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We will introduce the concept of 𝑚- and (𝜆,𝑚)-uniform density of a set and 𝑚- and (𝜆,𝑚)-uniform statistical convergence on an
arbitrary time scale. However, we will define𝑚-uniform Cauchy function on a time scale. Furthermore, some relations about these
new notions are also obtained.

1. Introduction

The idea of statistical convergence was known to Zygmund
[1] as early as 1935 and in particular after 1951 when Fast
[2] and Steinhaus [3] reintroduced statistical convergence for
sequences of real numbers. Later, Schoenberg [4] indepen-
dently gave some basic properties of statistical convergence.
Several generalizations and applications of this notion have
been discussed in the theory of Fourier analysis, ergodic
theory, number theory, measure theory, trigonometric series,
turnpike theory, and Banach spaces under different names
(see [5–11]).

Statistical convergence depends on the density of subsets
of the set N. Recall that a subset 𝐴 of N is said to have
“asymptotic density” 𝛿(𝐴) if

𝛿 (𝐴) = lim
𝑛→∞

1

𝑛

|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐴}| , (1)

where the vertical bars denote the cardinality of the enclosed
set. It is clear that any finite subset of N has zero asymptotic
density and 𝛿(𝐴𝑐) = 1 − 𝛿(𝐴) (see [12]).

A sequence {𝑥
𝑘
}
𝑘∈N is said to be statistically convergent to

a real number 𝐿 if

lim
𝑛→∞

1

𝑛

󵄨
󵄨
󵄨
󵄨
{𝑘 ≤ 𝑛 :

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0, (2)

for each 𝜀 > 0. And we write 𝑥
𝑘
st
→

𝐿 or 𝑆− lim𝑥
𝑘
= 𝐿. The set

of all statistically convergent sequences is denoted by 𝑆 (see
[2, 3, 5, 6, 9, 13]).

The generalized de la Vallée-Poussin mean is defined by

𝑡
𝑛
(𝑥) =

1

𝜆
𝑛

∑

𝑘∈𝐼
𝑛

𝑥
𝑘
, (3)

where 𝜆 = (𝜆
𝑛
) is a nondecreasing sequence of positive

numbers such that 𝜆
𝑛+1

≤ 𝜆
𝑛
+ 1, 𝜆

1
= 1, 𝜆

𝑛
→ ∞ as

𝑛 → ∞ and 𝐼
𝑛
= [𝑛−𝜆

𝑛
+1, 𝑛]. The set of all such sequences

will be denoted by Λ (see [14]).
A sequence 𝑥 = (𝑥

𝑘
) is said to be (𝑉, 𝜆)-summable to

a number 𝐿 if 𝑡
𝑛
(𝑥) → 𝐿 as 𝑛 → ∞. (𝑉, 𝜆)-summability

reduces to (𝐶, 1) summability when 𝜆 = (𝜆
𝑛
) = (𝑛) (see [14]).

We write

[𝐶, 1] = {𝑥 = (𝑥
𝑘
) : lim
𝑛→∞

1

𝑛

𝑛

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
= 0 for some 𝐿} ,

[𝑉, 𝜆] =

{

{

{

𝑥 = (𝑥
𝑘
) : lim
𝑛→∞

1

𝜆
𝑛

∑

𝑘∈𝐼
𝑛

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
= 0 for some 𝐿

}

}

}

,

(4)

for the sets of sequences 𝑥 = (𝑥
𝑘
) which are strongly Cesàro

summable and strongly (𝑉, 𝜆)-summable, respectively. Strong
(𝑉, 𝜆)-summability reduces to strong (𝐶, 1) summability
when 𝜆

𝑛
= 𝑛.

The notion of 𝜆-statistical convergence was introduced by
Mursaleen [15] as follows.

