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A Cohen-Grossberg neural network with discrete delays is investigated in this paper. Sufficient conditions for the existence of local
Hopf bifurcation are obtained by analyzing the distribution of roots of characteristic equation. Moreover, the direction and stability
of Hopf bifurcation are obtained by applying the normal form theory and the center manifold theorem. Numerical simulations are
given to illustrate the obtained results.

1. Introduction

In recent years, more and more mathematicians, biologists,
physicists, and computer scientists focus on artificial neural
networks. It is well known that the analysis of the dynamical
behaviors is a necessary step for practical design of neural
networks since their applications heavily depend on the
dynamical behaviors; many important results on dynamical
behaviors of neural networks have been obtained [1–23]. The
neural networks are large-scale and complex systems, and
the dynamical behaviors of neural networks with delays are
more complicated; in order to obtain a deep and clear under-
standing of the dynamics of complicated neural networks
with time delays, researchers have focused on the studying
of simple systems [12–22]. This is indeed very useful since
the complexity found may be carried over to large neural
networks.

The research on dynamical behaviors of neural networks
involves not only the dynamic analysis of equilibriumbut also
that of periodic solution, bifurcation, and chaos; especially,
the periodic oscillatory behavior of the neural networks is
of great interest in many applications [2, 3]. Since periodic
oscillatory can arise through the Hopf bifurcation in different
system with or without time delays, it is very important to
discuss the Hopf bifurcation of neural networks.

In 1983, Cohen-Grossberg [1] proposed a kind of neural
networks, which are now calledCohen-Grossberg neural net-
works. The networks have been successfully applied to signal
processing, pattern recognition, optimization, and associa-
tive memories. Recently, some results on the existence and
globally asymptotical stability of periodic Cohen-Grossberg
neural networks have been obtained [7–15]. However, up
to now, to the best of the author’s knowledge, bifurcation
of Hopfield neural networks has been discussed by many
researchers [12–19], but few results on the bifurcation of
Cohen-Grossberg neural networks have been obtained. Zhao
discussed the bifurcation of a two-neuron discrete-time
Cohen-Grossberg neural network in [20] and the bifurcation
of a two-neuron continuous-time Cohen-Grossberg neural
network with distributed delays in which kernel function is
𝛼𝑒
−𝛼𝑠 in [21]. We discussed the bifurcation of a two-neuron

Cohen-Grossberg neural network with discrete delays in
[22]. The objective of this paper is to study the following 𝑛-
neuron continuous-time Cohen-Grossberg neural network
with discrete delays and ring architecture:
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where 𝑥
𝑖

(𝑡) denote the state variable of the 𝑖th neuron;
𝑎
𝑖

(⋅) represent amplification functions which are positive for
𝑅; 𝑓
𝑖

(⋅) denote the signal functions of the 𝑖th neuron; 𝑏
𝑖

(⋅) are
appropriately behaved functions; 𝑐

𝑖

are connection weights of
the neural networks; discrete delays 𝜏

𝑖

correspond to the finite
speed of the axonal signal transmission: 𝑖 = 1, 2, . . . , 𝑛, 𝑛 ≥ 2.

Ring architectures have been found in variety of neural
structures, and they are investigated to gain insight into the
mechanisms underlying the behaviors of recurrent neural
networks [23].

The rest of this paper is organized as follows. Stability
property and existence of Hopf bifurcation for system (1) are
obtained in Section 2. Based on the normal formmethod and
the center manifold, the formulas for the direction of Hopf
bifurcation and stability of the bifurcating periodic solutions
are derived in Section 3. An example is given in Section 4
to illustrate the main results, and conclusions are drawn in
Section 5.

2. Stability Analysis and Existence of
Local Bifurcation

Lemma 1 (see [11]). Consider the exponential polynomial
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where 𝜏
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System (1) can be transformed into the following equiva-
lent system:
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The linear system of system (5) around the equilibrium

(0, 0, . . . , 0) is given by
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in which cot−1 denotes the inverse of the cotangent function.
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𝑛

(−1)

+

𝑎


1

2

𝑐
1

𝑓


𝑛

𝜙
2

1

(0) 𝜙
𝑛

(−1) + h.o.t.,

𝐹
(𝑖)

(𝜙) = −(𝑎
𝑖

𝑏


𝑖

2

+ 𝑎


𝑖

𝑏


𝑖

)𝜙
2

𝑖

(0) + 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

2

𝜙
2

𝑖−1

(0)

+ 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

𝜙
𝑖−1

(0) 𝜙
𝑖

(0)

− (𝑎
𝑖

𝑏


𝑖

6

+ 𝑎


𝑖

𝑏


𝑖

2

+

𝑎


𝑖

2

𝑏


𝑖

)𝜙
3

𝑖

(0)

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

6

𝜙
3

𝑖−1

(0) + 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

2

𝜙
𝑖

(0) 𝜙
2

𝑖−1

(0)

+

𝑎


𝑖

2

𝑐
𝑖

𝑓


𝑖−1

𝜙
𝑖−1

(0) 𝜙
2

𝑖

(0) + h.o.t.

