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Some research on the stability with mode constraint for a class of infinite dimensional look-ahead interconnected systems with
impulsive and stochastic disturbances is studied by using the vector Lyapunov function approach. Intuitively, the stability with
mode constraint is the property of damping disturbance propagation. Firstly, we derive a set of sufficient conditions to assure the
stability with mode constraint for a class of general infinite dimensional look-ahead interconnected systems with impulsive and
stochastic disturbances. The obtained conditions are less conservative than the existing ones. Secondly, the controller for a class of
look-ahead vehicle following systems with the above uncertainties is constructed by the slidingmode control method. Based on the
obtained new stability conditions, the domain of the control parameters of the systems is proposed. Finally, a numerical example
with simulations is given to show the effectiveness and correctness of the obtained results.

1. Introduction

In the real industries, the control problem of many complex
dynamic systems can be translated into the stability analysis.
At present, there have been lots of research results about
the stability analysis for the finite dimensional intercon-
nected systems; see [1–11]. Nevertheless, considering that
the connections or disconnections between the subsystems
of the real interconnected systems are uncertain, which
means that the dimension of the interconnected systems is
uncertain, the interconnected systems can be described by
infinite dimensional equations. On the other hand, there are
some unavoidable disturbances in the real systems, such as
stochastic disturbance and impulsive disturbance. Therefore
some researchers have given stability analysis for some finite
dimensional complex dynamic systems with impulsive and
stochastic disturbances; see [6–11].

The applied methods presented in [1–11] are based on
the scalar Lyapunov function approach or the LMI tool. In
fact, the LMI method is essentially a kind of the method
using the scalar Lyapunov function method. It should be
noted that until now there is no general constructive method
for building the Lyapunov functions for nonlinear systems.

In comparison with the vector Lyapunov function method,
the scalar method or the LMI method needs to discuss the
convergence of the scalar Lyapunov function when analyzing
the stability of infinite dimensional systems. Hence the vector
Lyapunov function method is more efficient. The research
team led by Professor Zhang has studied the stability of
some infinite dimensional nonlinear interconnected systems
with stochastic disturbances based on the vector Lyapunov
function approach and obtained some important stability
results; see [12–14].

The obtained stability results in [2–12, 14] are focused
on the stability of the steady state of the systems without
considering the size relationship of the state variables when
the systems converge to steady-state process. For example,
considering interconnected system 𝑥̇ = 𝑓(𝑡, 𝑥) (here 𝑥 =

col(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
)), the states are needed to be satisfied that

sup ‖𝑥
1
(𝑡)‖

𝑡≥0
≥ sup ‖𝑥

2
(𝑡)‖

𝑡≥0
≥, . . . , ≥ sup ‖𝑥

𝑛
(𝑡)‖

𝑡≥0
or

sup ‖𝑥
1
(𝑡)‖

𝑡≥0
≥ max

𝑖=2,3,...
{sup ‖𝑥

𝑖
(𝑡)‖

𝑡≥0
}. The stability with

the above constraint condition is named the stability with
mode constraint. The Lyapunov stability in the general sense
cannot describe the stability with mode constraint condi-
tion, and the existing Lyapunov function methods cannot
be used to analyze the stability with mode constraint for
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the systems directly. The motivation for the stability problem
withmode constraint comes from the analysis and the design
of controllers for automated highway system [13], multirobot
operation system [15], formation flying of unmanned aerial
vehicles [16], and so on. In a formation one wants controllers
to be designed so that any shock-wave arising from distur-
bance propagation should dampen as it travels away from the
source. In other words the closed loop interconnected system
for the formation needs to be stablewith constraint condition.

Automatic vehicle longitudinal following control is an
important issue for coordinated control for a group of
unmanned autonomous vehicles in automated highway sys-
tem (for short, AHS). In AHS, vehicles are dynamically
coupled by feedback control laws. The control objective is to
dramatically improve the traffic flow capacity on a highway
by enabling vehicles to travel together in tightly spaced
platoons [15]. Therefore, the controller design for vehicle
longitudinal following systems (for short, VLFS) is an inter-
esting and challenging problem. Some significant research
on the string stability analysis for VLFS has been done;
see [17, 18]. Nevertheless, uncertain disturbance factors were
not considered in [17, 18]. Uncertainties inevitably exist in
the vehicle operating environment and vehicle systematic
itself. In [19], some sufficient conditions, which assure the
string stability of a class of stochastic VLFS with infinite
dimensions, were obtained by using the vector Lyapunov
function method. Since the Cauchy inequality technique was
applied to deduce the stability conditions for the systems,
the obtained criteria were relatively conservative. Besides,
the controller design for VLFS was not studied in there. In
[20], the problem of stabilization control system for a single
vehicle in response to the exogenous impulsive disturbances
was studied. The obtained results cannot be used to analyze
the stability and controller design for the VFLS directly.

To design the controller for the VFLS, there are various
approaches, such as fuzzy control [21], sliding mode control
[18], adaptive control [15], adaptive-sliding mode control
[22], and fuzzy-sliding mode control [23]. However, the
factor of uncertainties to the systems was not considered
in the above references. On the other hand, the number of
vehicles in VFLS is indeterminate as vehicles enter into or
leave the platoon randomly. Therefore, the VLFS can only be
described as infinite dimensional interconnected system.

To sum up, this paper will present some sufficient condi-
tions for assuring the stability withmode constraint for a class
of infinite dimensional look-ahead interconnected systems
with impulsive and stochastic disturbances by using the vec-
tor Lyapunov function approach. Furthermore, the controller
for a class of look-ahead VLFS with the above uncertainties
is constructed by the sliding mode control method. Based
on the obtained new stability conditions, the domain of the
control parameters of the systems is proposed.

2. Mathematical Preliminaries

For convenience, some notations are introduced as follows:
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where | ⋅ | is the Euclidean norm and 0 < 𝑝 < ∞, 𝑖 ∈ N, 𝐸
denotes the expectation of stochastic process, and N denotes
the set of natural numbers.

2.1. Model Description. Consider a class of general nonlinear
infinite dimensional look-ahead interconnected systems with
stochastic and impulsive disturbances described by
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here, 𝑡 ∈ [𝑡

0
, +∞) and 𝑦

𝑖
∈ 𝑅

𝑛 denotes the state of the 𝑖th
subsystem, 𝑖 ∈ N. Δ𝑦
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𝑘
) is the impulsive strength at discrete
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𝑘
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𝑖
(0, 0, 0) = 0. Assume

that 𝜉
𝑖
is the one-dimensional independent standard Wiener

processes defined on space (Ω, 𝐹, 𝑃); here Ω denotes sample
space, 𝐹 denotes 𝜎 algebra of subset of the sample space, and
𝑃 denotes probability measures.

The system (2) can be treated as an interconnection of
isolated subsystems 𝑥

𝑖
given by

𝑑𝑦

𝑖
= 𝑓

𝑖
(𝑦

𝑖
, 0, 0) 𝑑𝑡 + 𝑞

𝑖
(𝑦

𝑖
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𝑖
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,
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𝑘
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𝑘
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𝑘
,

𝑖, 𝑘 ∈ N.

(3)

2.2. Definitions and Assumptions. Let 𝑦
𝑖
= 0 (𝑖 ∈ N) be the

unique zero solution of system (2).

Definition 1 (see [19]). If, for ∀𝜀 > 0, ∃𝛿 > 0 such that
‖𝑦(0)‖

2

∞
< 𝛿 ⇒ sup

𝑖
‖𝑦

𝑖
(𝑡)‖

2

∞
< 𝜀, then 𝑦

𝑖
= 0 (𝑖 ∈ N) is

string stable in the mean square sense.
It should be noted that the string stability in this paper

is defined for look-ahead interconnected system, which is a
special class of interconnected systems. The string stability
could guarantee that the state of every subsystem is uniformly
bounded if the initial states of the subsystems are bounded.
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Definition 2 (see [19]). The zero solution of system (2) 𝑦
𝑖
=

0 (𝑖 ∈ N) is string exponentially stable in the mean square
sense if 𝑦

𝑖
= 0 is string stable, and there exist constants𝑀 > 0

and 𝜆 > 0 such that ‖𝑦
𝑖
(𝑡)‖

2

∞
< 𝑀‖𝑦

𝑖
(0)‖

2
𝑒

−𝜆𝑡 holds.

