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The equilibrium and fixed point problems are considered. An iterative algorithm is presented. Convergence analysis of the algorithm

is provided.

1. Introduction

Let H be a real Hilbert space with inner product {,-) and
norm || - ||, respectively. Let C be a nonempty closed convex
subset of H. Let ® : C — H be a nonlinear operator and let
® : Cx C — Rbeabifunction. The equilibrium problem is
formulated as finding x" € C such that

®(xT,x)+<CD(xT),x—xT> >0, VxeC. 1)

The solution set of (1) is denoted by EP. The problem (1) is very
general in the sense that it includes, as special cases, optimiza-
tion problems, variational inequalities, minimax problems,
Nash equilibrium problem in noncooperative games, and
others. For related work, please see, for example, [1-17].
Next, we recall several interesting results where © verifies the
following usual conditions (C1)-(C4) which will be used in
the sequel:

(C1) ©(u,u) =0 forallu € C;

(C2) © is monotone; that is, @(u, v) + O(v,u) < 0 for all
u,v € C;

(C3) foreachu, v,w € C,lim, ,@(tw+(1-t)u,v) < O(u, v);

(C4) for each u € C,v — O(u,v) is convex and lower
semicontinuous.

Theorem 1. Let C be a nonempty closed convex subset of H.
Let ® : Cx C — R be a bifunction which satisfies conditions
(C1)-(C4). Let S : C — C be a nonexpansive mapping. Let
¢ : H — H be a contraction. For x, € H arbitrarily, let the
sequence {x,} be generated by

®(yn,xT) + i()cJr Y V=X 20, Vx' €C,
A @

X1 = 0P (x,) +(1—a,)Sy,, n=0,

where {a,}  [0,1] and {A,)} C (0, 00) satisfy lim,, _, . &, =0,
Yo e, = 00, Yool — o, < o0, liminf, , A, > 0,

and Y02 A, — Al < 00. Then, the sequence {x,} converges
strongly to x* = PF(S)nqub(x*) provided F(S) N EP # 0.

Chuang et al. [18] considered an iteration process of
Halpern’s type for finding a common element of the set of
solutions of an equilibrium problem and the set of fixed
points for a nonexpansive mapping with perturbation in a
Hilbert space and they proved a strong convergence theorem
for such iterations.

Theorem 2. Let C be a nonempty closed convex subset of H.
Let ® : Cx C — R be a bifunction which satisfies conditions
(C1)-(C4). Let S : C — H be a nonexpansive mapping. Let
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{u,} ¢ H beasequence. For x, € H arbitrarily, let the sequence
{x,} be generated by

1
®(yn,xf) + )t—(xT Y Y= X) 20, Vx' €C,

3)

Xn+1 zanun_"(l_“n) (ﬁnyn-'—(l_ﬁn)syn)’ nz0,
where {a,} € [0,1] and {A,;} C [a, 00) satisfy lim,, _, e, =0,
Yo o, = 00, lim, , B,(1 - B,) > 0, and lim,_, u, =

u € H. Then, the sequence {x,} converges strongly to x* =
Prs)ngp(u) provided F(S) N EP #0.

S. Takahashi and W. Takahashi [17] introduced the follow-
ing iterative algorithm for finding an element of F(S)NEP:

e (yn’xT) + <(D (xn) ’XT - yn>

+ L(XJr — Voo Vu— X)) 20, vx' eC, (4)

A

Xpp1 = PuXp + S [(xnu + (1 - ﬁn) yn] >
And they proved that the sequence {x,,} converges strongly to
xt = PF(S)mEP(”)-

n>0.

Remark 3. Algorithm (3) is involved in a variant anchor
{u,} and the parameters are also relaxed. In [17], the authors
considered a general equilibrium problem.