(22)

in which
𝑎
𝑖

= 𝑎
𝑖

(0) , 𝑎


𝑖

= 𝑎


𝑖

(0) , 𝑎


𝑖

= 𝑎


𝑖

(0) ,

𝑏
𝑖

= 𝑏
𝑖

(0) , 𝑏


𝑖

= 𝑏


𝑖

(0) , 𝑏


𝑖

= 𝑏


𝑖

(0) ,

𝑏


𝑖

= 𝑏


𝑖

(0) , 𝑓
𝑖

= 𝑓
𝑖

(0) , 𝑓


𝑖

= 𝑓


𝑖

(0) ,

𝑓


𝑖

= 𝑓


𝑖

(0) , 𝑓


𝑖

= 𝑓


𝑖

(0) ,

𝑖 = 1, 2, . . . , 𝑛.

(23)

From the discussions in Section 2, we know that if 𝜇 = 𝛾
1

,
system (19) undergoes a Hopf bifurcation at the equilibrium

(0, 0, . . . , 0), and the associated characteristic equation of
system (19) has a pair simple imaginary roots ±𝑖𝜔

1

.
By the Riesz representation theorem, there exists a

bounded variation function 𝜂(𝜃, 𝜇) for 𝜃 ∈ [−1, 0] such that

𝐿
𝜇

𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) for 𝜙 ∈ 𝐶. (24)

In fact, we can choose

𝜂 (𝜃, 𝜇) = 𝐵
1

𝛿 (𝜃) − 𝐵
2

𝛿 (𝜃 + 1) , (25)

where 𝛿(𝜃) is the Dirac delta function and 𝛿(𝜃) = {

0, 𝜃 ̸= 0,

1, 𝜃=0.

For 𝜙 ∈ 𝐶
1

([−1, 0], 𝑅
𝑛

), define

𝐴 (𝜇) 𝜙 =

{
{
{
{

{
{
{
{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑𝜂 (𝜇, 𝑠) 𝜙 (𝑠) , 𝜃 = 0,

(26)

𝑅 (𝜇) 𝜙 = {

0, 𝜃 ∈ [−1, 0) ,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(27)

The system (19) can be transformed into the following
operator equation form:

�̇�
𝑡

= 𝐴 (𝜇) 𝑢
𝑡

+ 𝑅 (𝜇) 𝑢
𝑡

, (28)

where 𝑢
𝑡

= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].
Denote

𝐴
𝜇=𝑏

1

= 𝐴
0

, 𝑅
𝜇=𝛾

1

= 𝑅
0

, 𝐹(𝜇, 𝜙)
𝜇=𝛾

1

= 𝐹
0

(𝜙) ,

𝐿
𝜇=𝛾

1

= 𝐿
0

, 𝜂 (𝜃, 0) = 𝜂 (𝜃) .

(29)

For 𝜓 ∈ 𝐶
1

([0, 1], (𝑅
𝑛

)
∗

), define

𝐴
∗

0

𝜓 (𝑠) =

{
{
{
{

{
{
{
{

{

−

𝑑𝜓 (𝜃)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑𝜂
𝑇

(𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0.

(30)

For 𝜙 ∈ 𝐶
1

([−1, 0], 𝑅
𝑛

) and 𝜓 ∈ 𝐶
1

([0, 1], (𝑅
𝑛

)
∗

), we
define a bilinear form

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0) − ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉.

(31)

Then 𝐴
0

and 𝐴
∗

0

are adjoint operators. We know that ±𝑖𝜔
1

𝜏

are eigenvalues of 𝐴
0

, so ±𝑖𝜔
1

𝜏 are also eigenvalues of 𝐴∗
0

.
Now we compute the eigenvectors of 𝐴

0

and 𝐴
∗

0

corre-
sponding to 𝑖𝜔

1

𝜏 and −𝑖𝜔
1

𝜏.
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Suppose that 𝑞(𝜃) = 𝑞
0

𝑒
𝑖𝜔

1
𝜏𝜃 is the eigenvector of 𝐴

0

corresponding to 𝑖𝜔
0

𝜏; then 𝐴
0

𝑞(𝜃) = 𝑖𝜔
1

𝜏𝑞(𝜃). From (25)
and (26), we know

𝑞
0

=

(

(

(

(

(

(

(

(

(

(

(

(

(

1

𝑑
2

𝛼
2

+ 𝑖𝜔
1

𝑑
2

𝑑
3

(𝛼
2

+ 𝑖𝜔
1

) (𝛼
3

+ 𝑖𝜔
1

)