Let 𝐾 ⊂ N and define the 𝜆-density of𝐾 by

𝛿
𝜆
(𝐾) = lim

𝑛→∞

1

𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
{𝑛 − 𝜆

𝑛
+ 1 ≤ 𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}

󵄨
󵄨
󵄨
󵄨
. (5)
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𝛿
𝜆
(𝐾) reduces to the asymptotic density 𝛿(𝐾) in case of 𝜆

𝑛
=

𝑛 for all 𝑛 ∈ N (see [15]).
A sequence 𝑥 = (𝑥

𝑘
) is said to be 𝜆-statistically

convergent to 𝐿 if for every 𝜀 > 0 (see [15])

lim
𝑛→∞

1

𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
{𝑘 ∈ 𝐼

𝑛
:
󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0. (6)

After the concept of almost 𝜆-statistical convergence was
studied by Savaş [16], many authors have studied statistical
convergence (see [6, 9, 10]).

Statistical convergence is applied to time scales for differ-
ent purposes by various authors (see [17, 18]).

We here recall some basic concepts and notations from
the theory of time scales. A time scale is an arbitrary
nonempty closed set of real numbers. We use the symbol T
to denote a time scale. A time scale has the topology that it
inherits from the real numbers with the standard topology.
The theory of time scale was introduced byHilger in his Ph.D.
thesis supervised by Auldbach in 1988 (see [19]). It allows
unifying the usual differential and integral calculus for one
variable. One can replace the range of definition (R) of the
functions under consideration by an arbitrary time scale T .
Now, time scale theory has been applied to different areas by
many authors (see [20–24]).

The forward jump operator 𝜎 : T → T can be defined by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} , (7)

for 𝑡 ∈ T . And the graininess function 𝜇 : T → [0,∞) is
defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡. In this definition, we put inf 𝜙 =
sup T , where 𝜙 is an empty set. A half open interval on an
arbitrary time scale T is given by

[𝑎, 𝑏)T = {𝑡 ∈ T : 𝑎 ≤ 𝑡 < 𝑏} . (8)

Open intervals or closed intervals can be defined similarly
(see [20, 21]).

Now, let 𝐴 denote the family of all left closed and right
open intervals of T of the form [𝑎, 𝑏)T . Let 𝑠 : 𝐴 → [0,∞)

be the set function on 𝐴 such that

𝑠 ([𝑎, 𝑏)T ) = 𝑏 − 𝑎. (9)

Then, it is known that 𝑠 is a countably additive measure
on 𝐴. Now, the Caratheodory extension of the set function 𝑠
associated with family𝐴 is said to be the LebesgueΔ-measure
on T and is denoted by 𝜇

Δ
. In this case, it is known that if

𝑎 ∈ T −{max T}, then the single point set {𝑎} is Δ-measurable
and 𝜇
Δ
(𝑎) = 𝜎(𝑎)−𝑎. If 𝑎, 𝑏 ∈ T and 𝑎 ≤ 𝑏, then 𝜇

Δ
((𝑎, 𝑏)T ) =

𝑏−𝜎(𝑎). If 𝑎, 𝑏 ∈ T −{max T}, 𝑎 ≤ 𝑏; 𝜇
Δ
((𝑎, 𝑏]T ) = 𝜎(𝑏)−𝜎(𝑎)

and 𝜇
Δ
([𝑎, 𝑏])T ) = 𝜎(𝑏) − 𝑎 (see [18]).

In this study, we will give some notations for 𝑚-uniform
and (𝜆,𝑚)-uniform density of a set and 𝑚-uniform and
(𝜆,𝑚)-uniform statistical convergence and some properties
of 𝑚-uniform and (𝜆,𝑚)-uniform statistical convergence on
time scales.

Definition 1 (see [25]). A subset 𝐸 ofN is said to be uniformly
dense if

𝑢 (𝐸) = lim
𝑛→∞

1

𝑛

𝑛

∑

𝑗=1

𝜒
𝐸
(𝑗 + 𝑚) = 𝑎 (10)

uniformly in𝑚 or, equivalently,

lim
𝑛→∞

1

𝑛

|𝐸 ∩ {𝑚 + 1, . . . , 𝑚 + 𝑛}| = 𝑎, (11)

uniformly in 𝑚, where 𝑚 = 0, 1, 2, 3, . . . and 𝜒
𝐸
is character-

istic function. Subsequently, uniform density was studied by
Baláž and Šalát [26], Brown and Freedman [27], andMaddox
[28].

