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We give a brute-force proof of the Kastler-Kalau-Walze type theorem for 7-dimensional manifolds with boundary.

1. Introduction

The noncommutative residue found in [1, 2] plays a promi-
nent role in noncommutative geometry. For one-dimensional
manifolds, the noncommutative residue was discovered by
Adler [3] in connection with geometric aspects of nonlinear
partial differential equations. For arbitrary closed compact
𝑛-dimensional manifolds, the noncommutative residue was
introduced by Wodzicki in [2] using the theory of zeta func-
tions of elliptic pseudodifferential operators. In [4], Connes
used the noncommutative residue to derive a conformal 4-
dimensional Polyakov action analogy. Furthermore, Connes
made a challenging observation that the noncommutative
residue of the square of the inverse of the Dirac operator was
proportional to the Einstein-Hilbert action in [5]. Let 𝑠 be
the scalar curvature and letWres denote the noncommutative
residue. Then, the Kastler-Kalau-Walze theorem gives an
operator-theoretic explanation of the gravitational action and
says that, for a 4-dimensional closed spin manifold, there
exists a constant 𝑐

0
, such that

Wres (𝐷−2
) = 𝑐

0
∫

𝑀

𝑠d vol
𝑀
. (1)

In [6], Kastler gave a brute-force proof of this theorem. In
[7], Kalau and Walze proved this theorem in the normal
coordinates system simultaneously. And then, Ackermann
proved that the Wodzicki residue Wres(𝐷−2

) in turn is

essentially the second coefficient of the heat kernel expansion
of𝐷2 in [8].

On the other hand, Fedosov et al. defined a noncommuta-
tive residue on Boutet de Monvel’s algebra and proved that it
was a unique continuous trace in [9]. In [10], Schrohe gave the
relation between the Dixmier trace and the noncommutative
residue for manifolds with boundary. For an oriented spin
manifold𝑀 with boundary 𝜕𝑀, by the composition formula
in Boutet de Monvel’s algebra and the definition of W̃res
[11], W̃res[(𝜋+

𝐷
−1
)
2
] should be the sum of two terms from

interior and boundary of 𝑀, where 𝜋+
𝐷

−1 is an element
in Boutet de Monvel’s algebra [11]. It is well known that
the gravitational action for manifolds with boundary is
also the sum of two terms from interior and boundary of
𝑀 [12]. Considering the Kastler-Kalau-Walze theorem for
manifolds without boundary, then the term from interior
is proportional to gravitational action from interior, so it is
natural to hope to get the gravitational action for manifolds
with boundary by computing W̃res[(𝜋+

𝐷
−1
)
2
]. Based on the

motivation, Wang [13] proved a Kastler-Kalau-Walze type
theorem for 4-dimensional spin manifolds with boundary

W̃res [(𝜋+
𝐷

−1
)

2

] = −

Ω
3

3

∫

𝑀

𝑠d vol
𝑀
, (2)

where Ω
3
is the canonical volume of 𝑆3. Furthermore, Wang

[14] found a Kastler-Kalau-Walze type theorem for higher
dimensional manifolds with boundary and generalized the
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definition of lower-dimensional volumes in [15] to mani-
folds with boundary. For 5-dimensional spin manifolds with
boundary [14], Wang got

W̃res [(𝜋+
𝐷

−2
)

2

] =

𝜋𝑖

2

Ω
2
vol

𝜕𝑀
, (3)

and for 6-dimensional spin manifolds with boundary,

W̃res [(𝜋+
𝐷

−2
)

2

] = −

5Ω
5

3

∫

𝑀

𝑠d vol
𝑀
. (4)

In order to get the boundary term, we computed the
lower-dimensional volume Vol(1,3)

6
for 6-dimensional spin

manifolds with boundary associated with𝐷−1 and𝐷−3 in [16]
and obtained the volume with the boundary term

W̃res [𝜋+
𝐷

−1
⋅ 𝜋

+
𝐷

−3
] = −

5Ω
4

3

∫

𝑀

𝑠d vol
𝑀

+ 𝜋Ω
3
∫

𝜕𝑀

𝐾d vol
𝜕𝑀
,

(5)

where𝐾 is the extrinsic curvature.
In [17], Wang proved a Kastler-Kalau-Walze type the-

orem for general form perturbations and the conformal
perturbations of Dirac operators for compact manifolds with
or without boundary. Let 𝑀 be 4-dimensional compact
manifolds with the boundary 𝜕𝑀 and let Ψ be a general
differential form on𝑀, fromTheorem 10 in [17]; then

W̃res [(𝜋+
(𝐷

Ψ
)

−1

)

2

]

= 4𝜋
2
∫

𝑀

Tr [− 𝑠

12

−

1

2

𝑐 (Ψ) 𝑐 (𝑒
𝑖
) 𝑐 (Ψ) 𝑐 (𝑒

𝑖
)

+ (𝑐 (Ψ))
2
] d vol

𝑀
.