Definition 3 (see [13]). The zero solution of system (2) 𝑦
𝑖
=

0 (𝑖 ∈ N) is string exponentially stable with mode constraint
in the mean square sense if 𝑦

𝑖
= 0 is string exponentially

stable in themean square sense, and the inequality ‖𝑦
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∞
)

2 holds, 𝑡 ≥ 0, 𝑖 ≥ 2.

Next, some assumptions will be given for the system (2)
and the system (3).
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Assumption A2. For every isolated subsystem (3), there exists
positive definite function 𝑉
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Next a lemma established by us in [24] is given which will
be used in the proof of the following theorem.
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𝜕𝑦

𝑖,𝑗
𝜕𝑦

𝑖,𝑙

𝜎

𝑙𝑗
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
) ,

𝜎

𝑙𝑗
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
) = 𝑞

𝑙
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
) 𝑞

𝑗
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
) ,

𝑙, 𝑗 = 1, 2, . . . , 𝑛,

(7)

where 𝑦
𝑖
= [𝑦

𝑖1
, 𝑦

𝑖2
, . . . , 𝑦

𝑖𝑛
] ∈ 𝑅

𝑛.

If there exists𝑊 = (𝐸(𝑊

10
), 𝐸(𝑊

20
), . . .) such that

− 𝛽

𝑖0
𝐸 (𝑊

𝑚
𝑖𝑖

𝑖,0
) +

∞

∑

𝑗=1

𝛽

𝑖𝑗
𝐸 (𝑊

𝑚
𝑖𝑗

𝑖−𝑗,0
)

+ [𝐸 (𝑊

𝑚
𝑖𝑖

𝑖,0
)]

−1
[

[

∞

∑

𝑗=1

𝛽

󸀠

𝑖𝑗
𝐸 (𝑊

𝑚
𝑖𝑗

𝑖−𝑗,0
)

]

]

2

< 0,

(8)

then, for ∀𝜀 > 0, ∃𝛿 > 0 such that ‖𝑊(0)‖

∞
< 𝛿 ⇒

sup
𝑖
‖𝑊

𝑖
(𝑡)‖

∞
< 𝜀.

3. Stability Results

In this section, some sufficient conditions for judging the
string exponential stability withmode constraint in themean
square for system (2) will be established.
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Theorem 5. Suppose that Assumptions A1–A3 are satisfied. If
there exist constants 𝜂 > 0 and 𝜉 > 0 such that 2 ln 𝜂

𝑘
/(𝑡

𝑘
−

𝑡

𝑘−1
) ≤ 𝜂 < 𝜉 and if the following inequality holds,

(−𝛼

3
+ 𝜉𝛼

2
) (𝜂

𝑘
)

2

𝛼

−1/2

2
+ (𝜂

𝑘
)

2

𝑛𝛼

4
𝛼

−1/2

1
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

(𝜂

𝑘
)

2

𝑛

2
𝛼

5

×

[

[

𝛼

−1/2

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

×

[

[

2𝑘

𝑞

1
+ (

𝛼

2

𝛼

1

)

1/2

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

< 0,

(9)

where 𝜂
𝑘
= sup

𝑖
{𝛾

𝑖𝑘
}, 𝜂
𝑘
= inf

𝑖
{𝛾

𝑖𝑘
}, 𝑘 ∈ N, then the zero

solution of system (2) is string exponentially stable with mode
constraint in the mean square sense.

Proof. Asmentioned inAssumptionA2, the function𝑉
𝑖
is the

vector Lyapunov function of the 𝑖th isolated subsystem of the
interconnected system (2). According to the vector Lyapunov
function theory, in order to obtain the exponential string
stability conditions with mode constraint for system (2), we
choose the following vector Lyapunov function:

𝑊

𝑖
= 𝑒

𝜉𝑡
𝑉

𝑖
, 𝑖 ∈ N. (10)

When 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N, calculating the operator 𝜒

(1)
𝑊

𝑖
along

the zero solution of system (2) and applying Assumptions A1-
A2, we get

𝜒

(1)
𝑊

𝑖
= 𝜉𝑒

𝜉𝑡
𝑉

𝑖
+ 𝑒

𝜉𝑡

×

[

[

𝑛

∑

𝑗=1

𝜕𝑉

𝑖

𝜕𝑦

𝑖,𝑗

𝑓

𝑗
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
)

+

1

2

𝑛

∑

𝑙=1

𝑛

∑

𝑗=1

𝜕

2
𝑉

𝑖

𝜕𝑦

𝑖,𝑙
𝜕𝑦

𝑖,𝑗

𝜎

𝑙𝑗
(𝑦

𝑖
, 𝑦

𝑖−1
, ̇𝑦

𝑖−1
)

]

]

≤ 𝜉𝑒

𝜉𝑡
𝑉

𝑖
+ 𝑒

𝜉𝑡

×

{

{

{

− 𝛼

3

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

+ 𝑛𝛼

4

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1
󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

+ 0.5𝑛

2
𝛼

5

×

[

[

2𝑘

𝑞

1

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1 󵄨
󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1 󵄨
󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

]

]

}

}

}

≤ (

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

𝑒

𝜉𝑡/2
)

×

{

{

{

{

{

𝜉𝛼

2
𝑒

𝜉𝑡/2 󵄨
󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

− 𝛼

3
𝑒

𝜉𝑡/2 󵄨
󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

+ 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

𝑒

𝜉𝑡/2 󵄨
󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

+ 0.5𝑛

2
𝛼

5
[

[

2𝑘

𝑞

1
+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

𝑒

𝜉𝑡/2 󵄨
󵄨

󵄨

󵄨

󵄨

𝑦

𝑖−𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

]

]

}

}

}

.

(11)

It follows from Assumption A2 and𝑊
𝑖
= 𝑒

𝜉𝑡
𝑉

𝑖
that

𝜒

(1)
𝑊

𝑖
≤ (

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

𝑒

𝜉𝑡/2
)

×

{

{

{

(−𝛼

3
+ 𝜉𝛼

2
) (

𝑊

𝑖

𝛼

2

)

1/2

+ 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

(

𝑊

𝑖−𝑗

𝛼

1

)

1/2

+

1

2

𝑛

2
𝛼

5

×

[

[

2𝑘

𝑞

1
+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

(

𝑊

𝑖−𝑗

𝑊

𝑖

)

1/2

(

𝛼

2

𝛼

1

)

1/2

]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

(

𝑊

𝑖−𝑗

𝛼

1

)

1/2

]

]

}

}

}

.

(12)

From the properties of the operator 𝜒
(1)

[25], we can take
the expectation of inequality (12) and rewrite it as

𝐸𝜒

(1)
𝑊

𝑖

≤ 𝐸 [(

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

)] 𝑒

𝜉𝑡/2
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×

{

{

{

(−𝛼

3
+ 𝜉𝛼

2
) 𝐸 [(

𝑊

𝑖

𝛼

2

)

1/2

]

+ 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

𝐸[(

𝑊

𝑖−𝑗

𝛼

1

)

1/2

] +

1

2

𝑛

2
𝛼

5

×

[

[

2𝑘

𝑞

1
+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

×𝐸[(

𝑊

𝑖−𝑗

𝑊

𝑖

)

1/2

](

𝛼

2

𝛼

1

)

1/2

]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

𝐸[(

𝑊

𝑖−𝑗

𝛼

1

)

1/2

]

]

]

}

}

}

.

(13)

Taking 𝐸(𝑊

𝑖−𝑗,0
) = 1, 𝑗 = 0, 1, . . . , 𝑖 − 1, 𝑖 ∈ N.

Substituting them into (13), we get

𝐸𝜒

(1)
𝑊

𝑖

≤ 𝐸 [(

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

)] 𝑒

𝜉𝑡/2

×

{

{

{

(−𝛼

3
+ 𝜉𝛼

2
) (𝛼

2
)

−1/2

+ 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

(𝛼

1
)

−1/2

+

1

2

𝑛

2
𝛼

5

×

[

[

2𝑘

𝑞

1
+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

(

𝛼

2

𝛼

1

)

1/2

]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

(𝛼

1
)

−1/2
]

]

}

}

}

.

