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We establish four new oscillation criteria of Grace-type for the second-order nonlinear dynamic equations with damping. These
criteria extend known criteria for corresponding dynamic equations. Our results are new even in the continuous and the discrete
cases.

1. Introduction

In this paper, we deal with the oscillatory behavior of all solu-
tions of the second-order nonlinear dynamic equation with
damping:

(𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

)
Δ

+ 𝑝 (𝑡) (𝑥Δ (𝑡))
𝛾

+ 𝑞 (𝑡) 𝑓 (𝑥 (𝑡)) = 0,

𝑡 ∈ T , 𝑡 ≥ 𝑡
0
.

(1)

Our aim is to give some oscillatory criteria of Grace-type of
(1). Here, we give the following hypotheses:
(H
1
) T is a time scale (i.e., a nonempty closed subset of the
real numbers R) which is unbounded above and 𝑡

0
∈

T with 𝑡
0
> 0; we define the time scale interval of the

form [𝑡
0
,∞)T by [𝑡

0
,∞)T = [𝑡

0
,∞) ∩ T ;

(H
2
) 𝛾 ≥ 1 is the ratio of two positive and odd integers;

(H
3
) 𝑎, 𝑝, 𝑞 : T → R are positive and rd-continuous
functions such that −𝑝/𝑎 ∈ R+;

(H
4
) 𝑓 : R → R is a continuous function such that, for
some positive constant 𝐿,

𝑓 (𝑥)
𝑥𝛾

≥ 𝐿 ∀𝑥 ̸= 0. (2)

By a solution of (1), we mean a nontrivial real-valued
function 𝑥 satisfying (1) for 𝑡 ∈ T . We recall that a solution 𝑥

of (1) is said to be oscillatory on [𝑡
0
,∞)T in case it is neither

eventually positive nor eventually negative; otherwise, the
solution is said to be nonoscillatory. Equation (1) is said to be
oscillatory in case all of its solutions are oscillatory. Our
attention is restricted on those solutions 𝑥 of (1) in which 𝑥 is
not the eventually identical zero.

In 2009, Grace et al. [1] considered the second-order half-
linear dynamic equations:

(𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

)
Δ

+ 𝑞 (𝑡) 𝑥𝛾 (𝑡) = 0,

𝑡 ∈ T , 𝑡 ≥ 𝑡
0
,

(3)

and obtained some oscillatory criteria of Grace-type of (3).
In recent years, there have been numerous researches and
many research activities concerning the oscillation and non-
oscillation of solutions of (3) and its special cases; we refer the
reader to the papers [2–8].

In this paper, we will establish two sufficient conditions
for oscillation of all solutions of (1) by use of the generalized
Riccati transformation and the inequality technique, under
the condition that

∫
∞

𝑡0

[ 1
𝑎 (𝑡)

𝑒
−𝑝/𝑎

(𝑡, 𝑡
0
)]
1/𝛾

Δ𝑡 = ∞. (4)

Moreover, if condition (4) does not hold, that is,

∫
∞

𝑡0

[ 1
𝑎(𝑡)

𝑒
−𝑝/𝑎

(𝑡, 𝑡
0
)]
1/𝛾

Δ𝑡 < ∞ (5)
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holds, two sufficient conditions are obtained for oscillation or
convergence to zero of (1).

In order to prove themain results of this paper, wewill use
the following rules:

(𝑓𝑔)Δ (𝑡) = 𝑓Δ (𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔Δ (𝑡)

= 𝑓 (𝑡) 𝑔Δ (𝑡) + 𝑓Δ (𝑡) 𝑔 (𝜎 (𝑡)) ,
(6)

(
𝑓
𝑔
)
Δ

(𝑡) =
𝑓Δ (𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔Δ (𝑡)

𝑔 (𝑡) 𝑔 (𝜎 (𝑡))
if 𝑔𝑔𝜎 ̸= 0. (7)

For more details about differential and integral theory on the
time scale, see [9, 10].