(6)

Recently, we computed W̃res[𝜋+
𝐷

−𝑝
1
⋅ 𝜋

+
𝐷

−𝑝
2
] for 𝑛-

dimensional spinmanifolds with boundary in case of 𝑛−𝑝
1
−

𝑝
2
≤ 2. In the present paper, we will restrict our attention to

the case of 𝑛 − 𝑝
1
− 𝑝

2
= 3. We compute W̃res[(𝜋+

𝐷
−2
)
2
] for

7-dimensional manifolds with boundary. Our main result is
as follows.

Main Theorem. The following identity for 7-dimensional
manifolds with boundary holds:

W̃res [(𝜋+
𝐷

−2
)

2

]

=

𝜋
4

48

∫

𝜕
𝑀

(−

47

2

𝐾
2
− 49𝑠

𝑀

󵄨
󵄨
󵄨
󵄨𝜕
𝑀

−

77

4

𝑠
𝜕
𝑀

) d vol
𝜕
𝑀

,

(7)

where 𝑠
𝑀

and 𝑠
𝜕
𝑀

are, respectively, scalar curvatures on
𝑀 and 𝜕

𝑀
. Compared with the previous results, up to the

extrinsic curvature, the scalar curvature on 𝜕
𝑀

and the
scalar curvature on 𝑀 appear in the boundary term. This
case essentially makes the whole calculations more difficult,
and the boundary term is the sum of fifteen terms. As in

computations of the boundary term, we will consider some
new traces of multiplication of Clifford elements. And the
inverse 4-order symbol of the Dirac operator and higher
derivatives of -1-order and -3-order symbols of the Dirac
operators will be extensively used.

This paper is organized as follows. In Section 2, we
define lower-dimensional volumes of compact Riemannian
manifolds with boundary. In Section 3, for 7-dimensional
spin manifolds with boundary and the associated Dirac
operators, we compute W̃res[(𝜋+

𝐷
−2
)
2
] and get a Kastler-

Kalau-Walze type theorem in this case.

2. Lower-Dimensional Volumes of Spin
Manifolds with Boundary

In this section, we consider an 𝑛-dimensional oriented
Riemannian manifold (𝑀, 𝑔

𝑀
) with boundary 𝜕

𝑀
equipped

with a fixed spin structure. We assume that the metric 𝑔𝑀 on
𝑀 has the following form near the boundary:

𝑔
𝑀
=

1

ℎ (𝑥
𝑛
)

𝑔
𝜕𝑀

+ 𝑑𝑥
2

𝑛
, (8)

where 𝑔𝜕𝑀 is the metric on 𝜕𝑀. Let 𝑈 ⊂ 𝑀 be a collar
neighborhood of 𝜕𝑀 which is diffeomorphic 𝜕𝑀× [0, 1). By
the definition of ℎ(𝑥

𝑛
) ∈ 𝐶

∞
([0, 1)) and ℎ(𝑥

𝑛
) > 0, there

exists ̃ℎ ∈ 𝐶
∞
((−𝜀, 1)) such that ̃ℎ|

[0,1)
= ℎ and ̃ℎ > 0 for

some sufficiently small 𝜀 > 0. Then, there exists a metric
𝑔 on 𝑀̂ = 𝑀⋃

𝜕𝑀
𝜕𝑀 × (−𝜀, 0] which has the form on

𝑈⋃
𝜕𝑀

𝜕𝑀 × (−𝜀, 0]

𝑔 =

1

̃
ℎ (𝑥

𝑛
)

𝑔
𝜕𝑀

+ 𝑑𝑥
2

𝑛
, (9)

such that 𝑔|
𝑀

= 𝑔. We fix a metric 𝑔 on the 𝑀̂ such that
𝑔|

𝑀
= 𝑔.
Let us give the expression of Dirac operators near the

boundary. Set𝐸
𝑛
= 𝜕/𝜕𝑥

𝑛
and𝐸

𝑗
= √ℎ(𝑥

𝑛
)𝐸

𝑗
(1 ≤ 𝑗 ≤ 𝑛−1),

where {𝐸
1
, . . . , 𝐸

𝑛−1
} are orthonormal basis of 𝑇𝜕

𝑀
. Let ∇𝐿

denote the Levi-Civita connection about 𝑔𝑀. In the local
coordinates {𝑥

𝑖
; 1 ≤ 𝑖 ≤ 𝑛} and the fixed orthonormal frame

{𝐸
1
, . . . , 𝐸

𝑛
}, the connection matrix (𝜔

𝑠,𝑡
) is defined by

∇
𝐿
(𝐸

1
, . . . , 𝐸

𝑛
)

𝑡

= (𝜔
𝑠,𝑡
) (𝐸

1
, . . . , 𝐸

𝑛
)

𝑡

. (10)

The Dirac operator is defined by

𝐷 =

𝑛

∑

𝑗=1

𝑐 (𝐸
𝑗
) [𝐸

𝑗
+

1

4

∑

𝑠,𝑡

𝜔
𝑠,𝑡
(𝐸

𝑗
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)] . (11)

By Lemma 6.1 in [18] and Propositions 2.2 and 2.4 in [19], we
have the following lemma.