(14)

Since inequality (12) implies that the following inequality
holds,

(−𝛼

3
+ 𝜉𝛼

2
) 𝛼

−1/2

2
+ 𝑛𝛼

4
𝛼

−1/2

1
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
[

[

𝛼

−1/2

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

×

[

[

2𝑘

𝑞

1
+ (

𝛼

2

𝛼

1

)

1/2

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

< 0,

(15)

it can be concluded that 𝐸[𝜒
(1)
𝑊

𝑖
] < 0, 𝑖 ∈ N. Therefore,

it follows from Lemma 4 that, for ∀𝜀
0
>0, ∃𝛿

0
> 0 such that

‖𝑊

𝑖
(0)‖

∞
< 𝛿

0
⇒ sup

𝑖
‖𝑊

𝑖
(𝑡)‖

∞
< 𝜀

0
. Let 𝜀 > 0, and satisfy

𝜀

0
= 𝛼

1
𝜀

2. Take 𝛿
0
= 𝛼

2
𝛿

2. When sup
𝑖
‖𝑥

𝑖
(0)‖ < 𝛿, we get

𝑊

𝑖
(0) = 𝑉

𝑖
(0) ≤ 𝛼

2
‖𝑥

𝑖
(0)‖

2
≤ 𝛼

2
𝛿

2
= 𝛿

0
. Furthermore, we

have sup
𝑖
‖𝑊

𝑖
(𝑡)‖

∞
= sup

𝑖
‖𝑉

𝑖
(𝑡)‖

∞
𝑒

𝜉𝑡
< 𝜀

0
; namely,

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩∞
≤

√

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑉

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩∞
𝑒

𝜉𝑡

𝛼

1

𝑒

−𝜉𝑡/2

<
√

𝜀

0

𝛼

1

𝑒

−𝜉𝑡/2
= 𝜀𝑒

−𝜉𝑡/2
,

0 ≤ 𝑡 < 𝑡

1
.

(16)

Next, we will use the mathematical induction method to
prove that

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩∞
< 𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜀𝑒

−𝜉𝑡/2
,

𝑡

𝑘−1
≤ 𝑡 < 𝑡

𝑘
, 𝑖, 𝑘 ∈ N,

(17)

hold, where 𝜂
0
= 1; namely,

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

∞
< (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
)

2

𝜀

2
𝑒

−𝜉𝑡
,

𝑡

𝑘−1
≤ 𝑡 < 𝑡

𝑘
, 𝑖, 𝑘 ∈ N.

(18)

When 𝑘 = 1, it can be seen from (16) that (18) holds.
Suppose that the following inequalities hold:

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

∞
< (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
)

2

𝜀

2
𝑒

−𝜉𝑡
,

𝑡

𝑝−1
≤ 𝑡 < 𝑡

𝑝
, 𝑝 = 1, 2, . . . , 𝑘.

(19)

From Assumption A3 and (19), we have

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡

+

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

∞
=

󵄩

󵄩

󵄩

󵄩

𝐼

𝑖𝑘
(𝑦

𝑖
(𝑡

−

𝑘
)) + 𝑦

𝑖
(𝑡

−

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

∞
≤ 𝛾

2

𝑖𝑘

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡

−

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

∞

≤ 𝜂

2

𝑘

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡

−

𝑘
)

󵄩

󵄩

󵄩

󵄩

2

∞
,

𝑖, 𝑘 ∈ N.

(20)

Due to 𝜂
𝑘
> 1, we have

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

∞
< (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
)

2

𝜀

2
𝑒

−𝜉𝑡
,

𝑡

𝑘−1
≤ 𝑡 ≤ 𝑡

𝑘
, 𝑖, 𝑘 ∈ N.

(21)

We claim that (21) implies that

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

∞
< (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
)

2

𝜀

2
𝑒

−𝜉𝑡
,

𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑖, 𝑘 ∈ N.

(22)

If inequality (22) does not hold, there exist some 𝑖 and
𝑡

∗
∈ [𝑡

𝑘
, 𝑡

𝑘+1
) such that

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡

∗
)

󵄩

󵄩

󵄩

󵄩

2

∞
= (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
)

2

𝜀

2
𝑒

−𝜉𝑡
,

(23)
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𝜒

(1)
𝑊

𝑖
(𝑡

∗
) = 𝐷

+
𝑊

𝑖
(𝑡

∗
) ≥ 0, and

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝑗
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

2

∞
≤ (𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
)

2

𝜀

2
𝑒

−𝜉𝑡
,

𝑡 ∈ [𝑡

𝑘
, 𝑡

∗
] , 𝑗 = 1, 2, . . . , 𝑖 − 1.

(24)

Substituting (23) and inequality (24) into inequality (11),
together with the properties of the operator 𝜒, we get

𝐸 [𝜒

(1)
𝑊

𝑖
(𝑡

∗
)]

≤

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖

󵄩

󵄩

󵄩

󵄩

{

{

{

{

{

(−𝛼

3
+ 𝜉𝛼

2
) + 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+ 𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

}

}

}

}

}

× 𝜀𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
.

(25)

Since condition (12) implies that

(−𝛼

3
+ 𝜉𝛼

2
) + 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+ 𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

< 0,

(26)

𝐸[𝜒

(1)
𝑊

𝑖
(𝑡

∗
)] < 0.This is a contradiction with 𝜒

(1)
𝑊

𝑖
(𝑡

∗
) ≥ 0.

By the mathematical induction method, it can be concluded
that

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩∞
< 𝜂

0
𝜂

1
𝜂

2
⋅ ⋅ ⋅ 𝜂

𝑘−1
𝜂

𝑘
𝜀𝑒

−𝜉𝑡/2
,

𝑡

𝑘−1
≤ 𝑡 < 𝑡

𝑘
, 𝑘 ∈ N.

(27)

From condition 2 ln 𝜂
𝑘
/(𝑡

𝑘
− 𝑡

𝑘−1
) ≤ 𝜂 < 𝜉, we get that

𝜂

𝑘
≤ 𝑒

(1/2)𝜂(𝑡
𝑘

−𝑡
𝑘−1

)
, 𝑘 ∈ N. Furthermore,

sup
𝑖

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩∞
< 𝑒

(1/2)𝜂(𝑡
1

−𝑡
0

)
𝑒

(1/2)𝜂(𝑡
2

−𝑡
1

)
⋅ ⋅ ⋅ 𝑒

(1/2)𝜂(𝑡
𝑘−1

−𝑡
𝑘−2

)

× 𝜀𝑒

−(1/2)𝜉𝑡
≤ 𝜀𝑒

−(1/2)(𝜉−𝜂)𝑡
.

(28)

That is, sup
𝑖
‖𝑦

𝑖
(𝑡)‖

2

∞
< 𝜀

2
𝑒

−(𝜉−𝜂)𝑡, 𝑡 ≥ 𝑡
0
.

According to Definition 2, the zero solution of system (2)
is the string exponentially stable in the mean square sense
with convergence rate 𝜉 − 𝜂.

Next, we proceed to prove that the zero solution of system
(2) is stable with the mode constraint. From the previous
analysis, when 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N, it is easy to obtain

𝜒

(1)
𝑉

𝑖
≤ −𝛼

3

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

+ 𝑛𝛼

4

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+ 0.5𝑛

2
𝛼

5
[

[

2𝑘

𝑞

1

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

+ (𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

×

[

[

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

≤ −𝛼

3

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

+ 𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1
[

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

∞
+ (

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
)

2

]

2

+ 𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

×

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

[

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

∞
+ (

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
)

2

]

2

+

1

2

𝑛

2
𝛼

5
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

2

(

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
)

2
[

[

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

=

[

[

−𝛼

3
+

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

(

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖

󵄨

󵄨

󵄨

󵄨

2

∞
)

+

{

{

{

{

{

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

×

1

2

𝑛

2
𝛼

5
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

2
[

[

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

}

}

}

}

}

(

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
)

2

.