2. The Main Results

In order to prove the main results of this paper, we first give
the following two lemmas.

Lemma 1 (see [9, Theorem 1.90]). Assume that 𝑥 is delta-
differentiable and eventually positive or eventually negative;
then

((𝑥 (𝑡))𝛾)Δ = 𝛾∫
1

0

[ℎ𝑥 (𝜎 (𝑡)) + (1 − ℎ) 𝑥 (𝑡)]𝛾−1𝑥Δ (𝑡) dℎ.

(8)

Lemma 2. Assume that (H
1
), (H
2
), and (4) hold. Let 𝑥(𝑡) be

an eventually position solution of (1). Then there exists 𝑡
1

∈
[𝑡
0
,∞)T such that

𝑥Δ (𝑡) > 0, [𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

]
Δ

< 0 ∀𝑡 ∈ [𝑡
1
,∞)

T
. (9)

Similar to the proof of Lemma 3.3 in paper [8], we can give
the proof of Lemma 2; thus, the proof is omitted here.

Theorem 3. Assume that (H
1
)–(H
4
) and (4) hold. If there

exists a positive nondecreasing Δ-differentiable function 𝛿 ∈
C1
𝑟𝑑
([𝑡
0
,∞)T ,R) such that, for every 𝑡

1
∈ [𝑡
0
,∞)T ,

lim sup
𝑡→∞

∫
𝑡

𝑡1

[𝐿𝛿 (𝑠) 𝑞 (𝑠) − 𝜂𝛾 (𝑠) (𝛿Δ (𝑠) − 𝛿 (𝑠)
𝑝 (𝑠)
𝑎 (𝑠)

)]

× Δ𝑠 = ∞,
(10)

where

𝜂 (𝑡) = (∫
𝑡

𝑡1

( 1
𝑎 (𝑠)

)
1/𝛾

Δ𝑠)
−1

, (11)

then (1) is oscillatory on [𝑡
0
,∞)T .

Proof. Suppose, to the contrary, that 𝑥(𝑡) is a nonoscillatory
solutions of (1) on [𝑡

0
,∞)T . Without loss of generality, we

may assume that 𝑥(𝑡) > 0 for all 𝑡 ∈ [𝑡
1
,∞)T , 𝑡1 ∈ [𝑡

0
,∞)T .

We shall consider only this case, since the proof when 𝑥(𝑡) is
eventually negative is similar. By Lemma 2, we obtain on
[𝑡
1
,∞)T that

1
(𝑥 (𝑡))𝛾

≥ 1
(𝑥 (𝜎 (𝑡)))𝛾

,

𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

≥ 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))
𝛾

,
(12)

Define the function𝑊(𝑡) by

𝑊(𝑡) = 𝛿 (𝑡)
𝑎 (𝑡) (𝑥Δ (𝑡))

𝛾

(𝑥 (𝑡))𝛾
, 𝑡 ∈ [𝑡

1
,∞)

T
. (13)

Then, we have𝑊(𝑡) > 0 on [𝑡
1
,∞)T ; by (1), (6), (7), and (12),

we obtain

𝑊Δ (𝑡) = 𝛿 (𝑡)
(𝑥 (𝑡))𝛾

(𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

)
Δ

+ 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))
𝛾

×
(𝑥 (𝑡))𝛾𝛿Δ (𝑡) − 𝛿 (𝑡) ((𝑥 (𝑡))𝛾)Δ

(𝑥 (𝑡))𝛾(𝑥 (𝜎 (𝑡)))𝛾

≤ −𝐿𝑞 (𝑡) 𝛿 (𝑡) −
𝛿 (𝑡) 𝑝 (𝑡) (𝑥Δ (𝑡))

𝛾

(𝑥 (𝑡))𝛾

+
𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))