The notion of 𝑚-uniform statistical convergence is first
introduced by Nuray [29] as follows.

Definition 2 (see [29]). Let 𝑥 = (𝑥
𝑘
) be a real or complex

valued sequence. If

lim
𝑛→∞

1

𝑛

󵄨
󵄨
󵄨
󵄨
{𝑚 ≤ 𝑘 < 𝑛 + 𝑚 :

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0 (12)

uniformly in𝑚, 𝑥 = (𝑥
𝑘
) is said to be𝑚-uniform statistically

convergence to 𝐿 for 𝜀 > 0.
Based on this notion, we give the following definitions to

generalize𝑚-uniform statistical convergence.

Definition 3. Let 𝐾 ⊂ N and define the (𝜆,𝑚)-uniform
density of𝐾 by

𝛿
𝑚

𝜆
(𝐾) = lim

𝑛→∞

1

𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
{𝑛 + 𝑚 − 𝜆

𝑛
≤ 𝑘 < 𝑛 + 𝑚 : 𝑘 ∈ 𝐾}

󵄨
󵄨
󵄨
󵄨
.

(13)

𝛿
𝑚

𝜆
(𝐾) reduces to the 𝛿𝑚(𝐾) in case of 𝜆

𝑛
= 𝑛 for all 𝑛 ∈ N.

Definition 4. A sequence 𝑥 = (𝑥
𝑘
) is said to be (𝜆,𝑚)-

uniform statistically convergent to 𝐿 if

lim
𝑛→∞

1

𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
{𝑛 + 𝑚 − 𝜆

𝑛
≤ 𝑘 < 𝑛 + 𝑚 :

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
− 𝐿
󵄨
󵄨
󵄨
󵄨
≥ 𝜀}

󵄨
󵄨
󵄨
󵄨
= 0 (14)

for every 𝜀 > 0 uniformly in𝑚.
In [30], Borwein introduced and studied strongly

summable functions. His definition is as follows.

Definition 5 (see [30]). A real-valued function 𝑥(𝑡), measur-
able (in Lebesgue sense) on the interval (1,∞), is said to be
strongly summable to 𝐿 = 𝐿

𝑥
if

lim
𝑛→∞

1

𝑛

∫

𝑛

1

|𝑥 (𝑡) − 𝐿|
𝑝

𝑑𝑡 = 0, 1 ≤ 𝑝 < ∞. (15)

[𝑊
𝑝
]will denote the space of real-valued function 𝑥, measur-

able (in the Lebesgue sense) on the interval (1,∞).
Furthermore, Nuray [31] studied 𝜆-strong summable and

𝜆-statistically convergent functions as in the following.

Definition 6 (see [31]). Let 𝜆 ∈ Λ, let 𝑝 be a real number,
and let 𝑥(𝑡) be a real-valued function which is measurable (in
Lebesgue sense) on the interval (1,∞), if

lim
𝑛→∞

1

𝜆
𝑛

∫

𝑛

𝑛−𝜆
𝑛
+1

|𝑥 (𝑡) − 𝐿|
𝑝

𝑑𝑡 = 0; (16)

then, one says that𝑥(𝑡) is𝜆
𝑝
strongly summable to𝐿. Strongly

summable number sequences and statistically convergent
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number sequences were studied by Maddox [32], Nuray and
Aydin [33], and Et et al. [34].

There are some studies about statistical convergence on
time scales in the literature. For instance, Seyyidoglu and Tan
[17] gave some new notations such as Δ-convergence and Δ-
Cauchy by using Δ-density and investigated their relations.
Turan and Duman [18] introduced the concept of density
and statistical convergence of delta measurable real-valued
functions defined on time scales as follows.