Abstract and Applied Analysis 3

Lemma 1. Let 𝑓 = (1/√ℎ) and 𝑀̃ = 𝐼×
𝑓
𝑀 be a Riemannian

manifold with the metric 𝑔
𝑓
= d𝑥2

𝑛
+𝑓

2
(𝑥

𝑛
)𝑔. For vector fields

𝑋 and 𝑌 inL(𝑀), then

(1) ∇̃
𝜕
𝑥𝑛

𝜕
𝑥
𝑛

= 0;

(2) ∇̃
𝜕
𝑥𝑛

𝑋 = ∇̃
𝑋
𝜕
𝑥
𝑛

= (lnf)󸀠𝑋;

(3) ∇
𝑋
𝑌 = ∇

𝑀

𝑋
𝑌 −

𝑔 (𝑋, 𝑌)

𝑓

grad (f) .

(12)

Denote 𝐴
𝑡

𝑗𝑠
= 2⟨∇

𝐿,𝜕
𝑀

𝐸
𝑗

𝐸
𝑠
, 𝐸

𝑡
⟩; then we obtain the

following lemma.

Lemma 2. The following identity holds:

(1) ⟨∇
𝐿

𝐸
𝑖

𝜕
𝑥
𝑛

, 𝐸
𝑗
⟩ = −

ℎ
󸀠

2ℎ

;

(2) ⟨∇
𝐿

𝐸
𝑖

𝐸
𝑗
, 𝜕

𝑥
𝑛

⟩ =

ℎ
󸀠

2ℎ

;

(3) ⟨∇
𝐿

𝐸
𝑗

𝐸
𝑠
, 𝐸

𝑡
⟩ =

√ℎ

2

𝐴
𝑡

𝑗𝑠
.

(13)

Others are zeros.

By Lemma 2, we have the following definition.

Definition 3. The following identity holds in the coordinates
near the boundary:

𝐷 =

𝑛

∑

𝛽=1

𝑐 (𝐸
𝛽
) 𝐸

𝛽
−

ℎ
󸀠

ℎ

𝑐 (𝑑𝑥
𝑛
)

+

√ℎ

8

∑

𝑠,𝛼,𝛽<𝑛

𝐴
𝛼

𝛽𝑠
𝑐 (𝐸

𝛽
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝛼
) .

(14)

To define the lower-dimensional volume, some basic facts
and formulae about Boutet deMonvel’s calculus which can be
found in Section 2 in [11] are needed.

Denote by

𝐹 : 𝐿
2
(R

𝑡
) 󳨀→ 𝐿

2
(RV) ; 𝐹 (𝑢) (V) = ∫ 𝑒−𝑖V𝑡𝑢 (𝑡) d𝑡 (15)

the Fourier transformation and Φ(R+
) = 𝑟

+
Φ(R) (similarly,

define Φ(R−
)), where Φ(R) denotes the Schwartz space and

𝑟
+
: 𝐶

∞
(R) 󳨀→ 𝐶

∞
(R+

) ; 𝑓 󳨀→ 𝑓 | R+
;

R+
= {𝑥 ≥ 0; 𝑥 ∈ R} .

(16)

We define 𝐻+
= 𝐹(Φ(R+

)) and 𝐻
−

0
= 𝐹(Φ(R−

)) which are
orthogonal to each other.We have the following property: ℎ ∈
𝐻

+
(𝐻

−

0
) iff ℎ ∈ 𝐶

∞
(R) which has an analytic extension to

the lower (upper) complex half-plane {Im 𝜉 < 0} ({Im 𝜉 > 0})

such that, for all nonnegative integers 𝑙,

𝑑
𝑙
ℎ

𝑑𝜉
𝑙
(𝜉) ∼

∞

∑

𝑘=1

𝑑
𝑙

𝑑𝜉
𝑙
(

𝑐
𝑘

𝜉
𝑘
) (17)

as |𝜉| → +∞, Im 𝜉 ≤ 0 (Im 𝜉 ≥ 0).
Let 𝐻󸀠 be the space of all polynomials and let 𝐻−

=

𝐻
−

0
⊕ 𝐻

󸀠; 𝐻 = 𝐻
+
⊕ 𝐻

−. Denote by 𝜋+
(𝜋

−
), respectively,

the projection on 𝐻
+
(𝐻

−
). For calculations, we take 𝐻 =

𝐻̃ = {rational functions having no poles on the real axis}
(𝐻̃ is a dense set in the topology of𝐻). Then, on 𝐻̃,

𝜋
+
ℎ (𝜉

0
) =

1

2𝜋𝑖

lim
𝑢→0

−

∫

Γ
+

ℎ (𝜉)

𝜉
0
+ 𝑖𝑢 − 𝜉

d𝜉, (18)

where Γ+ is a Jordan close curve which included Im 𝜉 > 0

surrounding all the singularities of ℎ in the upper half-plane
and 𝜉

0
∈ R. Similarly, define 𝜋󸀠 on 𝐻̃:

𝜋
󸀠
ℎ =

1

2𝜋

∫

Γ
+

ℎ (𝜉) d𝜉. (19)

So, 𝜋󸀠
(𝐻

−
) = 0. For ℎ ∈ 𝐻⋂𝐿

1
(𝑅), 𝜋󸀠

ℎ = (1/2𝜋) ∫
𝑅
ℎ(V)dV

and for ℎ ∈ 𝐻+
⋂𝐿

1
(𝑅), 𝜋󸀠

ℎ = 0.
Let 𝑀 be an 𝑛-dimensional compact oriented manifold

with boundary 𝜕𝑀. Denote byB Boutet deMonvel’s algebra;
we recall the main theorem in [9].