...
𝑑
2

𝑑
3

⋅ ⋅ ⋅ 𝑑
𝑛−1

(𝛼
2

+ 𝑖𝜔
1

) (𝛼
3

+ 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑛−1

+ 𝑖𝜔
𝑛−1

)

𝑑
2

𝑑
3

⋅ ⋅ ⋅ 𝑑
𝑛

(𝛼
2

+ 𝑖𝜔
1

) (𝛼
3

+ 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑛

+ 𝑖𝜔
𝑛

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(32)

Similarly, we know that 𝑞∗(𝑠) = 𝐷𝑞
∗

0

𝑒
𝑖𝜔

1
𝜏𝑠 with

𝑞
∗

0

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

𝛼
1

− 𝑖𝜔
1

𝑑
2

(𝛼
1

− 𝑖𝜔
1

) (𝛼
2

− 𝑖𝜔
1

)

𝑑
2

𝑑
3

...
(𝛼
1

− 𝑖𝜔
1

) (𝛼
2

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑛−2

− 𝑖𝜔
1

)

𝑑
2

𝑑
3

⋅ ⋅ ⋅ 𝑑
𝑛−1

(𝛼
1

− 𝑖𝜔
1

) (𝛼
2

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑛−1

− 𝑖𝜔
1

)

𝑑
2

𝑑
3

⋅ ⋅ ⋅ 𝑑
𝑛

)

)

)

)

)

)

)

)

)

)

)

)

)

)

(33)

and 𝑠 ∈ [0, 1) is the eigenvector of𝐴∗
0

corresponding to−𝑖𝜔
1

𝜏,
where

𝐷 = (𝛼
1

+ 𝑖𝜔) [

𝑛

∑

𝑖=1

1

𝛼
𝑖

+ 𝑖𝜔

+ 𝜏]

−1

. (34)

Moreover, ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0.
Using the same notations as Hassard et al. [25], we

construct the coordinates to describe the center manifold 𝐶
0

at 𝜇 = 𝛾
1

.
Define

𝑧 (𝑡) = ⟨𝑞
∗

, 𝑢
𝑡

⟩ ,

𝑤 (𝑡, 𝜃) = 𝑢
𝑡

− 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .
(35)

On the center manifold 𝐶
0

, we have

𝑤 (𝑡, 𝜃) = 𝑤 (𝑧, 𝑧, 𝜃) , (36)

where

𝑤 (𝑧, 𝑧, 𝜃) = 𝑤
20

(𝜃)

𝑧
2

2

+ 𝑤
11

(𝜃) 𝑧𝑧 + 𝑤
02

(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ ,

(37)

𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in
the direction of 𝑞∗ and 𝑞∗. Note that 𝑤 is real if 𝑢

𝑡

is real. We
only consider real solutions.

For solution 𝑢
𝑡

∈ 𝐶
0

of (19), since 𝜇 = 𝑏
1

, we have

�̇� (𝑡) = 𝑖𝜔
1

𝜏𝑧 + ⟨𝑞
∗

(𝜃) , 𝐹
0

(𝑤 (𝑧, 𝑧, 𝜃) + 2Re {𝑧𝑞 (𝜃)})⟩

= 𝑖𝜔
1

𝜏𝑧 + 𝑞
∗

(0) 𝐹
0

(𝑤 (𝑧, 𝑧, 0) + 2Re {𝑧𝑞 (0)})

def
= 𝑖𝜔
1

𝜏𝑧 + 𝑞
∗

(0) 𝐺
0

(𝑧, 𝑧) .

(38)

We rewrite this as

�̇� (𝑡) = 𝑖𝜔
1

𝜏𝑧 (𝑡) + 𝑔 (𝑧, 𝑧) (39)

with

𝑔 (𝑧, 𝑧) = 𝑞
∗

(0) 𝐺
0

(𝑧, 𝑧) = 𝑔
20

𝑧
2

2

+ 𝑔
11

𝑧𝑧 + 𝑔
02

𝑧
2

2

+𝑔
21

𝑧
2

𝑧

2

+ ⋅ ⋅ ⋅ .

(40)

From (29), (36), and (39), we have

�̇� = �̇�
𝑡

− �̇�𝑞 +
̇
𝑧𝑞

=

{

{

{

𝐴𝑤 − 2Re {𝑞∗ (0) 𝐹
0

𝑞 (𝜃)} , 𝜃 ∈ [−1, 0) ,

𝐴𝑤 − 2Re {𝑞∗ (0) 𝐹
0

𝑞 (0)} + 𝐹
0

, 𝜃 = 0,

def
= 𝐴𝑤 + 𝐻 (𝑧, 𝑧, 𝜃) ,

(41)

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻
20

(𝜃)

𝑧
2

2

+ 𝐻
11

(𝜃) 𝑧𝑧 + 𝐻
02

(𝜃)

𝑧
2

2

+ ⋅ ⋅ ⋅ .