𝛾

𝛿Δ (𝑡)
(𝑥 (𝜎 (𝑡)))𝛾

−
𝛿 (𝑡) 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))

𝛾

((𝑥 (𝑡))𝛾)Δ

(𝑥 (𝑡))𝛾(𝑥 (𝜎 (𝑡)))𝛾

(14)

≤ −𝐿𝑞 (𝑡) 𝛿 (𝑡) −
𝛿 (𝑡) 𝑝 (𝑡) (𝑥Δ (𝑡))

𝛾

(𝑥 (𝑡))𝛾

+
𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))

𝛾

𝛿Δ (𝑡)
(𝑥 (𝜎 (𝑡)))𝛾

≤ −𝐿𝑞 (𝑡) 𝛿 (𝑡) − 𝛿 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

(𝑥 (𝑡))𝛾

+ 𝛿Δ (𝑡)
𝑎 (𝑡) (𝑥Δ (𝑡))

𝛾

(𝑥 (𝑡))𝛾

= −𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ (𝛿Δ (𝑡) − 𝛿 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

) 𝑎 (𝑡) (𝑥Δ (𝑡)
𝑥 (𝑡)

)
𝛾

.

(15)

Now

𝑥 (𝑡) = 𝑥 (𝑡
1
) + ∫
𝑡

𝑡1

𝑥Δ (𝑠) Δ𝑠

= 𝑥 (𝑡
1
) + ∫
𝑡

𝑡1

( 1
𝑎 (𝑠)

)
1/𝛾

(𝑎 (𝑠))1/𝛾𝑥Δ (𝑠) Δ𝑠

≥ (∫
𝑡

𝑡1

( 1
𝑎 (𝑠)

)
1/𝛾

Δ𝑠) (𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

)
1/𝛾

,

(16)

and thus

(𝑥Δ (𝑡)
𝑥 (𝑡)

)
𝛾

≤ 1
𝑎 (𝑡)

(∫
𝑡

𝑡1

( 1
𝑎 (𝑠)

)
1/𝛾

Δ𝑠)
−𝛾

=
𝜂𝛾 (𝑡)
𝑎 (𝑡)

for 𝑡 ∈ [𝑡
1
,∞)

T
.

(17)
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Using (17) in (15), we have

𝑊Δ (𝑡) ≤ − 𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ 𝜂𝛾 (𝑡) [𝛿Δ (𝑡) − 𝛿 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

]

on [𝑡
1
,∞)

T
.

(18)

Integrating (18) from 𝑡
1
to 𝑡, we obtain

0 < 𝑊 (𝑡) ≤ 𝑊(𝑡
1
)

− ∫
𝑡

𝑡1

[𝐿𝛿 (𝑠) 𝑞 (𝑠) − 𝜂𝛾 (𝑠) (𝛿Δ (𝑠) − 𝛿 (𝑠)
𝑝 (𝑠)
𝑎 (𝑠)

)]Δ𝑠,

(19)

which gives a contradiction by (10).This completes the proof.

Theorem 4. Assume that (H
1
)–(H
4
) and (4) hold. If there

exists a positive Δ-differentiable function 𝛿 ∈ C1
𝑟𝑑
([𝑡
0
,∞)T ,R)

such that, for every 𝑡
1
∈ [𝑡
0
,∞)T ,

lim sup
𝑡→∞

∫
𝑡

𝑡1

[𝐿𝑞 (𝑠) 𝛿 (𝑠) −
(𝑎 (𝑠))1/𝛾(𝜂 (𝜎 (𝑠)))𝛾−1

4𝛾𝛿 (𝑠)

×(𝛿Δ (𝑠) − 𝛿 (𝑠)
𝑝 (𝑠)
𝑎 (𝑠)

)
2

]Δ𝑠 = ∞,

(20)

where 𝜂 has been defined in (11), then (1) is oscillatory on
[𝑡
0
,∞)T .