Theorem 4 (Fedosov-Golse-Leichtnam-Schrohe). Let𝑋 and
𝜕𝑋 be connected, let dim𝑋 = 𝑛 ≥ 3, and let 𝐴 = (

𝜋
+
𝑃+𝐺 𝐾

𝑇 𝑆
) ∈

B, and denote by 𝑝, 𝑏, and 𝑠 the local symbols of 𝑃, 𝐺, and 𝑆,
respectively. Define

W̃res (𝐴) = ∫
𝑋

∫

S
tr
𝐸
[𝑝

−𝑛
(𝑥, 𝜉)] 𝜎 (𝜉) d𝑥

+ 2𝜋∫

𝜕𝑋

∫

S󸀠
{ tr

𝐸
[(tr 𝑏

−𝑛
) (𝑥

󸀠
, 𝜉

󸀠
)]

+ tr
𝐹
[𝑠

1−𝑛
(𝑥

󸀠
, 𝜉

󸀠
)]} 𝜎 (𝜉

󸀠
) d𝑥󸀠.

(20)

Then, (a) W̃res([𝐴, 𝐵]) = 0, for any𝐴, 𝐵 ∈ B; (b) it is a unique
continuous trace onB/B−∞.

Let 𝑝
1
and 𝑝

2
be nonnegative integers and let 𝑝

1
+𝑝

2
≤ 𝑛.

Then, by Section 2.1 of [13], we have the following definition.

Definition 5. Lower-dimensional volumes of spin manifolds
with boundary are defined by

Vol(𝑝1,𝑝2)
𝑛

𝑀 := W̃res [𝜋+
𝐷

−𝑝
1
⋅ 𝜋

+
𝐷

−𝑝
2
] . (21)

Denote by 𝜎
𝑙
(𝐴) the 𝑙-order symbol of an operator 𝐴. An

application of (2.1.4) in [11] shows that

W̃res [𝜋+
𝐷

−𝑝
1
⋅ 𝜋

+
𝐷

−𝑝
2
]

= ∫

𝑀

∫

|𝜉|=1

trace
𝑆(TM)

[𝜎
−𝑛
(𝐷

−𝑝
1
−𝑝
2
)] 𝜎 (𝜉) d𝑥 + ∫

𝜕𝑀

Φ,

(22)
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where

Φ = ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∞

∑

𝑗,𝑘=0

∑

(−𝑖)
|𝛼|+𝑗+𝑘+1

𝛼! (𝑗 + 𝑘 + 1)!

trace
𝑆(TM)

× [𝜕
𝑗

𝑥
𝑛

𝜕
𝛼

𝜉
󸀠𝜕

𝑘

𝜉
𝑛

𝜎
+

𝑟
(𝐷

−𝑝
1
) (𝑥

󸀠
, 0, 𝜉

󸀠
, 𝜉

𝑛
)

× 𝜕
𝛼

𝑥
󸀠𝜕

𝑗+1

𝜉
𝑛

𝜕
𝑘

𝑥
𝑛

𝜎
𝑙
(𝐷

−𝑝
2
)

× (𝑥
󸀠
, 0, 𝜉

󸀠
, 𝜉

𝑛
) ] d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠,

(23)
and the sum is taken over 𝑟−𝑘+ |𝛼| + ℓ− 𝑗−1 = −𝑛, 𝑟 ≤ −𝑝

1
,

ℓ ≤ −𝑝
2
.

3. A Kastler-Kalau-Walze Type Theorem for 7-
Dimensional Spin Manifolds with Boundary

In this section, we compute the lower-dimensional volume
for 7-dimensional compact manifolds with boundary and get
a Kastler-Kalau-Walze type formula in this case. From now
on, we always assume that𝑀 carries a spin structure so that
the spinor bundle and the Dirac operator are defined on𝑀.

The following proposition is the key of the computa-
tion of lower-dimensional volumes of spin manifolds with
boundary.

Proposition 6 (see [14]). The following identity holds:

(1) when 𝑝
1
+ 𝑝

2
= 𝑛, then, Vol(𝑝1,𝑝2)

𝑛
𝑀 = 𝑐

0
Vol

𝑀
;

(2) when 𝑝
1
+ 𝑝

2
≡ 𝑛 mod 1, Vol(𝑝1,𝑝2)

𝑛
𝑀 = ∫

𝜕𝑀

Φ.

(24)
Nextly, for 7-dimensional spin manifolds with boundary,

we compute Vol(2,2)
7

. By Proposition 6, for 7-dimensional
compact manifolds with boundary, we have

W̃res [(𝜋+
𝐷

−2
)

2

] = ∫

𝜕𝑀

Φ. (25)

Recall the Dirac operator𝐷 of Definition 3. Write

𝐷
𝛼

𝑥
= (−√−1)

|𝛼|

𝜕
𝛼

𝑥
;

𝜎 (𝐷
2
) = 𝑝

2
+ 𝑝

1
+ 𝑝

0
; 𝜎 (𝐷

−2
) =

∞

∑

𝑗=1

𝑞
−𝑗
.