(42)

Since

𝑔 (𝑧, 𝑧) = 𝑞
∗

(0) 𝐺
0

(𝑧, 𝑧) = 𝐷𝑞
∗

0

𝐹
0

(𝑧, 𝑧)

= 𝐷𝜏𝑞
∗

0

(𝐹
(1)

(𝑢
𝑡

) , 𝐹
(2)

(𝑢
𝑡

) , . . . , 𝐹
(𝑛)

(𝑢
𝑡

))

𝑇

,

(43)
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where

𝐹
(1)

(𝑢
𝑡

) = −(𝑎
1

𝑏


1

2

+ 𝑎


1

𝑏


1

)𝑢
2

1𝑡

(0) + 𝑎
1

𝑐
1

𝑓


𝑛

2

𝑢
2

𝑛𝑡

(−1)

+ 𝑎


1

𝑐
1

𝑓


𝑛

𝑢
1𝑡

(0) 𝑢
𝑛𝑡

(−1)

− (𝑎
1

𝑏


1

6

+ 𝑎


1

𝑏


1

2

+

𝑎


1

2

𝑏


1

)𝑢
3

1𝑡

(0)

+ 𝑎
1

𝑐
1

𝑓


𝑛

6

𝑢
3

𝑛𝑡

(−1) + 𝑎


1

𝑐
1

𝑓


𝑛

2

𝑢
1𝑡

(0) 𝑢
2

𝑛𝑡

(−1)

+

𝑎


1

2

𝑐
1

𝑓


𝑛

𝑢
2

1𝑡

(0) 𝑢
𝑛𝑡

(−1) + h.o.t.,

𝐹
(𝑖)

(𝑢
𝑡

) = −(𝑎
𝑖

𝑏


𝑖

2

+ 𝑎


𝑖

𝑏


𝑖

)𝑢
2

𝑖𝑡

(0) + 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

2

𝑢
2

(𝑖−1)𝑡

(0)

+ 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑢
(𝑖−1)𝑡

(0) 𝑢
𝑖𝑡

(0)

− (𝑎
𝑖

𝑏


𝑖

6

+ 𝑎


𝑖

𝑏


𝑖

2

+

𝑎


𝑖

2

𝑏


𝑖

)𝑢
3

𝑖𝑡

(0)

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

6

𝑢
3

(𝑖−1)𝑡

(0) + 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

2

𝑢
𝑖𝑡

(0) 𝑢
2

(𝑖−1)𝑡

(0)

+

𝑎


𝑖

2

𝑐
𝑖

𝑓


𝑖−1

𝑢
(𝑖−1)𝑡

(0) 𝑢
2

𝑖𝑡

(0) + h.o.t.
(44)

in which 𝑢
𝑡

= 2Re{𝑧(𝑡)𝑞(𝜃)} + 𝑤(𝑡, 𝜃) = 𝑤(𝑧, 𝑧, 𝜃) + 𝑧𝑞(𝜃) +

𝑧𝑞(𝜃), 𝑖 = 2, 3, . . . , 𝑛.
Denote the 𝑖th element of 𝑞(0) by 𝑞

𝑖

and the 𝑖th element
of 𝑤(𝑧, 𝑧, 𝜃) by

𝑊
(𝑖)

(𝑧, 𝑧, 𝜃) = 𝑊
(𝑖)

20

𝑧
2

2

+𝑊
(𝑖)

11

𝑧𝑧 + ⋅ ⋅ ⋅ . (45)

Then if follows that

𝑢
𝑖𝑡

(0) = 𝑊
(𝑖)

(𝑧, 𝑧, 0) + 𝑧𝑞
𝑖

+ 𝑧𝑞
𝑖

, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑢
𝑛𝑡

(−1) = 𝑊
(𝑖)

(𝑧, 𝑧, −1) + 𝑧𝑞
𝑛

𝑒
−𝑖𝜏𝜔

1
+ 𝑧𝑞
𝑛

𝑒
𝑖𝜏𝜔

1
.