(29)
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Let 𝑐 = (𝛼
2
/𝛼

1
)

1/2
≥ 1, and

𝑔

𝑚
= 𝜃

𝑘
(

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑡)

󵄨

󵄨

󵄨

󵄨

𝑘−1

∞
)

2

× (

{

{

{

𝛼

3
− 0.5𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑘−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

−

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑚−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1}

}

}

)

−1

,

𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N,

(30)

where

𝜃

𝑚
=

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑚−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑚−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

2
[

[

𝑚−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

.

(31)

Define sets in state space: Π
𝑖
= {𝑥

𝑖
: |𝑦

𝑖
(𝑡)|

2
≤ 𝑔

𝑖
} and

Π

𝑖
= {𝑦

𝑖
: |𝑦

𝑖
(𝑡)|

2
≤ 𝑐𝑔

𝑖
}, 𝑖 ∈ N. It is obvious that if 𝑦

𝑖
∈

𝑅

𝑛
\ Π

𝑖
, then 𝜒

(1)
𝑉

𝑖
< 0. Therefore, for all 𝑦

𝑖
∈ 𝑅

𝑛
\ Π

𝑖
and

𝑧

𝑖
∈ 𝑅

𝑛
\ Π

𝑖
, we have

𝑉

𝑖
(𝑧

𝑖
(𝑡)) ≤ 𝛼

2

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

< (𝑐

2
)

−1

𝛼

2

󵄨

󵄨

󵄨

󵄨

𝑧

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

= 𝛼

1

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

≤ 𝑉

𝑖
(𝑦

𝑖
(𝑡)) ,

𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N.

(32)

This implies that, for 𝑦
𝑖
(0) ∈ Π

𝑖
, we have 𝑦

𝑖
(𝑡) ∈ Π

𝑖
, 𝑡 > 0;

that is,

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

≤ (

𝛼

2

𝛼

1

)

1/2

𝜃

𝑖
(

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑡)

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
)

2

× (

{

{

{

𝛼

3
− 0.5𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

−0.5𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1}

}

}

)

−1

,

𝑡 ̸= 𝑡

𝑘
, 𝑖, 𝑘 ∈ N.

(33)

Note that condition (9) implies that the following inequal-
ity holds:

[

[

−𝛼

3
+

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

𝛼

−1/2

2

+

[

[

[

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑘−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑘−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1

+

1

2

𝑛

2
𝛼

5
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

2
[

[

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1
]

]

2

]

]

]

𝛼

−1/2

1

< 0;

(34)

namely,

(

𝛼

2

𝛼

1

)

1/2

𝜃

𝑖
× (

{

{

{

𝛼

3
−

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

−

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1}

}

}

)

−1

< 1.

(35)
Let

𝑟 = (

𝛼

2

𝛼

1

)

1/2

𝜃

𝑖
× (

{

{

{

𝛼

3
−

1

2

𝑛𝛼

4
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑓

1
)

𝑗−1

−

1

2

𝑛

2
𝛼

5
𝑘

𝑞

1
(𝑘

𝑞

2
+𝑑

𝑞

1
𝑘

𝑞

1
)

𝑖−1

∑

𝑗=1

(𝑑

𝑞

1
)

𝑗−1}

}

}

)

−1

.

(36)

Furthermore, inequality (33) can be rewritten as |𝑦
𝑖
(𝑡)|

2
<

𝑟(|𝑦(𝑡)|

𝑖−1

∞
)

2; that is,

󵄩

󵄩

󵄩

󵄩

𝑦

𝑖
(𝑡)

󵄩

󵄩

󵄩

󵄩

2

∞
≤ 𝑟(

󵄩

󵄩

󵄩

󵄩

𝑦 (𝑡)

󵄩

󵄩

󵄩

󵄩

𝑖−1

∞
)

2

< (

󵄩

󵄩

󵄩

󵄩

𝑦 (𝑡)

󵄩

󵄩

󵄩

󵄩

𝑖−1

∞
)

2

,

𝑡

𝑘−1
≤ 𝑡 < 𝑡

𝑘
, 𝑖, 𝑘 ∈ N.

(37)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N, it follows from Assumption A3 that

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖
(𝑡

+

𝑘
)

󵄨

󵄨

󵄨

󵄨∞
=

󵄨

󵄨

󵄨

󵄨

𝐼

𝑖𝑘
(𝑦

𝑖
(𝑡

−

𝑘
)) + 𝑦

𝑖
(𝑡

−

𝑘
)

󵄨

󵄨

󵄨

󵄨∞

≤ 𝜂

𝑘

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖
(𝑡

−

𝑘
)

󵄨

󵄨

󵄨

󵄨∞
< 𝜂

𝑘
√
𝑟 (

󵄨

󵄨

󵄨

󵄨

𝑦 (𝑡

−

𝑘
)

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
) ,

𝑖, 𝑘 ∈ N.

(38)
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Note that
󵄨

󵄨

󵄨

󵄨

𝑦 (𝑡

−

𝑘
)

󵄨

󵄨

󵄨

󵄨

𝑖−1

∞
= max
1≤𝑗≤𝑖−1

{𝑦

𝑗
(𝑡

−

𝑘
)}

≤ max
1≤𝑗≤𝑖−1

{(𝑟

𝑗𝑘
)

−1
󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑗
(𝑡

+

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

}

≤ (𝜂

𝑘
)

−1

max
1≤𝑗≤𝑖−1

{

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑗
(𝑡

+

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

} .

(39)

Substituting (39) into (38), we have |𝑦

𝑖
(𝑡

+

𝑘
)|

∞
<

𝜂

𝑘
(𝜂

𝑘
)

−1
√𝑟max

1≤𝑗≤𝑖−1
{|𝑦

𝑗
(𝑡

+

𝑘
)|}, 𝑖, 𝑘 ∈ N. According to

condition (9), we have 𝜂
𝑘
(𝜂

𝑘
)

−1
√𝑟 < 1, so

󵄨

󵄨

󵄨

󵄨

𝑦

𝑖
(𝑡

+

𝑘
)

󵄨

󵄨

󵄨

󵄨∞
< max
1≤𝑗≤𝑖−1

{

󵄨

󵄨

󵄨

󵄨

󵄨

𝑦

𝑗
(𝑡

+

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

} ; (40)

namely, ‖𝑦
𝑖
(𝑡

+

𝑘
)‖

2

∞
< (‖𝑦(𝑡

+

𝑘
)‖

𝑖−1

∞
)

2, 𝑖, 𝑘 ∈ N. This along with
(39) means that the zero solution of system (2) is stable with
mode constraint.

Combining (28), (37), and (40), it follows from
Definition 3 that the zero solution of system (2) is string
exponentially stable with mode constraint in the mean
square.

When 𝑑𝑓
1
and 𝑑𝑞

1
in Assumption A3 satisfy 0 < 𝑑

𝑓

1
< 1,

0 < 𝑑

𝑞

1
< 1, the stability of system (2) can be judged by the

following corollary.

Corollary 6. Consider the system (2). Suppose that Assump-
tions A1–A3 are satisfied. If there exist constants 𝜂 > 0 and
𝜉 > 0 such that 2 ln 𝜂

𝑘
/(𝑡

𝑘
− 𝑡

𝑘−1
) ≤ 𝜂 < 𝜉 and if the following

inequality holds,

(−𝛼

3
+ 𝜉𝛼

2
) 𝜂

𝑘
𝛼

−1/2

2
+ 𝑛𝜂

𝑘
𝛼

4
𝛼

−1/2

1
(𝑘

𝑓

2
+ 𝑑

𝑓

1
𝑘

𝑓

1
)

× (1 − 𝑑

𝑓

1
)

−1

+

1

2

𝜂

𝑘
𝑛

2
𝛼

5

× [𝛼

−1/2

1
(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
) (1 − 𝑑

𝑞

1
)

−1

]

× [2𝑘

𝑞

1
+ (

𝛼

2

𝛼

1

)

1/2

(𝑘

𝑞

2
+ 𝑑

𝑞

1
𝑘

𝑞

1
) (1 − 𝑑

𝑞

1
)

−1

] < 0,

(41)

where 𝜂
𝑘
= sup

𝑖
{𝛾

𝑖𝑘
}, 𝜂
𝑘
= inf

𝑖
{𝛾

𝑖𝑘
}, 𝑘 ∈ N, 0 < 𝑑

𝑓

1
< 1,

and 0 < 𝑑

𝑞

1
< 1, then the zero solution of system (2) is string

exponentially stable with mode constraint in the mean square
sense.