(26)

By the composition formula of pseudodifferential operators,
then we have
1 = 𝜎 (𝐷

2
⋅ 𝐷

−2
)

= ∑

𝛼

1

𝛼!

𝜕
𝛼

𝜉
[𝜎 (𝐷

2
)]𝐷

𝛼

𝑥
[𝜎 (𝐷

−2
)]

= (𝑝
2
+ 𝑝

1
+ 𝑝

0
) (𝑞

−2
+ 𝑞

−3
+ 𝑞

−4
+ ⋅ ⋅ ⋅ )

+ ∑

𝑗

(𝜕
𝜉
𝑗

𝑝
2
+ 𝜕

𝜉
𝑗

𝑝
1
+ 𝜕

𝜉
𝑗

𝑝
0
)

× (𝐷
𝑥
𝑗

𝑞
−2
+ 𝐷

𝑥
𝑗

𝑞
−3
+ 𝐷

𝑥
𝑗

𝑞
−4
+ ⋅ ⋅ ⋅ )

+∑

𝑖,𝑗

𝜕
𝜉
𝑖

𝜕
𝜉
𝑗

(𝑝
2
+ 𝑝

1
+ 𝑝

0
)𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

× (𝑞
−2
+ 𝑞

−3
+ 𝑞

−4
+ ⋅ ⋅ ⋅ )

= 𝑝
2
𝑞
−2
+ (𝑝

2
𝑞
−3
+ 𝑝

1
𝑞
−2
+∑

𝑗

𝜕
𝜉
𝑗

𝑝
2
𝐷

𝑥
𝑗

𝑞
−2
)

+ (𝑝
2
𝑞
−4
+ 𝑝

1
𝑞
−3
+ 𝑝

0
𝑞
−2
+∑

𝑗

𝜕
𝜉
𝑗

𝑝
2
𝐷

𝑥
𝑗

𝑞
−3

+∑

𝑗

𝜕
𝜉
𝑗

𝑝
1
𝐷

𝑥
𝑗

𝑞
−2
+

𝑛

∑

𝑖,𝑗=1

𝜕
𝜉
𝑖

𝜕
𝜉
𝑗

𝑝
2
𝐷

𝑥
𝑖

𝐷
𝑥
𝑗

𝑞
−2
) + ⋅ ⋅ ⋅ .

(27)

Thus, we get

𝑞
−2
= 𝑝

−2

2
;

𝑞
−3
= −𝑝

−1

2
[

[

𝑝
1
𝑞
−2
− 𝑖

𝑛

∑

𝑗=1

𝜕
𝜉
𝑗

𝑝
2
𝜕
𝑥
𝑗

𝑞
−2
]

]

;

𝑞
−4
= −𝑝

−1

2
[

[

𝑝
0
𝑞
−2
+ 𝑝

1
𝑞
−3
− 𝑖

𝑛

∑

𝑗=1

𝜕
𝜉
𝑗

𝑝
2
𝜕
𝑥
𝑗

𝑞
−3

− 𝑖

𝑛

∑

𝑗=1

𝜕
𝜉
𝑗

𝑝
1
𝜕
𝑥
𝑗

𝑞
−2

−

1

2

𝑛

∑

𝑖,𝑗=1

𝜕
𝜉
𝑖

𝜕
𝜉
𝑗

𝑝
2
𝜕
𝑥
𝑖

𝜕
𝑥
𝑗

𝑞
−2
]

]

.

(28)

Define Γ𝑘 = ∑
𝑖,𝑗<𝑛

∑
𝑙<𝑛

𝑔
𝑖𝑗
𝑔
𝑙𝑘
⟨∇

𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩ + ∑

𝑙<𝑛
𝑔
𝑙𝑘
⟨∇

𝐿

𝜕
𝑛

𝜕
𝑛
,

𝜕
𝑙
⟩ and 𝜎

𝑘
(𝑥

0
= (1/4)∑

𝑠,𝑡
𝜔
𝑠,𝑡
(𝜕

𝑖
)𝑐(𝑒

𝑠
)𝑐(𝑒

𝑡
). By Theorem 1 in

[6] and Lemma 2.1 in [13], we have the following.