In this paper, our main purpose is to introduce a new
iteration process for finding a common element of the
set of solutions of an equilibrium problem and the set of
fixed points for a nonexpansive mapping in a Hilbert space
and then we prove a strong convergence theorem for such
iterations. Our iterations are very different from (2)-(4). As
a special case, we can find the minimum norm solution of
F(S) N EP.

2. Preliminaries

In the sequel, we assume H is a real Hilbert space. Let C ¢ H
be a nonempty closed convex set. Recall that a mapping O :
C — H is called a-inverse-strongly monotone if there exists a
positive real number « > 0 such that

(O W) - D), u—v)>a|®@wu) - dW)|°, VYu,vecC.

()
A mapping S : C — C is said to be nonexpansive if
ISu—-Sv| <|u-v|, VuveC. (6)
We use F(T') to denote the set of fixed points of S.
The following lemmas are useful for the next section.

Lemma 4 (see [11]). Let C be a nonempty closed convex subset
of H. Let ® : C x C — R be a bifunction which satisfies
conditions (C1)-(C4). Let A > 0 and x € H. Then, there exists
y € C such that

@(y,xT)+%(xT—y,y—x)20, vxleC. ()
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Set Ty(x) = {y e C: ®(y,xT) + (M - Yy —Xx) =
0, for all x" € C}. Then the following hold:

(i) T} is single-valued and T, is firmly nonexpansive; that
isforanyx, y € H, |Tyx — Tyyl* < (Tyx—Tyy, x—y);

(ii) EP is closed and convex and EP = F(T}).

Lemma 5. Let C, H, F, and T)x be as in Lemma 4. Then the
following holds:

A

"TAx - Tyx“2 <=7 (Thx = T,x, Tyx - x) (8)

A

forall A,y > 0and x € H.

Lemma 6 (see [19]). Let C be a nonempty closed convex subset
of H. Let the mapping ® : C — H be a-inverse-strongly
monotone and let A > 0 be a constant. Then, we have

I(T = AD) u — (I - AD) v|)?

<lu—vI* + A (A - 20) [Ow) - DM  Vu,veC.

)
In particular, if 0 < A < 2a, then I — AD is nonexpansive.

Lemma 7 (see [20]). Let C be a closed convex subset of H and
letS: C — C beanonexpansive mapping with F(S) # 0. Then,
the mapping I — S is demiclosed. That is, if {x,} is a sequence
in C such that x,, — x* weakly and (I — S)x,, — y strongly,
then (I — S)x™ = y.

Lemma 8 (see [21]). Let {R,} and {W,} be two bounded
sequences in H. Let {f,} be a sequence in [0, 1] satisfying 0 <
liminf, | B, < limsup,_ B, < 1. Suppose that R, , =
(1= BIW, + B,R, for alln > 0 and limsup,,_, . (IW,,, -
W, = IR, = R,II) 0. Then, lim,, _, (IIW, = R, || = 0.

Lemma 9 (see [22]). Assume that {a,} is a sequence of
nonnegative real numbers such that

Apy1 < (1 - Yn) a, + 871%1’ (10)

where {y,} is a sequence in (0,1) and {5,} is a sequence such
that

(1) 2221 Yn = 005
(2) limsup,,_, .8, <0 or ¥ o2 18,7,] < co.

Then lim, _, . a, = 0.

3. Main Results
In this section, we will prove our main results.

Theorem 10. Let C be a nonempty closed convex subset of H
and let ® : Cx C — R be a bifunction satisfying conditions
(C1)-(C4). Let ® : C — H be an g-inverse-strongly monotone
mapping and let S : C — C be a nonexpansive mapping.
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Suppose that F(S) N EP 0. Let {u,} be a sequence in H. For
x, € C arbitrarily, let the sequence {x,} be generated by

n) ST [(1 - Cn) Xn

TGy — pnq) (xn)] >

xn+1_‘Dx +(
n>0,

(11)

where T, is defined as that in Lemma4 and {p,} C
(0,20), {cn} c (0,1), and {@,} < (0, 1) satisfy
(i) lim,, _, o6, = 0and 2, G, = 00;
(i)0<c<@,<d<1;

(iii) a(1 - g,) < p, < b(1 —,,), where [a,b] c (0,2¢) and
lim -p) =0;

U, =u.

n—>oo(Pn+1
(iv) lim,, , o
Then {x,} generated by (11) converges strongly to Prs)npp(t).
We divide our proofs into several conclusions.