The proof of Corollary 6 can be done by induction as the
proof of Theorem 5, and so we omit it here.

Remark 7. By using the vector Lyapunov function method,
the stability of a class of infinite dimensional look-ahead
interconnected systems is studied in this paper. It should
be noted that a comparison system aggregated by Lyapunov
functions is usually a linear system. So when applying the

xi−1

M0
M1

Mi Mi−1

xi Li

x1

x0

xi−1, �i−1, ai−1

· · ·· · ·

x0, �0, a0

Figure 1: Spacing errors in a platoon.

stability condition of such a linear system to the original
nonlinear system, “super-sufficient” stability conditions are
obtained in general, as analyzed in [17, 19]. That is to say,
the obtained stability conditions are relatively conservative. It
can be seen from inequality (14) that the comparison systems
aggregated by the Lyapunov functions in this paper are still
nonlinear systems, which means that our obtained results are
less conservative than the existing ones.

Remark 8. The dynamic behavior of some stochastic look-
ahead interconnected systems without considering impulsive
disturbance has been analyzed in [19, 24], and some sufficient
conditions ensuring the string stability of the system have
been obtained by the vector Lyapunov function methods.
The obtained conditions in [19, 24] cannot be used to judge
the stability with mode constraint for the systems. On the
other hand, the models studied in [19, 24] are derived from
the context of the controller design problem of look-ahead
vehicle longitudinal following systems. However, the authors
did not further study how to find the suitable parameters
domain of the controller for the systems based on their
established stability conditions.

Remark 9. Some research has been studied by us in [13] on
the string stability with mode constraint for the system (2)
without impulsive disturbance. It is easy to see that the results
in [13] are contained in the obtained results in Theorem 5 in
this paper.

The research studied in [13, 19, 24] did not pay attention
to how to choose parameters domains of the controller for the
look-aheadVLFS by using their obtained stability conditions.
In the next section, we will design the controller for a class of
look-aheadVLFSwith stochastic and impulsive disturbances.
Based on the obtained stability results in this paper, we will
give the domains of the control parameters chosen for the
system.

4. Controller Design for Vehicle
Following System

Consider a platoon of vehicles using a longitudinal control
system for vehicle following, as shown in Figure 1. The
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position, velocity, and acceleration of the 𝑖th following vehicle
are 𝑥
𝑖
, V
𝑖
, and 𝑎

𝑖
, respectively. The constant spacing policy in

[18] is employed by all automated vehicles in the platoon. Let
𝐿

𝑖
be the desired intervehicular distance of the 𝑖th following

vehicle.

4.1. Dynamic Model. The rolling resistance friction is consid-
ered as the stochastic factor of the system. Let 𝐹

𝑖
= 𝐹

𝑖
+

̆

𝐹

𝑖
,

where 𝐹
𝑖
is the certain part and ̆

𝐹

𝑖
is the stochastic part. It is

assumed that ̆

𝐹

𝑖
/𝑀

𝑖
is white noise process with mean value 0

andmean square error𝜎2. Let𝑑( ̆

𝐹

𝑖
/𝑀

𝑖
) = 𝑔(𝑥̇

𝑖
)𝑑𝜉.Therefore,

the model of the longitudinal dynamics of a member vehicle
with impulsive and stochastic disturbances is given by

𝑑𝑥̇

𝑖
(𝑡) =

−𝑐

𝑖
𝑥̇

2

𝑖
(𝑡) + 𝑢

𝑖
(𝑡) − 𝐹

𝑖

𝑀

𝑖

+ 𝑔 (𝑥̇

𝑖
) 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘

ΔV
𝑖
(𝑡

𝑘
) = V
𝑖
(𝑡

+

𝑘
) − V
𝑖
(𝑡

−

𝑘
) = 𝐼

𝑖𝑘
(V
𝑖
(𝑡

−

𝑘
)) , 𝑡 = 𝑡

𝑘
,

(42)

where, 𝑖, 𝑘 ∈ N, 𝑥
𝑖
, 𝑥̇
𝑖
, 𝑑𝑥̇
𝑖
, 𝑐
𝑖
𝑥̇

2

𝑖
, 𝑢
𝑖
, 𝐹
𝑖
, and 𝑀

𝑖
denote the

position, velocity, acceleration, effective aerodynamic drag,
control effort, certain rolling resistance friction, and mass of
the 𝑖th following vehicle, respectively. Let V

𝑖
(𝑡

𝑘
) be the velocity

of the impulsive moment of the 𝑖th following vehicle. Let the
initial position of the 𝑖th following vehicle be 𝑥

𝑖
(0).

In order to avoid the collision among vehicles in the
platoon in the presence of the impulsive disturbances, it is
assumed that 𝛾

𝑖𝑘
V
𝑖
(𝑡

−

𝑘
) ≤ V

𝑖
(𝑡

+

𝑘
) ≤ 𝛾

𝑖𝑘
V
𝑖
(𝑡

−

𝑘
) and 0 < 𝛾

𝑖𝑘
<

1 < 𝛾

𝑖𝑘
; here, 𝛾

𝑖𝑘
and 𝛾
𝑖𝑘
are positive constants, 𝑖, 𝑘 ∈ N.

Let 𝜀
𝑖
(𝑡) be the spacing error of the 𝑖th vehicle, which is

given by

𝜀

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑖−1
(𝑡) + 𝐿

𝑖
, 𝑖 ∈ N. (43)

Obviously, we have ̇𝜀

𝑖
(𝑡) = 𝑥̇

𝑖
(𝑡)−𝑥̇

𝑖−1
(𝑡) and ̈𝜀

𝑖
(𝑡) = 𝑥̈

𝑖
(𝑡)−

𝑥̈

𝑖−1
(𝑡). Furthermore, (42) can be rewritten as

𝑑 ̇𝜀

𝑖
(𝑡) =

𝑢

𝑖
(𝑡) − 𝑐

𝑖
[ ̇𝜀

𝑖
(𝑡) + 𝑥̇

𝑖−1
(𝑡)]

2

− 𝐹

𝑖

𝑀

𝑖

𝑑𝑡

+ 𝑔 (𝑥̇

𝑖
) 𝑑𝜉 − 𝑑𝑥̇

𝑖−1
(𝑡) ,

Δ ̇𝜀

𝑖
(𝑡

𝑘
) = ̇𝜀

𝑖
(𝑡

+

𝑘
) − ̇𝜀

𝑖
(𝑡

−

𝑘
) , 𝑘 ∈ N,

𝑖 ∈ N.

(44)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ N, due to 𝛾

𝑖𝑘
V
𝑖
(𝑡

−

𝑘
) ≤ V
𝑖
(𝑡

+

𝑘
) ≤ 𝛾

𝑖𝑘
V
𝑖
(𝑡

−

𝑘
),

there exists 𝜂
𝑘
≥ sup

𝑖
{𝛾

𝑖𝑘
} and 𝜂

𝑘
≥ sup

𝑖
{𝛾

𝑖𝑘
} such that

̇𝜀

𝑖
(𝑡

+

𝑘
) = V
𝑖
(𝑡

+

𝑘
) − V
𝑖−1
(𝑡

+

𝑘
)

= 𝐼

𝑖𝑘
(V
𝑖
(𝑡

−

𝑘
)) + V

𝑖
(𝑡

−

𝑘
) − 𝐼

(𝑖−1)𝑘

× (V
𝑖−1
(𝑡

−

𝑘
)) − V

𝑖−1
(𝑡

−

𝑘
)

≤ 𝛾

𝑖𝑘
[V
𝑖
(𝑡

−

𝑘
) − (

𝛾

(𝑖−1)𝑘

𝛾

𝑖𝑘

) V
𝑖−1
(𝑡

−

𝑘
)]

