑇

, Υ
3
= [
−𝜀𝐼 0

∗ −𝜀𝐼
] , (45)

𝐴
𝑐
= 𝐺
1
𝑊
−1

2
, 𝐵
𝑐
= 𝐵𝐶

−1, 𝐶
𝑐
= 𝐺
2
𝑊
−1

2
, 𝜀 > 0 is a positive

scalar, and 𝐺
2
= [0 𝐺

2
].

Proof. Let𝑊 = 𝛾𝑃
−1

> 0 and, using Schur complement, we
can obtain inequality (41). Combining (10) and (7) with (18),
we have

𝐸 {𝜃
𝑇

(𝑘 + 𝑖 | 𝑘) [𝐴
𝑇

(𝑘) 𝑃𝐴 (𝑘) + 𝐴
𝑇

(𝑘) 𝑃𝐴 (𝑘)

−𝑃 + 𝐶
𝑇

𝑅
1
𝐶 + 𝑠𝐶

𝑇

𝑐
𝑅
2
𝐶
𝑐
] 𝜃 (𝑘 + 𝑖𝑘) }

< 0,

(46)

by premultiplying and postmultiplying (46) by 𝑊𝑇 and 𝑊,
respectively. By further transformation, we can achieve

−𝑊 +𝑊 +𝑊
𝑇

𝐵
𝑇

𝑊
−1

𝐵𝑊 +𝑊
𝑇

𝐶
𝑇

(𝛾𝑅
−1

1
) 𝐶𝑊

+ 𝑠𝑊
𝑇

𝐶
𝑇

𝑐
(𝛾𝑅
−1

2
) 𝐶
𝑐
𝑊 < 0,

(47)

where 𝐵 = [
0 𝑚𝐵𝐶

𝑐

𝑙𝐵
𝑐
𝐶 0

], 𝐶
𝑐

= [0 𝐶
𝑐
], 𝑊 =

𝑊
𝑇

𝐴
𝑇

(𝑘)𝑊
−1

𝐴(𝑘), and 𝑠 = 𝛽
2

+ 𝑚
2. By using Schur

complement repeatedly and Lemma 1, we can obtain the
following inequality:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑊
1

0 𝑊
𝑇

1
𝐴
𝑇

0 0 0 �̂� 0 𝑊
𝑇

1
𝐶
𝑇

0

∗ −𝑊
2
𝛽𝐺
𝑇

2
𝐵
𝑇

𝐺
𝑇

1
�̌� 0 0 �̌� 0 0

∗ ∗ −𝑊
1

0 0 0 0 0 0 0

∗ ∗ ∗ −𝑊
2

0 0 0 0 0 𝛼𝐵

∗ ∗ ∗ ∗ −𝑊
1

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑊
2
0 0 0 𝑙𝐵

∗ ∗ ∗ ∗ ∗ ∗ −𝛾𝐼 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗
−𝛾𝐼

𝑆
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0, (48)

where �̂� = 𝑊
𝑇

1
𝐶
𝑇

𝑅
1/2

1
, �̌� = 𝑞𝐺𝑇

2
𝐵
𝑇, �̌� = 𝑊

𝑇

2
𝐶
𝑇

𝑐
𝑅
1/2

2
, and

𝜀 > 0 is a positive scalar.

7. Simulation Results

Consider the following uncertain polytope system:

𝐴
1
= [

0.01942 0

−0.5100 0.02000
] ,

𝐴
2
= [

0.01942 0

−0.5100 0.01000
] ,

𝐵
1
= 𝐵
2
= 𝐵 = [1 −0.0787]

𝑇

,

𝐶
1
= 𝐶
2
= 𝐶 = [1 −0.4] ,

𝐷
1
= 𝐷
2
= 𝐷 = 0,

(49)

where the polytope formed by the two local discrete models
is as follows:

[𝐴 (𝑘) 𝐵 (𝑘)] ∈ Ω = Co {[𝐴
1
𝐵] , [𝐴

2
𝐵]} . (50)
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Figure 1: The state response of closed-loop system.