Conclusion 1. The sequence {x,,} is bounded.

Proof. Letz € F(S)NEP. Wehavez = Sz = T, (z— pnCD(z)) =
Tn[cnz + (1 - ¢,)(z - p,D(2)/(1 —,))] for all m > 0. Set
z, =T, [(1-¢,)x,+6,u,—p,D(x,)] foralln > 0. By Lemma 4,

we know that T, is nonexpansive. By the convexity of || - [,
we derive

law =2l =

n - pnq) (xn)]

)
- T, [cnz +(1-¢,) <z e (z)>]
[+ (1=6) (5, 120 (3, )
- [cnz+(1 -5,) (z— lf"cncb(z)ﬂ
- Ja-s)| (s - 20 w)

- (z— lf_)”c ) (z)>]+cn(u,, -z)

n

(x" 1 F—)ncn(b (x”)>
—<z— 15)—"%@(2)) ’

”Tp,, [(1 - Cn) Xp Gl
T, (z - p,®@)|

Tpn [cnun + (1 - Cn) <xn -

1

<

2

2

< (1 _cn)

+6, |, — z||2.

(12)

Since @ is ¢-inverse-strongly monotone, we know from
Lemma 6 that

o 2e)- (o 200

pa(pn—2(1-5,) c)l

<, - 2| + T |D(x,) - D(2)|.
" (13)
It follows that
-2(1-
lz, - 2" < (1-¢,) (||xn L (Pn(1 _(Cn)2 5n)€)

xn@(xn)—@(z)lf) I

< (1 N Cn) “xn - Z"2 + cn"”n - 2"2'

(14)

So, we have that

e = 2l = @05, = 2) + (1 = @,)(S2, - 2
<@, %, - 2"+ (1-a,) |z, - 2|’
<@,|x, -2+ (1-a,) ((1-6,) |x, - 2]’
6, — 2°)
= [1-(1-@,) 6] |x, - 2|’
+(1-@,) 6w, - 2
< max {|u, - 2| Ju, - 2|’} .
(15)
Note that lim,, , u, = u € H. Without loss of generality, we

can assume that sup, [lu,, — u|| < M for some M > 0.
By induction, we have

01— 2l < max i =[P (o ] + s 21}

, (16)

< max {|lxo = 2[*, (M + Ju— 2I))’}.
Therefore, {x,} is bounded. O
Conclusion 2. lim,_, llx,,; — x,| = 0 and lim, _, llx, -

TPn [(1- Cn)xn + Gully — Pn(D(xn)]" =0.

Proof. Putting w, = (1-¢,)x,, +¢,u, — p,P(x,) foralln > 0,

we have
Zpl — Zp = Tpmwnﬂ - Tan w, + Tpmwn - Tinn. 17)
It follows that
”Znﬂ ﬂ " P Wt p,m
"w"“ w, " + “ Pt Wn
(18)



From Lemma 6, we know that I — p® is nonexpansive for all
p € (0,2¢). Thus, we have that I — ((p,,,)/(1 — ¢, )P is
nonexpansive for all n due to the fact that (p,,,,)/(1 — G, ;) €
(0, 26). Then, we get

||wn+1 - wn” = "(1 - Cn-*—l) Xps1 T Gyl — pn+1<D (‘xn+1)
- ((1 - cn) Xy + Gy — PnCD (xn))“
= 0= ) (500 - 0 ()
1- Cn+1

—(l—cn)(xn—lp"

-,

o (x,)
+ (qn+1 - Cn) U1 T 6y (un+1 - un)