≤ 𝜂

𝑘
[V
𝑖
(𝑡

−

𝑘
) − V
𝑖−1
(𝑡

−

𝑘
)] ,

̇𝜀

𝑖
(𝑡

+

𝑘
) = V
𝑖
(𝑡

+

𝑘
) − V
𝑖−1
(𝑡

+

𝑘
) = 𝐼

𝑖𝑘
(V
𝑖
(𝑡

−

𝑘
)) + V

𝑖
(𝑡

−

𝑘
)

− 𝐼

(𝑖−1)𝑘
(V
𝑖−1
(𝑡

−

𝑘
)) − V

𝑖−1
(𝑡

−

𝑘
)

≥ 𝛾

(𝑖−1)𝑘

[

[

(

𝛾

𝑖𝑘

𝛾

(𝑖−1)𝑘

) V
𝑖
(𝑡

−

𝑘
) − V
𝑖−1
(𝑡

−

𝑘
)

]

]

≥ 𝜂

𝑘
[V
𝑖
(𝑡

−

𝑘
) − V
𝑖−1
(𝑡

−

𝑘
)] ;

(45)

namely,

𝜂

𝑘

̇𝜀

𝑖
(𝑡

−

𝑘
) ≤ ̇𝜀

𝑖
(𝑡

+

𝑘
) ≤ 𝜂

𝑘
̇𝜀

𝑖
(𝑡

−

𝑘
) , 𝑖, 𝑘 ∈ N. (46)

Assume that there exists a constant 𝜂 > 0 such that
2 ln 𝜂
𝑘
/(𝑡

𝑘
− 𝑡

𝑘−1
) ≤ 𝜂.

It is well known that real number set 𝑅 is a measurable
set and 𝑡 ∈ [0,∞) ⊂ 𝑅

+. Consider that V
𝑖
(𝑡) is continuous on

interval (𝑡+
𝑘−1
, 𝑡

−

𝑘
) and is a simple function in the set {𝑡−

𝑘
, 𝑡

+

𝑘
},

and so V
𝑖
(𝑡) is measurable on interval (𝑡+

𝑘−1
, 𝑡

+

𝑘
]; here, 𝑘 ∈ N.

Furthermore, V
𝑖
(𝑡) is Lebesgue integral on (𝑡+

𝑘−1
, 𝑡

+

𝑘
], 𝑘 ∈ N.

Let 𝐸
𝑘
= (𝑡

+

𝑘−1
, 𝑡

+

𝑘
] = 𝐸

1

𝑘
⋃𝐸

2

𝑘
⋃𝐸

3

𝑘
; here, 𝐸1

𝑘
= (𝑡

+

𝑘−1
, 𝑡

−

𝑘
),

𝐸

2

𝑘
= {𝑡

−

𝑘
}, and 𝐸3

𝑘
= {𝑡

+

𝑘
}. Obviously, 𝐸1

𝑘
⋂𝐸

2

𝑘
⋂𝐸

3

𝑘
= Φ. Let

(𝐿) ∫

𝐸
𝑘

V
𝑖
(𝑡)𝑑𝑡 denote the integral of V

𝑖
(𝑡) in the set 𝐸

𝑘
, and let

Mes(⋅) denote the measure; we have

𝑥

𝑖
(𝑡

+

𝑘
) = 𝑥

𝑖
(𝑡

−

𝑘−1
) + (𝐿) ∫

𝐸
𝑘

V
𝑖
(𝑡) 𝑑𝑡

= 𝑥

𝑖
(𝑡

−

𝑘−1
) + (𝐿) ∫

𝐸
1

𝑘

V
𝑖
(𝑡) 𝑑𝑡

+ (𝐿) ∫

𝐸
2

𝑘

V
𝑖
(𝑡) 𝑑𝑡 + (𝐿) ∫

𝐸
3

𝑘

V
𝑖
(𝑡) 𝑑𝑡,

𝑥

𝑖
(𝑡

−

𝑘
) = 𝑥

𝑖
(𝑡

−

𝑘−1
) + (𝐿) ∫

𝐸
1

𝑘

V
𝑖
(𝑡) 𝑑𝑡 + (𝐿) ∫

𝐸
2

𝑘

V
𝑖
(𝑡) 𝑑𝑡.

(47)

Due to the fact that Mes(𝐸2
𝑘
) = Mes(𝐸3

𝑘
) = 0, 𝑥

𝑖
(𝑡

+

𝑘
) =

𝑥

𝑖
(𝑡

−

𝑘
). Furthermore,

𝜀

𝑖
(𝑡

+

𝑘
) = 𝑥

𝑖
(𝑡

+

𝑘
) − 𝑥

𝑖−1
(𝑡

+

𝑘
) + 𝐿

𝑖

= 𝑥

𝑖
(𝑡

−

𝑘
) − 𝑥

𝑖−1
(𝑡

−

𝑘
) + 𝐿

𝑖
< 𝜂

𝑘
𝜀

𝑖
(𝑡

−

𝑘
)

𝜀

𝑖
(𝑡

+

𝑘
) = 𝑥

𝑖
(𝑡

+

𝑘
) − 𝑥

𝑖−1
(𝑡

+

𝑘
) + 𝐿

𝑖

= 𝑥

𝑖
(𝑡

−

𝑘
) − 𝑥

𝑖−1
(𝑡

−

𝑘
) + 𝐿

𝑖
> 𝜂

𝑘
𝜀

𝑖
(𝑡

−

𝑘
) ;

(48)

that is,

𝜂

𝑘
𝜀

𝑖
(𝑡

−

𝑘
) < 𝜀

𝑖
(𝑡

+

𝑘
) < 𝜂

𝑘
𝜀

𝑖
(𝑡

−

𝑘
) , 𝑖, 𝑘 ∈ N. (49)
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4.2. Controller Design. Define an auxiliary error given by the
following equation:

𝑆

𝑖
(𝑡) = 𝑞

1
[𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡)] + 𝑞

2
[𝑥

𝑖
(𝑡) − 𝑥

𝑖−1
(𝑡) + 𝐿

𝑖
]

+ 𝑞

3
[𝑥̇

𝑖
(𝑡) − V

0
(𝑡)] + 𝑞

4
[

[

𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡) +

𝑖

∑

𝑗=1

𝐿

𝑗
]

]

+ 𝜎

𝑖
(𝑡) ,

(50)

where 𝜎
𝑖
(𝑡) satisfies

𝑑𝜎

𝑖
(𝑡) = 𝑞

1
𝑑𝑥̇

𝑖−1
+ 𝑞

3
𝑑V
0
− (𝑞

1
+ 𝑞

3
) 𝑔 (𝑥̇

𝑖
) 𝑑𝜉 (51)

and ̇

𝑆

𝑖
is independent on 𝜉; that is to say, 𝑆

𝑖
is a finite variable

[26]. It is assumed that 𝜎
𝑖
(𝑡

+

𝑘
) = 𝜎

𝑖
(𝑡

−

𝑘
), 𝑖, 𝑘 ∈ N.

The expression of control law 𝑢

𝑖
(𝑡) is chosen as follows:

𝑢

𝑖
(𝑡) = 𝑢

𝑖𝑒𝑞𝑢
(𝑡) + 𝑢

𝑖𝑁
(𝑡) , 𝑖 ∈ N, (52)

where

𝑢

𝑖𝑒𝑞𝑢
(𝑡) = 𝑐

𝑖
𝑥̇

2

𝑖
(𝑡) + 𝐹

𝑖
−

𝑀

𝑖

(𝑞

1
+ 𝑞

3
)

× [𝑞

2
(𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡)) + 𝑞

4
(𝑥̇

𝑖
(𝑡) − V

0
(𝑡))] ,

𝑢

𝑖𝑁
(𝑡) = −

𝑀

𝑖

𝑞

1
+ 𝑞

3

𝜆𝑆

𝑖
(𝑡) .

(53)

Here, 𝜆 > 0 with 𝜆 ≥ 𝜂 > 0 is the control parameter and will
be chosen later.

4.3. Stability Analysis

4.3.1. Reachability of Slide Mode. In this section, we will ana-
lyze the fact that the slide mode is asymptotically reachable.