Proof. Suppose, to the contrary, that 𝑥(𝑡) is a nonoscillatory
solution of (1) on [𝑡

0
,∞)T . We may assume, without loss of

generality, that 𝑥(𝑡) > 0 for all 𝑡 ∈ [𝑡
1
,∞)T , 𝑡

1
∈

[𝑡
0
,∞)T . When 𝑥(𝑡) is eventually negative, the proof is simi-

lar. Proceeding as in the proof of Theorem 3, we obtain (14).
Using (8) and (9), we have

((𝑥 (𝑡))𝛾)Δ = 𝛾∫
1

0

[ℎ𝑥 (𝜎 (𝑡)) + (1 − ℎ) 𝑥 (𝑡)]𝛾−1𝑥Δ (𝑡) dℎ

≥ 𝛾∫
1

0

[ℎ𝑥 (𝑡) + (1 − ℎ) 𝑥 (𝑡)]𝛾−1𝑥Δ (𝑡) dℎ

= 𝛾(𝑥 (𝑡))𝛾−1(𝑥 (𝑡))Δ > 0.
(21)

Using (12) and (21) in (14), we have

𝑊Δ (𝑡) ≤ − 𝐿𝑞 (𝑡) 𝛿 (𝑡) − 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑝 (𝑡)
𝑎 (𝑡)

𝑊 (𝜎 (𝑡))

+ 𝛿Δ (𝑡)
𝛿 (𝜎 (𝑡))

𝑊 (𝜎 (𝑡))

−
𝛾𝛿 (𝑡) 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))

𝛾

𝑥Δ (𝑡)
(𝑥 (𝜎 (𝑡)))𝛾+1

= − 𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ [ 𝛿Δ (𝑡)
𝛿 (𝜎 (𝑡))

− 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑝 (𝑡)
𝑎 (𝑡)

]𝑊 (𝜎 (𝑡))

−
𝛾𝛿 (𝑡) 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))

𝛾

𝑥Δ (𝑡)
(𝑥 (𝜎 (𝑡)))𝛾+1

.

(22)

By (𝑎(𝑡)(𝑥Δ(𝑡))𝛾)Δ < 0, we have

𝑎 (𝑡) (𝑥Δ (𝑡))
𝛾

≥ 𝑎 (𝜎 (𝑡)) (𝑥Δ (𝜎 (𝑡)))
𝛾

i.e. 𝑥Δ (𝑡) ≥ (𝑎 (𝜎 (𝑡)))1/𝛾

(𝑎 (𝑡))1/𝛾
𝑥Δ (𝜎 (𝑡)) .

(23)

Substituting (23) in (22), we obtain

𝑊Δ (𝑡) ≤ − 𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ [ 𝛿Δ (𝑡)
𝛿 (𝜎 (𝑡))

− 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑝 (𝑡)
𝑎 (𝑡)

]𝑊 (𝜎 (𝑡))

−
𝛾𝛿 (𝑡)

(𝑎 (𝑡))1/𝛾(𝛿 (𝜎 (𝑡)))(𝛾+1)/𝛾

× (𝑊 (𝜎 (𝑡)))(𝛾+1)/𝛾 on [𝑡
1
,∞)

T
.

(24)

That is, on [𝑡
1
,∞)T ,

𝑊Δ (𝑡) ≤ − 𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ [ 𝛿Δ (𝑡)
𝛿 (𝜎 (𝑡))

− 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑝 (𝑡)
𝑎 (𝑡)

]𝑊 (𝜎 (𝑡))

−
𝛾𝛿 (𝑡)

(𝑎 (𝑡))1/𝛾(𝛿 (𝜎 (𝑡)))(𝛾+1)/𝛾

× (𝑊 (𝜎 (𝑡)))(1−𝛾)/𝛾(𝑊 (𝜎 (𝑡)))2.