(I - ﬂ@) Xn+1

1 n+1

— <I — ﬂq)) X,
1_cn+1

< (1 _Cn+1)

(1= Gr1) % = pua @ (x,)
—(1=6,) %, + p, @ (x,)|
(61 = Gl e |+ G etir — 14
< Jxner = %all + 6 = Gal (el + Nt )

tGn "un+1 - un” + Ipn+1 - pnl ”(D (xn)“ .
(19)

By Lemma 5, we have

clerblyy w0

”T O TP,,wn Pn+1

Pni1 1

From (18)-(20), we obtain

"Zn+1 - zn" = "xn+1 - xn“ + lcnﬂ - Cnl (“xn“ + “unH“)

+ G, “unﬂ - un“ + |pn+1 - Pn| "q) (xn)”

(21
A |
Ps1
Then,
152,111 = S2u]l < 12011 — 2l
< Jner = Xl + 1 = Gl
sl + Bl + 6t =0

+ |Pn+1 - Pnl "(D (xn)"

i |Pn+1 - pnl ||

TPn+1 Wy, = w”” ’
Pn+1
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Therefore,

||Szn+1 - Szn” - "xn+1 - xn" < Icn+1 - Cnl ("xn" + "un+1")
+ G ”un+1 - un”

+ Ipn+1 - Pnl HCD (xn)n

+ Ipn+1 B Pnl ”Tpnﬂwn —w,|.
Pr+1
(23)
Sinceg, — 0, p,,; — p, — Oandliminf, | p, > 0, we
obtain
limsup ([S2,1 = Sz, = [xun = %) <0 (29)
By Lemma 8, we get
lim Sz, - x,| = 0. (25)

n— 00

Consequently, we obtain

lim |x,,, - x,| = lim (1-®,)|Sz, - x,]|=0. (26)

n— 00 n— 00

From (11) and (14), we have

[%per = 2l° < @12, — 2| + (1 - @,)
x "STpn [(1 - cn) Xy + Gy — an) (xn)] - Z”Z
< (I- - x,—z|" + P
e e e
x(pa=2(1-¢,)5)

x [|@(x,) - <D(z)||2>

+cn||un—zn2} ey —af

= [1-(1-0,) ] %, -2 + %

x (o= 2(1-6,)¢) [D(x,) - D)
+(1-@,)c,llu, - z||2

(1-

(Dn n
ol + 522 2 (1-6)9)

1

X ”q)('xn) - q)(z)"z + (1 - ‘Dn) cn"un - Z||2'
(27)
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Then, we obtain

1-@
U208 1) - p ot -0
-,
< ”xn - Z"2 - "xn+1 - ZHZ +(1-a,) Cn”un - Z”2 (28)
< (e =2l = s = 2) s =

+(1-@,)G,llu, - z||2.

Since lim, _, .., 0, lim, , o lx,.; — x,/ = 0, and
liminf, , ((1 - ®,)p,/(1 - ¢,)(2(1 -,)s - p,) > 0, we
have

lim [o(x,) - ®(2)] = 0. (29)

Next, we show |x, - T, w,[ — 0. By using the firm

nonexpansivity of T,, , we have
10, = 1,0, T, e~ 00
< <wn ~(z2-p,@(2), T, w, - z>
_ % (lwn - & = pu @@ + [T, ~ 2|

- || (1 - cn) Xy + Gty

)

(30)

= Pn (q) (xn) - (Z)) - Tp,,w

We note that

[w, = (@ = P @@* < (1= 6,) [, = 2" + G — ]
(31)

Thus,

[T =2l < 5 (=6 =2
+ Gl = 2+ |1, 0, - 2| (32)
- ”(1 - Cn) Xy T Guly — Tpnwn
(@ (x) -0 @) )3
that is,
[Ty -2l < (1= 6.) b = 2l + 6ol — 2P
- ||(1 - cn) Xy + Gy — Tpnwn