(46)

Substitute (46) into (43) and comparing the coefficients in
(40) with those in (43), we have

𝑔
20

= 𝐷𝜏 [− (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) + 𝑎
1

𝑐
1

𝑓


𝑛

𝑞
2

𝑛

𝑒
−𝑖2𝜔

1
𝜏

+2𝑎


1

𝑐
1

𝑓


𝑛

𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

]

+ 𝐷

𝑛

∑

𝑖=2

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) 𝑞
2

𝑖

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
2

𝑖−1

+2𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
𝑖

𝑞
𝑖−1

] ,

𝑔
11

= 𝐷𝜏 [− (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) + 𝑎
1

𝑐
1

𝑓


𝑛

𝑞
𝑛

𝑞
𝑛

+𝑎


1

𝑐
1

𝑓


𝑛

(𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

+ 𝑞
𝑛

𝑒
𝑖𝜔

1
𝜏

)]

+ 𝐷

𝑛

∑

𝑖=2

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) 𝑞
𝑖

𝑞
𝑖

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
𝑖−1

𝑞
𝑖−1

+𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

(𝑞
𝑖−1

𝑞
𝑖

+ 𝑞
𝑖−1

𝑞
𝑖

)] ,

𝑔
02

= 𝐷𝜏 [− (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) + 𝑎
1

𝑐
1

𝑓


𝑛

𝑞
2

𝑒
𝑖2𝜔𝜏

+2𝑎


1

𝑐
1

𝑓


2

𝑞
𝑛

𝑒
𝑖𝜔𝜏

]

+ 𝐷

𝑛

∑

𝑖=2

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) 𝑞
2

𝑖

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
2

𝑖−1

+2𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
𝑖−1

𝑞
𝑖

] ,

𝑔
21

= 𝐷𝜏 [− (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) (𝑤
(1)

20

(0) + 2𝑤
(1)

11

(0)) + 𝑎
1

𝑐
1

𝑓


𝑛

× (𝑞
𝑛

𝑒
𝑖𝜔

1
𝜏

𝑤
(𝑛)

20

(−1) + 2𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

𝑤
(𝑛)

11

(−1))

+ 𝑎


1

𝑐
1

𝑓


𝑛

(𝑞
𝑛

𝑒
𝑖𝜔

1
𝜏

𝑤
(1)

20

(0) + 2𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

𝑤
(1)

11

(0)

+𝑤
(𝑛)

20

(−1) + 2𝑤
(𝑛)

11

(−1))

− (𝑎
1

𝑏


1

+ 3𝑎


1

𝑏


1

+ 3𝑎


1

𝑏


1

)

+ 𝑎
1

𝑐
1

𝑓


𝑛

𝑞
𝑛

𝑞
2

𝑛

𝑒
−𝑖𝜔

1
𝜏

+ 𝑎


1

𝑑
1

𝑓


𝑛

(𝑞
2

𝑛

𝑒
−𝑖2𝜔

1
𝜏

+ 2𝑞
𝑛

𝑞
𝑛

)

+𝑎


1

𝑐
1

𝑓


𝑛

(𝑞
𝑛

𝑒
𝑖𝜔

1
𝜏

+ 2𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

)]

+ 𝐷

𝑛

∑

𝑖=2

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) (𝑞
𝑖

𝑤
(𝑖)

20

(0) + 2𝑞
𝑖

𝑤
(𝑖)

11

(0))
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+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

(𝑤
(𝑖−1)

20

(0) 𝑞
𝑖−1

+ 2𝑤
(𝑖−1)

11

(0) 𝑞
𝑖−1

)

+ 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

(𝑤
(𝑖)

20

(0) 𝑞
𝑖−1

+ 2𝑤
(𝑖)

11

(0) 𝑞
𝑖−1

+𝑤
(𝑖−1)

20

(0) 𝑞
𝑖

+ 2𝑤
(𝑖−1)

11

(0) 𝑞
𝑖

)

+ (𝑎
𝑖

𝑏


𝑖

+ 3𝑎


𝑖

𝑏


𝑖

+ 3𝑎


𝑖

𝑏


𝑖

) 𝑞
2

𝑖

𝑞
𝑖

+ 𝑎
𝑖

𝑑
𝑖

𝑓


𝑖−1

𝑞
2

𝑖−1

𝑞
𝑖−1

+ 𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

(𝑞
2

𝑖−1

𝑞
𝑖

+ 2𝑞
𝑖−1

𝑞
2

𝑖−1

)

+𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

(𝑞
2

𝑖

𝑞
𝑖

+ 2𝑞
𝑖

𝑞
𝑖−1

𝑞
𝑖

)] ,

(47)

where 𝑞
𝑖

is 𝑖th element of 𝑞(0) shown in (32).
Since there are 𝑤

20

(𝜃) and 𝑤
11

(𝜃) in 𝑔
21

, we still need to
figure them out. Note that on the center manifold𝐶

0

, we have

�̇� = 𝑤
𝑧

�̇� + 𝑤
𝑧

̇
𝑧. (48)

We have from (41), (42), and (48) that

(𝐴 − 2𝑖𝜔
1

𝜏)𝑤
20

(𝜃) = −𝐻
20

(𝜃) , 𝐴𝑤
11

(𝜃) = −𝐻
11

(𝜃) .