(25)

Now using inequality (17) as the form, that is,

𝑥 (𝑡)
𝑥Δ (𝑡)

≥ 𝑎1/𝛾 (𝑡)
𝜂 (𝑡)

, (26)

this implies on [𝑡
1
,∞)T that

(𝑊 (𝑡))(1−𝛾)/𝛾 = (𝛿 (𝑡) 𝑎 (𝑡))(1−𝛾)/𝛾( 𝑥 (𝑡)
𝑥Δ (𝑡)

)
𝛾−1

≥ (𝛿 (𝑡) 𝑎 (𝑡))(1−𝛾)/𝛾 𝑎
(1−𝛾)/𝛾 (𝑡)
𝜂𝛾−1 (𝑡)

= 𝛿(1−𝛾)/𝛾 (𝑡) 𝜂1−𝛾 (𝑡) .

(27)
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Using (27) in (25), we have on [𝑡
1
,∞)T that

𝑊Δ (𝑡) ≤ − 𝐿𝑞 (𝑡) 𝛿 (𝑡)

+ [ 𝛿Δ (𝑡)
𝛿 (𝜎 (𝑡))

− 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑝 (𝑡)
𝑎 (𝑡)

]𝑊 (𝜎 (𝑡))

−
𝛾𝛿 (𝑡)

(𝑎 (𝑡))1/𝛾(𝛿 (𝜎 (𝑡)))2

× (𝜂 (𝜎 (𝑡)))1−𝛾(𝑊 (𝜎 (𝑡)))2

= − 𝐿𝑞 (𝑡) 𝛿 (𝑡) +
(𝑎 (𝑡))1/𝛾(𝜂 (𝜎 (𝑡)))𝛾−1

4𝛾𝛿 (𝑡)

× (𝛿Δ (𝑡) − 𝛿 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

)
2

− [[
[

√𝛾𝛿 (𝑡) (𝜂 (𝜎 (𝑡)))1−𝛾

𝛿 (𝜎 (𝑡))√(𝑎 (𝑡))1/𝛾
𝑊(𝜎 (𝑡))

−
√(𝑎 (𝑡))1/𝛾

2√𝛾𝛿 (𝑡) (𝜂 (𝜎 (𝑡)))1−𝛾

×(𝛿Δ (𝑡) − 𝛿(𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

)]]
]

2

≤ − [𝐿𝑞 (𝑡) 𝛿 (𝑡) −
(𝑎 (𝑡))1/𝛾(𝜂 (𝜎 (𝑡)))𝛾−1

4𝛾𝛿 (𝑡)

× (𝛿Δ(𝑡) − 𝛿(𝑡)
𝑝(𝑡)
𝑎(𝑡)

)
2

] .

(28)

Integrating both sides of this inequality from 𝑡
1
to 𝑡, taking the

lim sup of the resulting inequality as 𝑡 → ∞ and applying
condition (20), we obtain a contradiction to the fact that
𝑊(𝑡) > 0 for 𝑡 ∈ [𝑡

1
,∞)T . This completes the proof.

Now, when condition (5) holds, using the same method
of proof ofTheorem 3.3 andTheorem 3.4 in paper [8], we can
obtain the following theorems.

Theorem 5. Assume that (H
1
)–(H
4
) and (5) hold. If there

exists a positive Δ-differentiable function 𝛿 ∈ C1
𝑟𝑑
([𝑡
0
,∞)T ,R)

such that (10) holds, where 𝜂 has been defined in (11), and

∫
∞

𝑡0

( 1
𝑎 (𝑡)

∫
𝑡

𝑡0

𝑒
−𝑝/𝑎 (𝑡, 𝜎 (𝑠)) 𝑞 (𝑠) Δ𝑠)

1/𝛾

Δ𝑡 = ∞, (29)

then every solution of (1) is either oscillatory or converges to
zero on [𝑡

0
,∞)T .

Theorem 6. Assume that (H
1
)–(H
4
), (5), and (29) hold.