Choose the control vector Lyapunov function 𝑉

𝑖
(𝑡) =

0.5𝑆

2

𝑖
(𝑡), 𝑡 > 0, 𝑖 ∈ N.

(i) When 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N, calculating the right upper

derivative of 𝑉
𝑖
(𝑡) along (44), we get

𝐷

+
𝑉

𝑖
(𝑡) = 𝑆

𝑖
̇

𝑆

𝑖

= 𝑆

𝑖
[(𝑞

1
+ 𝑞

3
)

−𝑐

𝑖
𝑥̇

2

𝑖
+ 𝑢

𝑖
− 𝐹

𝑖

𝑀

𝑖

+ (𝑞

2
+ 𝑞

4
) 𝑥̇

𝑖
− 𝑞

2
𝑥̇

𝑖−1
− 𝑞

4
V
0
] ,

𝑖 ∈ N.

(54)

Substituting (52) into the above equation, we obtain
𝐷

+
𝑉

𝑖
(𝑡) = −𝜆𝑆

2

𝑖
(𝑡), 𝑖 ∈ N. It is obvious that when 𝑆

𝑖
(𝑡) ̸= 0,

𝐷

+
𝑉

𝑖
(𝑡) < 0. Therefore,𝑉

𝑖
(𝑡) is strictly monotone decreasing,

𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
, 𝑖, 𝑘 ∈ N.

(ii) When 𝑡 = 𝑡

𝑘
, 𝑘 ∈ N, according to (50) and 𝜎

𝑖
(𝑡

+

𝑘
) =

𝜎

𝑖
(𝑡

−

𝑘
), we obtain

𝑆

𝑖
(𝑡

+

𝑘
) < 𝑞

1
𝜂

𝑘
[V
𝑖
(𝑡

−

𝑘
) − V
𝑖−1
(𝑡

−

𝑘
)]

+ 𝑞

2
[𝑥

𝑖
(𝑡

−

𝑘
) − 𝑥

𝑖−1
(𝑡

−

𝑘
) + 𝐿

𝑖
]

+ 𝑞

3
𝜂

𝑘
[V
𝑖
(𝑡

−

𝑘
) − V
0
(𝑡

−

𝑘
)] + 𝑞

4

×

[

[

𝑥

𝑖
(𝑡

−

𝑘
) − 𝑥

0
(𝑡

−

𝑘
) +

𝑖

∑

𝑗=1

𝐿

𝑗
]

]

+ 𝜂

𝑘
𝜎

𝑖
(𝑡

+

𝑘
)

< 𝜂

𝑘
𝑆

𝑖
(𝑡

−

𝑘
) , 𝑖, 𝑘 ∈ N.

(55)

Due to the fact that ̇

𝑆

𝑖
(𝑡) + 𝜆𝑆

𝑖
(𝑡) = 0, 𝑆

𝑖
(𝑡

+

𝑘+1
) ≤

𝜂

𝑘+1
𝑆

𝑖
(𝑡

+

𝑘
) exp[−𝜆(𝑡+

𝑘+1
−𝑡

+

𝑘
)]. From the condition 2 ln 𝜂

𝑘
/(𝑡

𝑘
−

𝑡

𝑘−1
) ≤ 𝜂, 𝜆 ≥ 𝜂 > 0, we get 𝜂

𝑘+1
exp[−𝜆(𝑡+

𝑘+1
− 𝑡

+

𝑘
)] ≤

exp[−(𝜆 − 0.5𝜂)(𝑡+
𝑘+1

− 𝑡

+

𝑘
)] < 1, and so

𝑆

𝑖
(𝑡

+

𝑘+1
) < 𝑆

𝑖
(𝑡

+

𝑘
) , 𝑖, 𝑘 ∈ N. (56)

From (56), the impulsive sequence {𝑆

𝑖
(𝑡

+

𝑘
)} is strictly

monotone decreasing, 𝑖, 𝑘 ∈ N. On the other hand, we know
from the preceding analysis that when 𝑡 ̸= 𝑡

𝑘
, 𝑆
𝑖
(𝑡) is strictly

monotone decreasing. To sum up, it can be concluded that
𝑆

𝑖
(𝑡) → 0 as 𝑡 → ∞. Namely, the slide mode 𝑆

𝑖
(𝑡) is

asymptotically reachable, 𝑖 ∈ N.

4.3.2. Stability of Slide Mode Motion. In this section, the
stability domain of the control parameters will be proposed
based on the new stability conditions established in Section 3.

Substituting the expression of control law (52) into the
system (44), we can obtain the following slide mode motion
equation given by

𝑑𝑥̇

𝑖
(𝑡) = (𝑞

1
+ 𝑞

3
)

−1

× [𝑞

1
𝑑𝑥̇

𝑖−1
(𝑡) + 𝑞

3
𝑑V
0
(𝑡) − 𝑞

2
(𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡))

−𝑞

4
(𝑥̇

𝑖
(𝑡) − V

0
(𝑡)) − 𝜆𝑆

𝑖
(𝑡)] 𝑑𝑡

+ 𝑔 (𝑥̇

𝑖
(𝑡)) 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘
,

ΔV
𝑖
(𝑡

𝑘
) = V
𝑖
(𝑡

+

𝑘
) − V
𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N.
(57)
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By the same way, we get

𝑑𝑥̇

𝑖−1
(𝑡) = (𝑞

1
+ 𝑞

3
)

−1

× [𝑞

1
𝑑𝑥̇

𝑖−2
(𝑡) + 𝑞

3
𝑑V
0
(𝑡)

− 𝑞

2
(𝑥̇

𝑖−1
(𝑡) − 𝑥̇

𝑖−2
(𝑡))

−𝑞

4
(𝑥̇

𝑖−1
(𝑡) − V

0
(𝑡)) − 𝜆𝑆

𝑖−1
(𝑡)] 𝑑𝑡

+ 𝑔 (𝑥̇

𝑖−1
(𝑡)) 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘
,

ΔV
𝑖−1
(𝑡

𝑘
) = V
𝑖−1
(𝑡

+

𝑘
) − V
𝑖−1
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N.

(58)

In the surface of the slide mode, due to the fact that
𝑆

𝑖
(𝑡) = 𝑆

𝑖−1
(𝑡) = 0, 𝑑(𝑆

𝑖
(𝑡) − 𝑆

𝑖−1
(𝑡)) = 0, 𝑖 ∈ N. Furthermore,

according to (44) and the assumption conditions, we have

𝑑 ̇𝜀

𝑖
(𝑡) = [−

𝑞

2
+ 𝑞

4

𝑞

1
+ 𝑞

3

̇𝜀

𝑖
(𝑡) +

𝑞

2

𝑞

1
+ 𝑞

3

̇𝜀

𝑖−1
(𝑡)] 𝑑𝑡

+ [𝑔 (𝑥̇

𝑖
(𝑡)) − 𝑔 (𝑥̇

𝑖−1
(𝑡))] 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘
,

Δ ̇𝜀

𝑖
(𝑡

𝑘
) = ̇𝜀

𝑖
(𝑡

+

𝑘
) − ̇𝜀

𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N.

(59)

Let 𝑦
𝑖
(𝑡) = ̇𝜀

𝑖
(𝑡) = 𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡), 𝜀
0
(𝑡) = 0, ̇𝜀

0
(𝑡) = 0, and

̈𝜀

0
(𝑡) = 0. Set 𝑙

1
= (𝑞

2
+ 𝑞

4
)/(𝑞

1
+ 𝑞

3
) and 𝑙

2
= 𝑞

2
/(𝑞

1
+ 𝑞

3
).

From (59), we have

𝑑𝑦

1
(𝑡) = −𝑙

1
𝑦

1
(𝑡) 𝑑𝑡 + [𝑔 (𝑥̇

1
(𝑡)) − 𝑔 (𝑥̇

0
(𝑡))] 𝑑𝜉,

𝑡 ̸= 𝑡

𝑘
,

𝑑𝑦

𝑖
(𝑡) = [−𝑙

1
𝑦

𝑖
(𝑡) + 𝑙

2
𝑦

𝑖−1
(𝑡)] 𝑑𝑡

+ [𝑔 (𝑥̇

𝑖
(𝑡)) − 𝑔 (𝑥̇

𝑖−1
(𝑡))] 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦

𝑖
(𝑡

𝑘
) = 𝑦

𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N.