Definition 7 (see [18]). Suppose that Ω is a Δ-measurable
subset of T . Then, for 𝑡 ∈ T , one defines the set Ω(𝑡) by

Ω (𝑡) = {𝑠 ∈ [𝑡
0
, 𝑡]

T
: 𝑠 ∈ Ω} . (17)

In this case, one defines the density ofΩ on T , denoted by
𝛿T (Ω),

𝛿T (Ω) = lim
𝑡→∞

𝜇
Δ
(Ω)

𝜇
Δ
([𝑡
0
, 𝑡]

T
)

, (18)

provided that the above limit exists. Furthermore, 𝑓 is
statistically convergent to a real number 𝐿 on T if, for every
𝜀 > 0,

𝛿T ({𝑡 ∈ T :
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀}) = 0, (19)

where 𝑓 : T → R is a Δ-measurable function (see [17, 18]).
Lebesgue Δ-measure 𝜇

Δ
is introduced by Guseinov [20].

Definition 8 (see [18]). Let 𝑓 : T → R be a Δ-measurable
function. 𝑓 is statistical Cauchy on T if, for each 𝜀 > 0, there
exists a number 𝑡

1
> 𝑡
0
∈ T such that

lim
𝑡→∞

𝜇
Δ
({𝑠 ∈ [𝑡

0
, 𝑡]

T
:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝑓 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨
≥ 𝜀})

𝜇
Δ
([𝑡
0
, 𝑡]

T
)

= 0. (20)

2. Main Results and Preliminaries

It is well known that the notion of statistical convergence
is closely related to the density of the subset of N. So,
in this section, we will first define 𝑚-uniform and (𝜆,𝑚)-
uniform density of the subset of the time scale. By using
these definitions, we will focus on constructing a concept of
𝑚-uniform (or (𝜆,𝑚)-uniform) statistical convergence and
𝑚-uniform statistical Cauchy function on time scales. In
following definitions, notations Δ

𝑚
and Δ

(𝜆,𝑚)
shows that Δ

depends on𝑚 and (𝜆,𝑚), respectively.

Definition 9. Let Ω be a Δ
𝑚
-measurable subset of T . Then,

one defines the set Ω(𝑡,𝑚) by

Ω (𝑡,𝑚) = {𝑠 ∈ [𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚) : 𝑠 ∈ Ω} , (21)

for 𝑡 ∈ T . In this case, one defines the 𝑚-uniform density of
Ω on T , denoted by 𝛿𝑚T (Ω), as follows:

𝛿
𝑚

T (Ω) = lim
𝑡→∞

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚))

𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

, (22)

provided that the above limit exists.

Definition 10. Let 𝑓 : T → R be a Δ
𝑚
-measurable function.

Then, one says that 𝑓 is𝑚-uniform statistically convergent to
a real number 𝐿 on T if

lim
𝑡→∞

𝜇
Δ
𝑚

(𝑠 ∈ [𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚) :

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀)

𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

= 0,

(23)

uniformly in 𝑚 for every 𝜀 > 0. In this case, one writes
ŝ𝑚T − lim𝑡→∞(𝑓(𝑡)) = 𝐿. The set of all𝑚-uniform statistically
convergent functions on T will be denoted by ŝ𝑚T .

In case ofT = N, [𝑚+𝑡
0
−1, 𝑡+𝑚) is [𝑚, 𝑛+𝑚) for 𝑡 = 𝑛 and

𝑡
0
= 1. In this instance, 𝑚-uniform statistical convergence

on time scales is reduced to classical 𝑚-uniform statistical
convergence which is given by Definition 2. This shows that
our results are generalizations of classical results.

Similarly, we can define 𝑚-uniform statistical Cauchy
functions on a time scale based on Definition 8.

Definition 11. Let 𝑓 : T → R be a Δ
𝑚
-measurable function.