(49)

Equations (39) and (41) mean

𝐻(𝑧, 𝑧, 𝜃) = −𝑔𝑞 (𝜃) − 𝑔𝑞 (𝜃) (50)

for 𝜃 ∈ [−1, 0).
Comparing the coefficients with (42), we have

𝐻
20

(𝜃) = −𝑔
20

𝑞 (𝜃) − 𝑔
02

𝑞 (𝜃) ,

𝐻
11

(𝜃) = −𝑔
11

𝑞 (𝜃) − 𝑔
11

𝑞 (𝜃) .

(51)

From (26), (49), and (50), we can obtain

�̇�
20

(𝜃) = 2𝑖𝜔
0

𝜏𝑤
20

(𝜃) + 𝑔
20

𝑞 (𝜃) + 𝑔
02

𝑞 (𝜃) . (52)

So

𝑤
20

(𝜃) =

𝑖

𝜔
1

𝜏

𝑔
20

𝑞 (0) 𝑒
𝑖𝜔

1
𝜏𝜃

+

𝑖

3𝜔
1

𝜏

𝑔
02

𝑞 (0) 𝑒
−𝑖𝜔

1
𝜏𝜃

+ 𝐸
1

𝑒
2𝑖𝜔

1
𝜏𝜃

(53)

and similarly

𝑤
11

(𝜃) = −

𝑖

𝜔
1

𝜏

𝑔
11

𝑞 (0) 𝑒
𝑖𝜔

1
𝜏𝜃

+

𝑖

𝜔
1

𝜏

𝑔
11

𝑞 (0) 𝑒
−𝑖𝜔

1
𝜏𝜃

+ 𝐸
2

,

(54)

where 𝐸
1

= (𝐸
(1)

1

, 𝐸(2)
1

, . . ., 𝐸(𝑛)
1

)
𝑇, 𝐸
2

= (𝐸
(1)

2

, 𝐸(2)
2

, . . ., 𝐸(𝑛)
2

)
𝑇

∈

𝑅
𝑛.
In the following, we focus on the computation of 𝐸

1

and
𝐸
2

. From (26) and (49), we know

∫

0

−1

𝑑𝜂 (𝜃)𝑤
20

(𝜃) = 2𝑖𝜔
1

𝜏𝑤
20

(𝜃) − 𝐻
20

(0) , (55)

∫

0

−1

𝑑𝜂 (𝜃)𝑤
11

(𝜃) = −𝐻
11

(0) (56)

in which 𝜂(𝜃) = 𝜂(0, 𝜃).

We know from (41) and (43) that

𝐻
20

(0) = −𝑔
20

𝑞 (0) − 𝑔
02

𝑞 (0) + 𝜏(

ℎ
1

ℎ
2

...
ℎ
𝑛

) (57)

in which

ℎ
1

= − (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) + 𝑎
1

𝑐
1

𝑓


𝑛

𝑞
2

𝑛

𝑒
−𝑖2𝜔

1
𝜏

+ 2𝑎


1

𝑐
1

𝑓


𝑛

𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

,

ℎ
𝑖

=

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) 𝑞
2

𝑖

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

+2𝑎


𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
𝑖

𝑞
𝑖−1

] , 2 ≤ 𝑖 ≤ 𝑛,

𝐻
11

(0) = −𝑔
11

𝑞 (0) − 𝑔
11

𝑞 (0) + 𝜏(

𝑙
1

𝑙
2

...
𝑙
𝑛

)

(58)

in which

𝑙
1

= − (𝑎
1

𝑏


1

+ 2𝑎


1

𝑏


1

) + 𝑎
1

𝑑
1

𝑓


𝑛

𝑞
𝑛

𝑞
𝑛

+ 𝑎


1

𝑐
1

𝑓


𝑛

(𝑞
𝑛

𝑒
−𝑖𝜔

1
𝜏

+ 𝑞
𝑛

𝑒
𝑖𝜔

1
𝜏

) ,

𝑙
𝑖

=

(𝛼
1

− 𝑖𝜔
1

) ⋅ ⋅ ⋅ (𝛼
𝑖−1

− 𝑖𝜔
1

)

𝑑
2

⋅ ⋅ ⋅ 𝑑
𝑖

𝜏

× [− (𝑎
𝑖

𝑏


𝑖

+ 2𝑎


𝑖

𝑏


𝑖

) 𝑞
𝑖

𝑞
𝑖

+ 𝑎
𝑖

𝑐
𝑖

𝑓


𝑖−1

𝑞
𝑖−1

𝑞
𝑖−1

+𝑎


𝑖

𝑑
𝑖

𝑓


𝑖−1

(𝑞
𝑖−1

𝑞
𝑖

+ 𝑞
𝑖−1

𝑞
𝑖

)] , 2 ≤ 𝑖 ≤ 𝑛.