Lemma 7. Consider the symbol of the Dirac operator

𝜎
−2
(𝐷

−2
) =

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−2
;

𝜎
−3
(𝐷

−2
) = −√−1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
𝜉
𝑘
(Γ

𝑘
− 2𝜎

𝑘
)

− √−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑗
𝑔
𝛼𝛽
;
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𝜎
−4
(𝐷

−2
) = −

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
𝜉
𝜇
𝜉] (Γ

𝜇
− 2𝜎

𝜇
) (Γ

]
− 2𝜎

]
)

+ 2
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−8
𝜉
𝜇
𝜉]𝜉𝛼𝜉𝛽 (Γ

]
− 2𝜎

]
) 𝜕

𝑥

𝜇
𝑔
𝛼𝛽

+
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
(𝜕

𝑥
𝜇
𝜎
𝜇
+ 𝜎

𝜇
𝜎
𝜇
− Γ

𝜇
𝜎
𝜇
) −

1

4

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
𝑠 (𝑥)

− 2
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
𝜉
𝜇
𝜉]𝜕

𝑥

𝜇
(Γ

]
− 2𝜎

]
)

+ 12
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−10
𝜉
𝜇
𝜉]𝜉𝛼𝜉𝛽𝜉𝛾𝜉𝛿𝜕

𝑥

𝜇
𝑔
𝛼𝛽
𝜕
𝑥

] 𝑔
𝛾𝛿

− 4
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−8
𝜉
𝜇
𝜉
𝛼
𝜉
𝛾
𝜉
𝛿
𝜕
𝑥

𝜇
𝑔
]𝛼
𝜕
𝑥

] 𝑔
𝛾𝛿

− 4
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−8
𝜉
𝜇
𝜉
]
𝜉
𝛾
𝜉
𝛿
𝜕
𝑥

𝜇]𝑔
𝛾𝛿

+
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
𝜉
𝛼
𝜉
𝛽
(Γ

𝜇
− 2𝜎

𝜇
) 𝜕

𝑥

𝜇
𝑔
𝛼𝛽

−
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
𝜉
𝛼
𝜉
𝛽
𝑔
𝜇]
𝜕
𝑥

𝜇]𝑔
𝛼𝛽

+ 2
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−8
𝜉
𝛼
𝜉
𝛽
𝜉
𝛾
𝜉
𝛿
𝑔
𝜇]
𝜕
𝑥

𝜇
𝑔
𝛼𝛽
𝜕
𝑥

] 𝑔
𝛾𝛿
,

(29)

where

Γ
𝑘
(𝑥

0
) =

{
{

{
{

{

0, if 𝑘 < 𝑛;

3ℎ
󸀠
(0) 𝜉

𝑛
, if 𝑘 = 𝑛,

𝜎
𝑘
(𝑥

0
) =

{
{

{
{

{

1

4

ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
) , if 𝑘 < 𝑛;

0, if 𝑘 = 𝑛.

(30)

Since Φ is a global form on 𝜕𝑀, so for any fixed point
𝑥
0
∈ 𝜕𝑀, we can choose the normal coordinates 𝑈 of 𝑥

0
in

𝜕𝑀 (not in𝑀) and compute Φ(𝑥
0
) in the coordinates 𝑈̃ =

𝑈×[0, 1) and themetric (1/ℎ(𝑥
𝑛
))𝑔

𝜕𝑀
+𝑑𝑥

2

𝑛
.The dual metric

of 𝑔𝑀 on 𝑈̃ is ℎ(𝑥
𝑛
)𝑔

𝜕𝑀
+ 𝑑𝑥

2

𝑛
. Write 𝑔𝑀

𝑖𝑗
= 𝑔

𝑀
(𝜕/𝜕𝑥

𝑖
, 𝜕/𝜕𝑥

𝑗
)

and 𝑔𝑖𝑗
𝑀
= 𝑔

𝑀
(𝑑𝑥

𝑖
, 𝑑𝑥

𝑗
); then,

[𝑔
𝑀

𝑖,𝑗
] =

[

[

1

ℎ (𝑥
𝑛
)

[𝑔
𝜕𝑀

𝑖,𝑗
] 0

0 1

]

]

;

[𝑔
𝑖,𝑗

𝑀
] = [

ℎ (𝑥
𝑛
) [𝑔

𝑖,𝑗

𝜕𝑀
] 0

0 1

] ,

𝜕
𝑥
𝑠

𝑔
𝜕𝑀

𝑖𝑗
(𝑥

0
) = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1; 𝑔

𝑀

𝑖,𝑗
(𝑥

0
) = 𝛿

𝑖𝑗
.

(31)

Let {𝐸
1
, . . . , 𝐸

𝑛−1
} be an orthonormal frame field

in 𝑈 about 𝑔
𝜕𝑀 which is parallel along geodesics and

𝐸
𝑖

= (𝜕/𝜕𝑥
𝑖
)(𝑥

0
); then, {𝐸

1
= √ℎ(𝑥

𝑛
)𝐸

1
, . . . , 𝐸

𝑛−1
=

√ℎ(𝑥
𝑛
)𝐸

𝑛−1
, 𝐸

𝑛
= 𝑑𝑥

𝑛
} is the orthonormal frame field

in 𝑈̃ about 𝑔𝑀. Locally, 𝑆(𝑇𝑀) | 𝑈̃ ≅ 𝑈̃ × ∧
∗

𝐶
(𝑛/2). Let

{𝑓
1
, . . . , 𝑓

𝑛
} be the orthonormal basis of ∧∗

𝐶
(𝑛/2). Take a spin

frame field 𝜎 : 𝑈̃ → Spin(𝑀) such that 𝜋𝜎 = {𝐸
1
, . . . , 𝐸

𝑛
},

where 𝜋 : Spin(𝑀) → 𝑂(𝑀) is a double covering; then,
{[𝜎, 𝑓

𝑖
], 1 ≤ 𝑖 ≤ 6} is an orthonormal frame of 𝑆(𝑇𝑀)|

𝑈̃
.