𝑓 is an 𝑚-uniform statistical Cauchy function on T if there
exists a number 𝑡

1
> 𝑡
0
∈ T such that

lim
𝑡→∞

𝜇
Δ
𝑚

({𝑠 ∈ [𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝑓 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨
≥ 𝜀})

𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

= 0

(24)

for each 𝜀 > 0 uniformly in 𝑚. One can easily see that this
definition is a generalization of Definition 8.

Definition 12. LetΩ(𝑡,𝑚, 𝜆) be a Δ
(𝜆,𝑚)

-measurable subset of
T . Then, one defines the set Ω(𝑡,𝑚, 𝜆) by

Ω (𝑡,𝑚, 𝜆) = {𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚) : 𝑠 ∈ Ω} (25)

for 𝑡 ∈ T . In this case, one defines the (𝜆,𝑚)-uniform density
ofΩ on T denoted by 𝛿(𝜆,𝑚)T (Ω), as follows:

𝛿
(𝜆,𝑚)

T (Ω) = lim
𝑡→∞

𝜇
Δ
(𝜆,𝑚)

(Ω (𝑡, 𝑚, 𝜆))

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

,

(26)

provided that the above limit exists.

Definition 13. Let 𝑓 : T → R be a Δ
(𝜆,𝑚)

-measurable
function. One says that 𝑓 is (𝜆,𝑚)-uniform statistically
convergent to a real number 𝐿 on T if

lim
𝑡→∞

𝜇
Δ
(𝜆,𝑚)

(𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚) :

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀)

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

= 0

(27)

uniformly in𝑚 for every 𝜀 > 0. In this case, one writes ŝ(𝜆,𝑚)T −

lim
𝑡→∞

(𝑓(𝑡)) = 𝐿. The set of all (𝜆,𝑚)-uniform statistically
convergent functions on T will be denoted by ŝ(𝜆,𝑚)T .
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Hence, we have generalized Definition 3 to an arbitrary
time scale. We can easily get classical (𝜆,𝑚)-uniform statisti-
cal convergence by taking 𝑡

0
= 1 in Definition 13.

Proposition 14. If 𝑓, 𝑔 : T → R with ŝ(𝜆,𝑚)T − lim
𝑡→∞

𝑓(𝑡) =

𝐿
1
and ŝ(𝜆,𝑚)T − lim

𝑡→∞
𝑔(𝑡) = 𝐿

2
, then the following

statements hold:

(i) ŝ(𝜆,𝑚)T − lim
𝑡→∞

(𝑓(𝑡) + 𝑔(𝑡)) = 𝐿
1
+ 𝐿
2
,

(ii) ŝ(𝜆,𝑚)T − lim
𝑡→∞

(𝑐𝑓(𝑡)) = 𝑐𝐿
1
(𝑐 ∈ R).

Theorem 15. For 𝑓 : T → R to be any Δ
(𝜆,𝑚)

-measurable
function, 𝑓 is (𝜆,𝑚)-uniform statistically convergent on T if
and only if 𝑓 is a (𝜆,𝑚)-uniform statistical Cauchy function
on T .

Proof. We can prove this by using techniques similar to
Theorem 3 of [29].

Theorem 16. Consider ŝ𝑚T ⊂ ŝ(𝜆,𝑚)T if and only if

lim
𝑡→∞

inf
𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

> 0. (28)

Proof. For given 𝜀 > 0, we have

𝜇
Δ
𝑚

(𝑠 ∈ [𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀)

⊃ 𝜇
Δ
(𝜆,𝑚)

(𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
:

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀) .

(29)

Therefore,

(𝜇
Δ
𝑚

(𝑠 ∈ [𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀))

× (𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
))

−1

≥ (𝜇
Δ
(𝜆,𝑚)

(𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
:

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀))

× (𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
))

−1

=

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

𝜇
Δ
𝑚

([𝑚 + 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

×

1

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

× 𝜇
Δ
(𝜆,𝑚)

(𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
:

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
≥ 𝜀) .