(60)

Consider that 𝑦
𝑖
(𝑡) = ̇𝜀

𝑖
(𝑡) = 𝑥̇

𝑖
(𝑡) − 𝑥̇

𝑖−1
(𝑡); (60) can be

rewritten as

𝑑𝑦

1
(𝑡) = −𝑙

1
𝑦

1
(𝑡) 𝑑𝑡 + 𝑔 (𝑦

1
(𝑡)) 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘

𝑑𝑦

𝑖
(𝑡) = [−𝑙

1
𝑦

𝑖
(𝑡) + 𝑙

2
𝑦

𝑖−1
(𝑡)] 𝑑𝑡

+ [𝑔 (𝑦

𝑖
(𝑡) + 𝑦

𝑖−1
(𝑡) + ⋅ ⋅ ⋅ + 𝑦

1
(𝑡))

−𝑔 (𝑦

𝑖−1
(𝑡) + 𝑦

𝑖−2
(𝑡) + ⋅ ⋅ ⋅ + 𝑦

1
(𝑡))] 𝑑𝜉,

𝑡 ̸= 𝑡

𝑘
,

Δ𝑦

𝑖
(𝑡

𝑘
) = 𝑦

𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N,

(61)

where 𝜂
𝑘
|𝑦

𝑖
(𝑡

−

𝑘
)| ≤ |𝑦

𝑖
(𝑡

+

𝑘
)| ≤ 𝜂

𝑘
|𝑦

𝑖
(𝑡

−

𝑘
)|.

The isolate subsystems of (61) are of the following forms:

̇𝑦

𝑖
(𝑡) = −𝑙

1
𝑦

𝑖
(𝑡) + 𝑔 (𝑦

𝑖
(𝑡)) 𝑑𝜉, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦

𝑖
(𝑡

𝑘
) = 𝑦

𝑖
(𝑡

+

𝑘
) − 𝑦

𝑖
(𝑡

−

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑖, 𝑘 ∈ N.

(62)

Obviously, (61) with isolate subsystems (62) is a special
case of (2) with isolate subsystems (3).

Taking the vector function Lyapunov 𝑉
𝑖
(𝑡) = 𝑦

2

𝑖
(𝑡), 𝑖 ∈

N. It is easy to get 𝛼
1
= 1, 𝛼

2
= 1, and𝛼

4
= 𝛼

5
= 2. From

Theorem 5, for judging the stability for (2), some sufficient
conditions for assuring the string exponential stability with
mode constraint in the mean square sense for (61) can be
established as follows:

(i) it is assumed that 𝑔 satisfies the global Lipschitz
condition; that is, there exists constant 𝜃 > 0 such that
|𝑔(𝑦) − 𝑔(𝑧)| ≤ 𝜃|𝑦 − 𝑧|;

(ii) 𝛼
3
≥ 2𝑙

1
− 𝜃

2;
(iii) there exists constant 𝜆 > 0 such that 2 ln 𝜂

𝑘
/(𝑡

𝑘
−

𝑡

𝑘−1
) ≤ 𝜂 < 𝜆, 𝑘 ∈ N;

(iv) 𝜂
𝑘
(𝜆 − 2𝑙

1
+ 𝜃

2
) + 2𝜂

𝑘
𝑙

2
< 0, 𝑘 ∈ N.

By the same analysis with the proof of Theorem 5, it is
easy to obtain that the zero solution 𝑦

𝑖
(𝑡) = 0 of (61) is

string exponentially stable with mode constraint in the mean
square. From the relations among 𝑦

𝑖
(𝑡), 𝜀
𝑖
(𝑡), and 𝑆

𝑖
(𝑡), it is

easy to conclude that the vehicle following errors ̇𝜀

𝑖
(𝑡) and

𝜀

𝑖
(𝑡) converge to zero, 𝑖 ∈ N.

Remark 10. The stability with mode constraint for the vehicle
following error system (59) could guarantee that the error of
every following vehicle is not only uniformly bounded, but
also less than the error of the leading vehicle.

5. Numerical Simulations

In this section, some numerical simulations are performed
for a four-vehicle platoon with one leading vehicle and three
following vehicles.The referencemodel of VLFS is referred to
in Section 4 in this paper (Figure 1).

Let 𝑔(𝑥̇
𝑖
) = 𝑥̇

𝑖
, 𝑖 = 1, 2, 3. The control laws for every

following vehicle are of the forms in (56). According to
the conditions in Section 4.3.2, the control parameters are
designed as 𝑞

1
= 1, 𝑞

2
= 2, 𝑞

3
= 3, 𝑞

4
= 4, and 𝜆 =

1.4. The leading vehicle in the platoon makes the following
acceleration maneuver [18]: when 0 s ≤ 𝑡 < 4 s, 𝑎

0
= 0m/s2;

when 4 s ≤ 𝑡 < 7 s, 𝑎
0
= −0.25(𝑡 − 2)m/s2; when 7 s ≤

𝑡 < 10 s, 𝑎
0
= −0.75m/s2 ; when 10 s ≤ 𝑡 < 16 s, 𝑎

0
=

0.25(𝑡−10)−0.75m/s2; when 16 s ≤ 𝑡 < 19 s, 𝑎
0
= 0.75m/s2;

when 19 s ≤ 𝑡 < 22 s, 𝑎
0
= 0.25(19 − 𝑡) + 0.75m/s2; when

22 s ≤ 𝑡 ≤ 30 s, 𝑎
0
= 0m/s2.

It is assumed that the desired intervehicular distance of
the three following vehicles is 𝐿

𝑖
= 8m, 𝑖 = 1, 2, 3. Table 1

shows the initial states of vehicles in the platoon. From (46),
it can be obtained that 𝑒

1
(0) = 0.5m, 𝑒

2
(0) = 0.4m, and

𝑒

3
(0) = 0.3m. Table 2 shows the parameters of the following
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Figure 2: Velocity curves of vehicles.
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Table 1: Initial states of vehicles.

Vehicle number 𝑖 𝑎

𝑖
(0) (m/s2) V

𝑖
(0) (m/s) 𝑥

𝑖
(0) (m)

0 0 25.0 50.0
1 0 25.5 42.5
2 0 26.0 34.9
3 0 26.5 27.2

vehicles in the platoon. It is assumed that when 𝑡

𝑘
= 8 s,

V
1
(𝑡

+

𝑘
) = 1.05V

1
(𝑡

−

𝑘
); when 𝑡

𝑘
= 20 s, V

0
(𝑡

+

𝑘
) = 0.97V

0
(𝑡

−

𝑘
). The

approach in [27] is used to generate Brownmotion trajectory.
The simulation results are shown in Figures 2, 3, 4, and 5.

From the simulation results, it can be seen that the errors of
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Table 2: Parameters of vehicles.

Vehicle number 𝑖 𝑀

𝑖
(kg) 𝑐

𝑖
(Ns2/m2) 𝐹

𝑖
(N)

1 1000 0.50 200
2 900 0.60 180
3 1100 0.55 220

following vehicles not only converge to zero but also satisfy
the mode constraint condition. That is to say, the stability
results obtained in this paper are correct and practical. Since
the domains of control parameters are large, the controllers
are easy to be designed in practice.



Abstract and Applied Analysis 13

6. Conclusions

In this paper, the problem of string exponential stability with
mode constraint of infinite dimensional nonlinear intercon-
nected systems with stochastic and impulsive disturbances
has been studied by using the vector Lyapunov function
method. Sufficient conditions of string exponential stability
with mode constraint have been derived for a class of general
infinite dimensional look-ahead interconnected systems with
impulsive and stochastic disturbances. Moreover, the con-
troller for a class of look-ahead vehicle longitudinal following
systems with the above uncertainties has been proposed by
the sliding mode control method. Based on the obtained new
stability conditions, the domain of the control parameters of
the systems has been obtained, and the domain of the control
parameters of the systems is enlarged. A numerical example
with simulations has been given to show the effectiveness and
correctness of the obtained results.
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