In the following, since the global form Φ is independent of
the choice of the local frame, we can compute tr

𝑆(𝑇𝑀)
in the

frame {[𝜎, 𝑓
𝑖
], 1 ≤ 𝑖 ≤ 6}. Let {𝐸

1
, . . . , 𝐸

𝑛
} be the canonical

basis of 𝑅𝑛 and let 𝑐(𝐸
𝑖
) ∈ cl

𝐶
(𝑛) ≅ Hom(∧∗

𝐶
(𝑛/2), ∧

∗

𝐶
(𝑛/2))

be the Clifford action. By [13], then

𝑐 (𝐸
𝑖
) = [(𝜎, 𝑐 (𝐸

𝑖
))] ;

𝑐 (𝐸
𝑖
) [(𝜎, 𝑓

𝑖
)] = [𝜎, (𝑐 (𝐸

𝑖
)) 𝑓

𝑖
] ;

𝜕

𝜕𝑥
𝑖

= [(𝜎,

𝜕

𝜕𝑥
𝑖

)] ;

(32)

then, we have (𝜕/𝜕𝑥
𝑖
)𝑐(𝐸

𝑖
) = 0 in the above frame. By Lemma

2.2 in [13], we have the following.

Lemma 8. With the metric 𝑔𝑀 on𝑀 near the boundary,

𝜕
𝑥
𝑗

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2

𝑔
𝑀) (𝑥0

) =

{

{

{

0, if 𝑗 < 𝑛;

ℎ
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
𝜉
󸀠󵄨󵄨
󵄨
󵄨
󵄨

2

𝑔
𝜕𝑀
, if 𝑗 = 𝑛,

𝜕
𝑥
𝑗

[𝑐 (𝜉)] (𝑥
0
) =

{

{

{

0, if 𝑗 < 𝑛;

𝜕𝑥
𝑛
(𝑐 (𝜉

󸀠
)) (𝑥

0
) , if 𝑗 = 𝑛,

(33)

where 𝜉 = 𝜉󸀠 + 𝜉
𝑛
𝑑𝑥

𝑛
.

Then, the following lemma is introduced.

Lemma 9. The following identity holds:

𝜕
𝑥
𝑖

[𝐴
𝛼

𝛽𝑠
] (𝑥

0
) =

{

{

{

𝑅
𝜕
𝑀

𝛽𝑖𝑠𝛼
(𝑥

0
) , if 𝑖 < 𝑛;

0, if 𝑖 = 𝑛.
(34)

Proof. From Lemma 5.7 in [20], we have

𝐴
𝛼

𝛽𝑠
= 𝑅

𝛽𝑙𝑠𝛼
𝑥
𝑙
+ 𝑂 (|𝑥|

2
) . (35)

Then, we obtain 𝜕
𝑥
𝑖

[𝐴
𝛼

𝛽𝑠
](𝑥

0
) = 𝑅

𝜕
𝑀

𝛽𝑖𝑠𝛼
(𝑥

0
).
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Lemma 10. Let 𝑔𝑀 be the metric on 7-dimensional spin
manifolds𝑀 near the boundary; then,

𝜕
𝑥
𝛾

Γ
𝑘
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

5

6

∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝛾𝑖𝑘
(𝑥

0
) , if 𝛾 < 𝑛, 𝑘 < 𝑛;

0, if 𝛾 < 𝑛, 𝑘 = 𝑛;
0, if 𝛾 = 𝑛, 𝑘 < 𝑛;
3ℎ

󸀠󸀠
(0) −

9

2

(ℎ
󸀠
(0))

2

, if 𝛾 = 𝑛, 𝑘 = 𝑛,

𝜕
𝑥
𝛾

𝜎
𝑘
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

8

∑

𝑠 ̸=𝑡<𝑛

𝑅
𝜕
𝑀

𝑘𝛾𝑠𝑡
(𝑥

0
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
) , if 𝛾 < 𝑛, 𝑘 < 𝑛;

0, if 𝛾 < 𝑛, 𝑘 = 𝑛;
∑

𝑡<𝑛

(

3

8

(ℎ
󸀠
(0))

2

−

1

4

ℎ
󸀠󸀠
(0))

× 𝑐 (𝐸
𝑛
) 𝑐 (𝐸

𝑡
) , if 𝛾 = 𝑛, 𝑘 < 𝑛;

1

8

∑

𝑡<𝑛

((ℎ
󸀠
(0))

2

− ℎ
󸀠󸀠
(0))

× 𝑐 (𝐸
𝑠
) 𝑐 (𝐸

𝑡
) . if 𝛾 = 𝑛, 𝑘 = 𝑛.