(30)

Hence by using (28) and taking the limit as 𝑡 → ∞, we get
𝑓(𝑠) → 𝐿(ŝ𝑚T ) which implies 𝑓(𝑠) → 𝐿(ŝ(𝜆,𝑚)T ).

The definition of 𝑝-Cesàro summability on time scales
was given by Turan and Duman [18] as follows.

Definition 17 (see [18]). Let 𝑓 : T → R be a Δ-measurable
function and 0 < 𝑝 < ∞. Then, 𝑓 is strongly 𝑝-Cesàro
summable on T if there exists some 𝐿 ∈ R such that

lim
𝑡→∞

1

𝜇
Δ
([𝑡
0
, 𝑡]

T
)

∫

[𝑡
0
,𝑡]T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠 = 0. (31)

The set of all 𝑝-Cesàro summable functions on T will be
denoted by [𝑊

𝑝
]
T
.

Measure theory on time scales was first constructed
by Guseinov [20] and Lebesgue Δ-integral on time scales
introduced by Cabada and Vivero [35].

Definition 18. Let 𝑓 : T → R be a Δ
(𝜆,𝑚)

-measurable
function and 0 < 𝑝 < ∞. One says that 𝑓 is (𝜆,𝑚) uniformly
strongly 𝑝-summable on T if there exists some 𝐿 ∈ R such
that

lim
𝑡→∞

1

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

× ∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠 = 0.

(32)

In this case, one writes [𝑊̂
𝑚𝑝
]
T
− lim𝑓(𝑠) = 𝐿. The set of

all (𝜆,𝑚) uniformly strongly𝑝-summable functions on T will
be denoted by [𝑊̂

𝑚𝑝
]
T
.

Lemma 19. Let 𝑓 : T → R be a Δ
(𝜆,𝑚)

-measurable function
and

Ω (𝑡,𝑚, 𝜆) = {𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
: 𝑠 ∈ Ω}

(33)

for 𝜀 > 0. In this case, we have

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆))

≤

1

𝜀

∫

Ω(𝑡,𝑚,𝜆)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
Δ𝑠

≤

1

𝜀

∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨
Δ𝑠.

(34)

Proof. This can be proved by using a method similar to the
approach in [18].

Theorem 20. Let 𝑓 : T → R be a Δ
(𝜆,𝑚)

-measurable
function, 𝐿 ∈ R, and 0 < 𝑝 < ∞. Then, one gets the following.

(i) [𝑊̂
𝑚𝑝
]
T
⊂ ŝ(𝜆,𝑚)T .

(ii) If 𝑓 is (𝜆,𝑚) uniformly strongly 𝑝-summable to 𝐿, then
ŝ(𝜆,𝑚)T − lim

𝑡→∞
(𝑓(𝑡)) = 𝐿.

(iii) If ŝ(𝜆,𝑚)T − lim
𝑡→∞

(𝑓(𝑡)) = 𝐿 and 𝑓 is a bounded
function, then 𝑓 is uniformly strongly 𝑝-summable to
𝐿.
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Proof. (i) Let 𝜀 > 0 and [𝑊̂
𝑚𝑝
]
T
− lim𝑓(𝑠) = 𝐿. We can write

∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠

≥ ∫

Ω(𝑡,𝑚,𝜆)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠 ≥ 𝜀
𝑝

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆)) .

(35)

Therefore, [𝑊̂
𝑚𝑝
]
T
− lim𝑓(𝑠) = 𝐿 implies ŝ(𝜆,𝑚)T − lim𝑓(𝑠) = 𝐿.