If there exists a positive Δ-differentiable function 𝛿 ∈
C1
𝑟𝑑
([𝑡
0
,∞)T ,R) such that (20) holds, where 𝜂 has been defined

in (11), then every solution of (1) is either oscillatory or con-
verges to zero on [𝑡

0
,∞)T .

Remark 7. Our results in this paper extend some known
results and make some results of [1] special cases of our
results. The theorems in this paper are new even for the cases
T = R and T = Z.

Example 8. Consider the second-order nonlinear delay 2-
difference equations:

(𝑡2/3(𝑥Δ (𝑡))
5/3

)
Δ

+ 1
𝑡2

(𝑥Δ (𝑡))
5/3

+ 𝑡−8/5(𝑥(𝑡))5/3 (1 + 𝑥2 (𝑡)) = 0,

𝑡 ∈ 2Z, 𝑡 ≥ 𝑡
0
:= 2.

(30)

Here,

𝑎 (𝑡) = 𝑡2/3, 𝑝 (𝑡) = 1
𝑡2

,

𝑞 (𝑡) = 𝑡−8/5, 𝑓 (𝑥) = 𝑥5/3 (1 + 𝑥2) , 𝛾 = 5
3
.

(31)

The conditions (H
1
) and (H

2
) are clearly satisfied, (H

4
) holds

with 𝐿 = 1, and (H
3
) is satisfied as

1 − 𝜇 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

= 1 − 𝑡 ⋅ 1
𝑡8/3

= 1 − 1
𝑡5/3

> 0 for 𝑡 ≥ 2.

(32)

Next, by [11, Lemma 2], using (H
3
), we have

𝑒
−𝑝/𝑎 (𝑡, 2) ≥ 1 − ∫

𝑡

2

𝑝 (𝑠)
𝑎 (𝑠)

Δ𝑠

= 1 − ∫
𝑡

2

𝑠−8/3Δ𝑠 = 1 − 𝑡−5/3 − 2−5/3

2−5/3 − 1

= 𝑡−5/3 + 1 − 2−2/3

1 − 2−5/3

≥ 𝑡−5/3 + 1 − 2−2/3 > 1 − 2−2/3 > 1
3

(33)

for 𝑡 ≥ 2, so that, as 𝑡 → ∞,

∫
𝑡

2

[ 1
𝑎 (𝑠)

𝑒
−𝑝/𝑎 (𝑠, 2)]

1/𝛾

Δ𝑠

= ∫
𝑡

2

[𝑠−2/3𝑒
−𝑝/𝑎 (𝑠, 2)]

3/5

Δ𝑠

≥ 1
33/5

∫
𝑡

2

𝑠−2/5Δ𝑠 = 1
33/5

𝑡3/5 − 23/5

23/5 − 1
󳨀→ ∞.

(34)

Hence, (4) is satisfied. Now let 𝛿(𝑡) = 𝑡3/5; for all 𝑡 > 𝑠 ≥ 2,

𝜂 (𝑡) = (∫
𝑡

2

( 1
𝑎 (𝑠)

)
1/𝛾

Δ𝑠)
−1

= (∫
𝑡

2

𝑠−2/5Δ𝑠)
−1

= 23/5 − 1
𝑡3/5 − 23/5

;

(35)
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then, as 𝑡 → ∞,

∫
𝑡

2

[𝐿𝛿 (𝑠) 𝑞 (𝑠) − 𝜂𝛾 (𝑠) (𝛿Δ (𝑠) − 𝛿 (𝑠)
𝑝 (𝑠)
𝑎 (𝑠)

)]Δ𝑠

≥ ∫
𝑡

2

[1
𝑠
− ( 23/5 − 1

𝑠3/5 − 23/5
)
5/3

(𝑠3/5)
Δ

]Δ𝑠 󳨀→ ∞,
(36)

so (10) is satisfied as well. Altogether, by Theorem 3, (30) is
oscillatory.
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