“Pn ((D (xn) -0 (Z)) ”2

= (1=6,) [ = 2" + ol = 2I°
e A i
420, (1= 6,) Xy + Gythy = T, @ ()
~0(2) - o) - 0@

= (1 - Cn) "xn - Z”2 + cn””ﬂ - 2"2

2

- ”(1 = Gu)X, + Gy — T, w,

+ 2Pn (1 - cn) Xy T Gulhy — Tpnwn”

<10 (x,) -0 D).
(33)

It follows that
[ = 2I° < @ulx, - 2" + (1-@,) (1 -,)
x|, = 2]” + (1= @,) 6., — 2
~(1-@,) |1 = 6% + Gty ~ T w, |
+2p,(1-@,) (1 - 6,) x, + G4, = T, w,|
x [|@(x,) - ©)|
=[1-(1-®,) 6] |x, — 2’

+ (1 - a)n) cn"un _Z”2 - (1 _a)n)

2
X "(1 = )X, + Gty — T, w,

+2p, (1 - (Dn) (1 - cn) Xp T Gulhy — Tpnwn"

x[|®(x,) - D (2)].
(34)

Hence,

(1-@,) (1 = 6%, + Gutt, = T, w0,
< Jxu = 2l = s - 2l
- (1-@,) 6%, - 2|’
+(1-a,) 6 lu, — 2" +2p, (1 - @,)
x| (1= 6,) %, + Gutay = T, w, ]| @ (x,) - @ (2)]
< (e = 2+ I = 20 I = 4
+(1-a,) 6 lu, — 2" +2p, (1 - @,)

x “(1 - Cn) Xy + Guly — Tpnwn" "CD (xn) -0 (Z)" .
(35)



Since limsup, _, ., @, < L, Ix,,; = x,I — 0,5, — 0,and
[®(x,) — O(z)| — 0, we deduce

Tim [|(1=6,) %, + Gty = Tpw,| 0. (36)
This implies that

lim ”xn -T,w,

n— 00

- nhl%o "xn - zn" =0. (37[)]
Conclusion 3. Consider

lim sup(X - u, x,, — X) > 0, (38)

n—oo
where X = Ppg)pp(1).

Proof. Since {x,,} is bounded, there exists a subsequence {xni}
of {x,} such that x, — w weakly and

limsup(x - u, x, - X) = lim (¥ - u,x,, —X). (39)

n— oo

By (25) and (37), we deduce

Jim [[x, = Sx,|| = 0. (40)
Hence,
zll>rgo "x”i - ani " =0. (41)

This together with Lemma 7 implies that w € F(S).
Next we show that X € EP. Since z, = T, [(1 - ,)x, +
G, — P, P(x,)] for any y € C, we have

G(Zn’y) + <(D(xn)’y_zn>

1 (42)
+ —(y-2z,2,— (1-¢,) x, — G,u,) = 0.

n
From (C2), we have

1
<(D (xn)’y_zn> + P_ <y_zn’zn - (1 _Cn)xn _Cnun>

n

>0(y.2,).
(43)

Putx, =ty + (1 —t)xforallt € (0,1) and y € C. Then, we
have x, € C. So, from (43), we have

(% =2, @ (x,)) 2 (%, = 2, D (%)) = (D (), %, = 2,)

1
- P_ <xt “Zp Ry (1 - Cn) Xn — cnun>

+0 (xt’ Zn)
= (% =2, @ (x;) - ©(2,))
+ <xt ~Zp @ (Zn) - (xn)>
1

- <xt BT (1 - Cn) Xn — Cnun>

n

+0(x,2,).
(44)
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Since @ 1is ¢-inverse-strongly monotone, ® is (1/¢)-
Lipschitzian. By (37), we derive that [|D(z,) — ©(x,)|| — O.
Further, from monotonicity of @, we have (x, — z,, ®(x,) —
®(z,)) = 0. Letting n — oo in (45) and noting (C4), we
have