(ii) Let 𝑓 be (𝜆,𝑚) uniformly strongly 𝑝-summable to 𝐿.
For given 𝜀 > 0, let

Ω (𝑡,𝑚, 𝜆) = {𝑠 ∈ [𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
: 𝑠 ∈ Ω}

(36)

on time scale T . Then, it follows from Lemma 19 that

𝜀
𝑝

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆)) ≤ ∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠. (37)

Dividing both sides of the last inequality by 𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 −

𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)T ) and taking limit as 𝑡 → ∞, we obtain

lim
𝑡→∞

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆))

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

≤

1

𝜀
𝑝
lim
𝑡→∞

1

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

× ∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠 = 0,

(38)

which yields ŝ(𝜆,𝑚)T − lim
𝑡→∞

(𝑓(𝑡)) = 𝐿.
(iii) Let𝑓 be bounded and statistically convergent to 𝐿 on

T . Then, there exists a positive number𝑀 such that |𝑓(𝑠)| ≤
𝑀 for all 𝑠 ∈ T , and also

lim
𝑡→∞

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆))

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

= 0, (39)

whereΩ(𝑡,𝑚, 𝜆) is as before. Since

∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠

= ∫

Ω(𝑡,𝑚,𝜆)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠

+ ∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T /Ω(𝑡,𝑚,𝜆)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠

≤ (𝑀 + |𝐿|)
𝑝

∫

Ω(𝑡,𝑚,𝜆)

Δ𝑠 + 𝜀
𝑝

∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

Δ𝑠

= (𝑀 + |𝐿|)
𝑝

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆))

+ 𝜀
𝑝

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
) ,

(40)

we obtain

lim
𝑡→∞

1

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

× ∫

[𝑡+𝑚−𝜆
𝑡
+𝑡
0
−1,𝑡+𝑚)T

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑠) − 𝐿

󵄨
󵄨
󵄨
󵄨

𝑝

Δ𝑠

≤ (𝑀 + |𝐿|)
𝑝

× lim
𝑡→∞

𝜇
Δ
𝑚

(Ω (𝑡, 𝑚, 𝜆))

𝜇
Δ
(𝜆,𝑚)

([𝑡 + 𝑚 − 𝜆
𝑡
+ 𝑡
0
− 1, 𝑡 + 𝑚)

T
)

+ 𝜀
𝑝

.

(41)
Since 𝜀 is arbitrary, the proof follows from (39) and (41).

Theorem21. Let𝑓 be aΔ
𝑚
measurable function.Then, ŝ(𝜆,𝑚)T −

lim𝑓(𝑠) = 𝐿 if and only if there exists a Δ
𝑚
measurable set

Ω ⊂ T such that 𝛿𝑚T (Ω) = 1 and lim𝑡𝑓(𝑡) = 𝐿, 𝑡 ∈ Ω(𝑡, 𝑚, 𝜆).

Proof. It can be easily proved by using similarway in the study
of Turan and Duman (see [18, Theorem 3.9]).

3. Conclusions

In this study, we introduced the historical development of the
notion of statistical convergence. Then we presented some
fundamental notions based on statistical convergence. The
concepts of 𝑚- and (𝜆,𝑚)-uniform density and uniform
statistical convergence were defined on an arbitrary time
scale. However, we defined 𝑚-uniform Cauchy functions
on a time scale in general. Furthermore, we obtained some
relations between these new notions.
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of sequences,” Analysis, vol. 8, no. 1-2, pp. 47–63, 1988.

[6] J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, no. 4,
pp. 301–313, 1985.

[7] I. J. Maddox, “Statistical convergence in a locally convex
space,”Mathematical Proceedings of theCambridge Philosophical
Society, vol. 104, no. 1, pp. 141–145, 1988.

[8] D. Rath and B. C. Tripathy, “On statistically convergent and
statistically Cauchy sequences,” Indian Journal of Pure and
Applied Mathematics, vol. 25, no. 4, pp. 381–386, 1994.



6 Journal of Applied Mathematics
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[26] V. Baláž and T. Šalát, “Uniform density 𝑢 and corresponding 𝐼
𝑢
-

convergence,” Mathematical Communications, vol. 11, no. 1, pp.
1–7, 2006.

[27] T. C. Brown and A. R. Freedman, “The uniform density of sets
of integers and Fermat’s last theorem,” La Société Royale du
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