(59)
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Substituting (53) and (57) into (55), we have

(

(

2𝑖𝜔
1

+ 𝛼
1

0 0 0 ⋅ ⋅ ⋅ 0 0 −𝛽
1

−𝛽
2

2𝑖𝜔
1

+ 𝛼
2

0 0 ⋅ ⋅ ⋅ 0 0 0

0 −𝛽
3

2𝑖𝜔
1

+ 𝛼
3

0 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅ −𝛽
𝑛−1

2𝑖𝜔
1

+ 𝛼
𝑛−1

0

0 0 0 0 ⋅ ⋅ ⋅ 0 −𝛽
𝑛

2𝑖𝜔
1

+ 𝛼
𝑛

)

)

𝐸
1

= (

ℎ
1

ℎ
2

...
ℎ
𝑛

). (60)

Solving this we can obtain 𝐸
1

= (𝐸
(1)

1

, 𝐸
(2)

1

, . . . , 𝐸
(𝑛)

1

)
𝑇. Similarly, we can obtain 𝐸

2

= (𝐸
(1)

2

, 𝐸
(2)

2

, . . . , 𝐸
(𝑛)

2

)
𝑇 from

(

(

𝛼
1

0 0 0 ⋅ ⋅ ⋅ 0 0 −𝛽
1

−𝛽
2

𝛼
2

0 0 ⋅ ⋅ ⋅ 0 0 0

0 −𝛽
3

𝛼
3

0 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅ −𝛽
𝑛−1

𝛼
𝑛−1

0

0 0 0 0 ⋅ ⋅ ⋅ 0 −𝛽
𝑛

𝛼
𝑛

)

)

𝐸
2

= (

𝑙
1

𝑙
2

...
𝑙
𝑛

). (61)

Based on the above analysis, we can see that each 𝑔
𝑖𝑗

in
(47) is determined by the parameters and delays for (1).Thus,
we can compute the following quantities:

𝐶
1

(0) =

𝑖

2𝜔
1

𝜏

(𝑔
20

𝑔
11

− 2




𝑔
11






2

−





𝑔
02






2

3

) +

𝑔
21

2

,

𝜇
2

= −

Re {𝐶
1

(0)}

Re {𝜆 (𝛾
1

)}

,

𝛽
2

= 2Re {𝐶
1

(0)} ,

𝑇
2

= −

Im {𝐶
1

(0)} + 𝜇
2

Im {𝜆


(𝛾
1

)}

𝜏𝜔
1

.

(62)

It is known that 𝜇
2

determines the direction of the Hopf
bifurcation and 𝛽

2

determines the stability of the bifurcating
periodic solutions. Since Re{𝜆(𝛾

1

)} < 0, we know if

Re{𝐶
1

(0)} < 0 (Re{𝐶
1

(0)} > 0); then the Hopf Bifurcation is
supercritical (subcritical), the bifurcating periodic solutions
exist for 𝛾 < 𝛾

1

, and the bifurcating periodic solutions are
stable (unstable). 𝑇

2

determines the period of the bifurcating
periodic solutions: the period increases (decreases) if 𝑇

2

>

0 (𝑇
2

< 0).
Under some conditions, the equilibrium (0, 0, . . . , 0) of

system (1) is globally asymptotically stable. The following
result can be directly obtained from Corollary 2 in [5].

Theorem 3. Under assumptions (H
1

)–(H
3

), the equilibrium
(0, 0, . . . , 0) of system (1) is globally asymptotically stable if the
following conditions hold.

(H
3

) There exist constants 𝑏
𝑖

such that 𝑏
𝑖

(⋅) ≥ 𝑏
𝑖

> 0 for
𝑖 = 1, 2, . . . , 𝑛.

(H
4

) There exist positive constants 𝐿
𝑖

such that |𝑓
𝑖

(⋅)| ≤ 𝐿
𝑖

for 𝑖 = 1, 2, . . . , 𝑛.
(H
5

) The following matrix 𝐴 is an𝑀-matrix:

𝐴 =

(

(

(

(

(

(

(

(

(

𝑏
1

0 0 0 ⋅ ⋅ ⋅ 0 0 −




𝑐
1





𝐿
1

−




𝑐
2





𝐿
2

𝑏
2

0 0 ⋅ ⋅ ⋅ 0 0 0

0 −




𝑐
3





𝐿
3

𝑏
3

0 ⋅ ⋅ ⋅ 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 ⋅ ⋅ ⋅ −




𝑐
𝑛−1





𝐿
𝑛−1

𝑏
𝑛−1

0

0 0 0 0 ⋅ ⋅ ⋅ 0 −




𝑐
𝑛





𝐿
𝑛

𝑏
𝑛

)

)

)

)

)

)

)

)

)

. (63)