(x, =%, ®(x,)) = O(x,,%). (45)

By (C1), (C4), and (45), we deduce

0=0(x,x)
<tO(x,y)+(1-1)O(x, %)
(46)
<tO(x,y)+ (1 —1)(x, - X, O(x,))
=t0(x, y) + (1=t (y-% O (x,)),
and hence
0<O(x,y)+(1-1){y-%0(x,)). (47)
Lettingt — 0, we have, for each y € C,
0<0(%y)+{(y-%0®). (48)

This implies X € EP. Therefore, we have w € F(S) N EP. So,

limsup (X — u, x, — X) = lim <9~c— u,x, —9?>
n— 0o i— o0 (49)
=(X-u,w-Xx) >0.

Setting v, = x,, — (p,/(1 = ¢,))(P(x,) — O(X)) for all n and
taking z = X¥in (29) to get | D(x,,) - D(X)|| — 0,s0,v,—x, —
0. Since u,, — u, we have

lim sup (u, — X, v, — X) = limsup (u — X, v, — X)
n— 00 —
= limsup (u - X, x, - X) <O0.

n— 00

(50)
O

Conclusion 4 (x,, — X).

Proof. From (11), we have

~ _ )
[ x||2 < @,|x, - x||2 +(1-®,)|ST, w, - x”

_ 2
< @,|x, - x||2 +(1-@,)||T, w, - x"

= (Dn”xn - "z”Z + (1 - (Dn)

x |1, 0, -1, @~ po@)
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@, %, ~ %> + (1 - @,) |w, - & - p, 2@

IN

%, ~ %+ (1-a,)
XH(I_Cn)xn‘*Cn“n_an)(xn)— (52 - an)(f))nz
1-6)( (5~ 20 ()

(-r2ge))

2

(1 - (Dn)

+6,(u, — X)

+@,|x, - &

- (1—wn>(<1—cn>2

(x” 1 fnc,, ® (x")>

_<§_ 1/—)ncn®(£)>

+26, (1-,)
()

X <un—5c', <xn—i®
1-g,
—(55— Pn q>(5e)>>
1-g,

s, - 51

2

+@,|x, - 7|
<@|x, -7+ (1-a,)
X ((1 — )%, - F|* + 26, (1-¢,)

><<u,,—9?, X,— lpnq
“5n

X((D (xn)_q) (i))

_5>

< [1 - (1 _(Dn) cn] "xn _"?”2 + (1 _(Dn)cn

+eulu,~37)

x {2 (1_cn) <un_55’ Vn_f> + cn"“n_§l|2} .
(51)

It is clear that 2221(1 - @,)s, = oo and limsup, _, ., (2(1 -
Gt — X, v, — X) + G, llu, — ZII*) < 0. We can therefore apply
Lemma 9 to conclude that x,, — X. This completes the proof.

O

Corollary 11. Let C be a nonempty closed convex subset of H
and let ® : Cx C — R be a bifunction satisfying conditions
(C1)-(C4). Let ® : C — H be an g-inverse-strongly monotone
mapping and let S : C — C be a nonexpansive mapping.
Suppose that F(S) N EP+0. For x, € C arbitrarily, let the
sequence {x,} be generated by

X = @+ (1-@,) STy [(1=6,) %, = @ ()], n 20,

(52)

where T, is defined as that in Lemma4 and {p,} C
(0,2¢), {c,} € (0,1), and {@,} < (0, 1) satisfy

(i) lim, _, .6, = 0and Y2, ¢, = 00;
(i)0<c<@,<d<L;
(iii) a(l —¢,) < p, < b(1 —,,), where [a,b] c (0,2¢6) and
lim,, , o (Par1 = pu) = 0.

Then {x,} generated by (52) converges strongly to Pp(s)ngp(0)
which is the minimum norm element in F(S) N EP.
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