In the simulation, let [𝐴(𝑘) 𝐵(𝑘)] = [𝐴
1
𝐵]. The input con-

straint is as follows:

|𝑢 (𝑘)| ≤ 0.25, 𝑘 ≥ 0. (51)

InTheorem 2, the 𝐿
𝐷𝑖
decay rate 𝜌 andweightingmatrix �̃� are

given as

𝜌
2

= 0.8, �̃� = [
0.1 0

0 0.1
] . (52)

Then, the infinite horizon robust performance objective
𝐽
∞
(𝑘) has the following weighting matrices: 𝑅

1
= 0.01, 𝑅

2
=

0.00001.
Another weighting matrix Λ is given as

Λ = [
0.01 0

0 0.1
] , (53)

where the initial states of the real system (1) and the state
observer are 𝑥

0
= [0.02 0]

𝑇 and 𝑥
0
= [0.02 −0.01]

𝑇, respec-
tively.

The state observer gain 𝐿 and MPC controller gain 𝐾 are
obtained as 𝐿 = [0.0167 − 0.4458]

𝑇 and 𝐾 = [−0.7147

0.4889], respectively.
In Figure 1, the two curves are the state of the original

closed-loop system. The solid line represents the real state
𝑥
𝑖
(𝑘) (𝑖 = 1, 2) of the original closed-loop system and the

dashed line denotes its estimated state 𝑥
𝑖
(𝑘) (𝑖 = 1, 2),

respectively, in Figures 2 and 3. In Figure 4, the curve
denotes the control input 𝑢(𝑘) under the robust performance
objective with the constrained input. The curve shows the
output of closed-loop system, which converges to zero when
𝑘 → ∞ in Figure 5.
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Figure 2: Estimation of original system state 𝑥
1
(𝑘).
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Figure 5: The output of closed-loop system.

Consider the following uncertain polytope system:

𝐴
1
= [
0.04942 −0.01

0 0.03000
] ,

𝐴
2
= [
0.04942 −0.01

0 0.01000
] ,

𝐵
1
= 𝐵
2
= 𝐵 = [−0.43 0]

𝑇

,

𝐶
1
= 𝐶
2
= 𝐶 = [1 0.4] ,

𝐷
1
= 𝐷
2
= 𝐷 = 0,

(54)

where the polytope formed by the two local discrete models
is as follows:

[𝐴 (𝑘) 𝐵 (𝑘)] ∈ Ω = Co {[𝐴
1
𝐵] , [𝐴

2
𝐵]} . (55)

In the simulation, let [𝐴(𝑘) 𝐵(𝑘)] = [𝐴
1
𝐵]. The input

constraint is as follows:

|𝑢 (𝑘)| ≤ 0.2, 𝑘 ≥ 0. (56)

Then, the infinite horizon robust performance objective
𝐽
∞
(𝑘) has the following weighting matrices:

𝑅
1
= 1, 𝑅

2
= 0.8, (57)

where the initial states of the real system (1) and the dynamic
output controller are 𝑥

0
= [0 − 0.00001]

𝑇 and 𝑥
𝑐
= [0.35 −

0.09]
𝑇, respectively.

The dynamic output controller gains, 𝐴
𝑐
, 𝐵
𝑐
, and 𝐶

𝑐
, are

obtained as

𝐴
𝑐
= [

−0.4597 −0.0821

0.1933 −0.2124
] ,

𝐵
𝑐
= [

0.3845

0.1024
] ,

𝐶
𝑐
= [−0.0187 0.0850] .

(58)
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Figure 6: The state response of open-loop system.
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Figure 7: The state response of closed-loop system.

In Figure 6, the two curves are the state of the original
open-loop system. In Figure 7, the two curves are the state of
the original closed-loop system. In Figure 8, the two curves
are the state of the dynamic output controller. The curve
denotes the control input 𝑢(𝑘) under the robust performance
objective with the constrained input in Figure 9. The curve
represents the control output 𝑢

𝑐
(𝑘) of dynamic output con-

troller in Figure 10.The curve shows the output of closed-loop
system, which converges to zero when 𝑘 → ∞ in Figure 11.

8. Conclusion

In this paper, we have designed an output-feedback MPC to
solve the problem of the robust MPC with input constraints
and successive packet dropouts. The method makes use of
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Figure 9: The control input signal 𝑢(𝑘).

infinite horizon min-max algorithm with LMI constraints.
First, we have constructed a state observer. Then, the opti-
mization problem can be solved by dealing with some LMI
constraints. We can obtain the control input sequence by
dealing with the infinite horizon robust MPC and input
constraint based on the estimated state of observer. From
the simulation, the design method of robust MPC with input
constraint has been verified feasiblely. As a future work, we
will develop the output-feedback MPC algorithm combined
with nonlinear MPC and its optimization.
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