Note that the conditions in Theorem 3 have more restric-
tions than those in Theorem 2. Since 𝐴 is an M-matrix,

we have |𝐴| > 0 [26]; that is, ∏𝑛
𝑖=1

𝑏
𝑖

> ∏
𝑛

𝑖=1

|𝑐
𝑖

𝐿
𝑖

|; it
yields ∏𝑛

𝑖=1

𝑎
𝑖

(0)𝑏
𝑖

> ∏
𝑛

𝑖=1

|𝑎
𝑖

(0)𝑐
𝑖

𝐿
𝑖

|, which, together with
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Figure 1: Phase plot in space (𝑥
1

, 𝑥
2

, 𝑥
3

) for system (64) with 𝑐
1

=

0.8.

conditions (H
3

) and (H
4

), implies that |𝛾| ≤ 𝛾
0

; moreover,
𝛾 ∈ (−𝛾

1

, 𝛾
0

) due to |𝛾
1

| > 𝛾
0

. Hence, conditions (H
3

)–(H
5

)
imply that the condition 𝛾 ∈ (−𝛾

1

, 𝛾
0

) in Theorem 2 holds.

4. A Numerical Example

Example 1. Consider the following Cohen-Grossberg neural
network with discrete delays:

�̇�
1

(𝑡) = − [0.6𝑥
1

(𝑡) − 𝑐
1

tanh (𝑥
3

(𝑡 − 3))] ,

�̇�
1

(𝑡) = − (2 + cos (𝑥
2

(𝑡))) [𝑥
2

(𝑡) − 0.8 tanh (𝑥
1

(𝑡 − 2))] ,

�̇�
1

(𝑡) = − (2 + cos (𝑥
3

(𝑡))) [𝑥
3

(𝑡) + tanh (𝑥
2

(𝑡 − 2))] .

(64)

We can obtain that 𝜔
1

= 0.3423 and furthermore we obtain
that 𝛾

1

= −6.2979 in view of bisection method by using
MATLAB. It is easy to know 𝛾

0

= 5.4. We also know from
(3) that 𝛾 = −7.2𝑐

1

.

According toTheorem 2, the zero solution of system (64)
is asymptotically stable when 𝛾 ∈ (−6.2979, 5.4), and when
𝛾 = 𝛾
1

, the Hopf bifurcation occurs at the origin.

Case 1. Let 𝑐
1

= 0.8. 𝛾 = −7.2 × 0.8 = −5.66 ∈ (−6.2979, 5.4);
then the zero solution of system (64) is asymptotically stable.
Figure 1 shows the dynamic behaviors of system (64) with
initial condition (0.1, 0.2, 0.1).

Case 2. Let 𝑐
1

= 0.9, and 𝛾 = −7.2 × 0.9 = −6.48 < 𝛾
1

.
We know fromTheorem 2 that the Hopf bifurcation occur at
the origin; furthermore, we can obtain Re{𝐶

1

(0)} = −4.031,
so the bifurcating periodic solutions are supercritical and
asymptotically stable. Figures 2 and 3 show the dynamic
behaviors of system (64) with initial conditions (0.1, 0.2, 0.1)
and (0.5, 1, 0.5), respectively.

The presented numerical simulations illustrate the theo-
retical results.
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) for system (64) with 𝑐
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5. Conclusions

An 𝑛-neuron Cohen-Grossberg neural network with discrete
delays and ring architecture is analyzed in this paper. By using
𝛾 = ∏

𝑛

𝑙=1

𝛽
𝑖

= ∏
𝑛

𝑙=1

𝑎
𝑖

(0)𝑐
𝑖

𝑓


𝑖

(0) as a bifurcation parameter,
we show that this system undergoes a Hopf bifurcations at a
critical parameter:

𝛾
0

=

𝑛

∏

𝑙=1

𝛼
𝑙

, 𝛾
1

= −√

𝑛

∏

𝑙=1

(𝛼
2

𝑙

+ 𝜔
2

1

), (65)

where 𝜔
1

∈ (0, 𝜋/𝜏) and satisfies the equation 𝜋 =

∑
𝑛

𝑙=1

cot−1(𝛼
𝑙

/𝜔) + 𝜔𝜏, 𝜏 = 𝜏
1

+ 𝜏
2

+ ⋅ ⋅ ⋅ + 𝜏
𝑛

. The direction of
Hopf bifurcation and the stability of the bifurcating periodic
solutions are investigated by applying the normal form theory
and the center manifold theorem for continuous time system.
The phenomena of bifurcating periodic solutions for Cohen-
Grossberg neural networks coincide with the fact that learn-
ing usually requires repetition [2], and periodic sequences of
neural impulse are also of fundamental significance for the
control of dynamic functions of the body such as heart beat
which occurs with great regularity and breathing [19]. In this
paper, we extend the results about the existence of local Hopf
bifurcation in [22] to the case of a discrete-time 𝑛-neuron
Cohen-Grossberg system with discrete delays. In the future,
the problem for the existence of global Hopf bifurcation will
be expected to be solved.
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