(36)

Proof. From Lemma 2.3 in [13], we have

Γ
𝑘
= ∑

𝑖,𝑗<𝑛

∑

𝑙<𝑛

𝑔
𝑖𝑗
𝑔
𝑙𝑘
⟨∇

𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩ +∑

𝑙<𝑛

𝑔
𝑙𝑘
⟨∇

𝐿

𝜕
𝑛

𝜕
𝑛
, 𝜕

𝑙
⟩. (37)

Then,

𝜕
𝑥
𝛾

Γ
𝑘
= ∑

𝑖,𝑗<𝑛

∑

𝑙<𝑛

𝜕
𝑥
𝛾

(𝑔
𝑖𝑗
) 𝑔

𝑙𝑘
⟨∇

𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩

+ ∑

𝑖,𝑗<𝑛

∑

𝑙<𝑛

𝑔
𝑖𝑗
𝜕
𝑥
𝛾

(𝑔
𝑙𝑘
) ⟨∇

𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩

+ ∑

𝑖,𝑗<𝑛

∑

𝑙<𝑛

𝑔
𝑖𝑗
𝑔
𝑙𝑘
𝜕
𝑥
𝛾

(⟨∇
𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩)

+∑

𝑙<𝑛

𝜕
𝑥
𝛾

(𝑔
𝑙𝑘
) ⟨∇

𝐿

𝜕
𝑛

𝜕
𝑛
, 𝜕

𝑙
⟩

+∑

𝑙<𝑛

𝑔
𝑙𝑘
𝜕
𝑥
𝛾

(⟨∇
𝐿

𝜕
𝑛

𝜕
𝑛
, 𝜕

𝑙
⟩) .

(38)

Let 𝐻
𝑛𝑛

= ⟨𝜕
𝑛
, 𝐸

𝑛
⟩ = 1, 𝐻

𝑛𝑗
= ⟨𝜕

𝑛
, 𝐸

𝑗
⟩ = 0, and 𝐻

𝑖𝑗
=

⟨𝜕
𝑗
, 𝐸

𝑖
⟩
𝑀
= (1/√ℎ(𝑥

𝑛
))⟨𝜕

𝑗
, 𝐸

𝑖
⟩
𝜕
𝑀

. Then,

⟨∇
𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩ = ⟨∇

𝐿

𝜕
𝑖

(⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩𝐸
𝑗
1

) , ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩𝐸
𝑙
1

⟩

= 𝜕
𝑖
(⟨𝜕

𝑗
, 𝐸

𝑗
1

⟩) ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ ⟨𝐸
𝑗
1

, 𝐸
𝑙
1

⟩

+ ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ ⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩ ⟨∇
𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩

= 𝜕
𝑖
(𝐻

𝑗𝑗
1

) ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ 𝛿
𝑙
1

𝑗
1

+ ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ ⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩ ⟨∇
𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩ .

(39)

When 𝑖 < 𝑛, 𝑗 < 𝑛,

⟨∇
𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩ (𝑥

0
) = 𝜕

𝑖
(𝐻

𝑗𝑗
1

) ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩𝛿
𝑙
1

𝑗
1

(𝑥
0
)

+ ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩⟨∇
𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩ (𝑥
0
)

= 𝛿
𝑙

𝑙
1

𝛿
𝑗

𝑗
1

⟨∇
𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩ (𝑥
0
)

=

√ℎ (𝑥
0
)

2

𝐴
𝑙

𝑖𝑗
(𝑥

0
) = 0,

⟨∇
𝐿

𝜕
𝑛

𝜕
𝑛
, 𝜕

𝑙
⟩ (𝑥

0
) = 0.

(40)

Then

𝜕
𝑥
𝛾

Γ
𝑘
(𝑥

0
)

= ∑

𝑖,𝑙<𝑛

𝜕
𝑥
𝛾

(⟨∇
𝐿

𝜕
𝑖

𝜕
𝑗
, 𝜕

𝑙
⟩) (𝑥

0
) +∑

𝑙<𝑛

𝜕
𝑥
𝛾

(⟨∇
𝐿

𝜕
𝑛

𝜕
𝑛
, 𝜕

𝑙
⟩) (𝑥

0
)

= 𝜕
𝛾
𝜕
𝑖
(𝐻

𝑗𝑗
1

) ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ + 𝜕
𝑖
(𝐻

𝑗𝑗
1

) 𝜕
𝛾
(⟨𝜕

𝑙
, 𝐸

𝑙
1

⟩) (𝑥
0
)

+ (𝜕
𝛾
(⟨𝜕

𝑙
, 𝐸

𝑙
1

⟩) ⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩ + ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ 𝜕
𝛾
(⟨𝜕

𝑗
, 𝐸

𝑗
1

⟩))

× ⟨∇
𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩ (𝑥
0
)

+ ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ ⟨𝜕
𝑗
, 𝐸

𝑗
1

⟩ 𝜕
𝛾
(⟨∇

𝐿

𝜕
𝑖

𝐸
𝑗
1

, 𝐸
𝑙
1

⟩) (𝑥
0
)

+ 𝜕
𝛾
𝜕
𝑖
(𝐻

𝑛𝑛
1

) ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ + 𝜕
𝑖
(𝐻

𝑛𝑛
1

) 𝜕
𝛾
(⟨𝜕

𝑙
, 𝐸

𝑙
1

⟩) (𝑥
0
)

+ (𝜕
𝛾
(⟨𝜕

𝑙
, 𝐸

𝑙
1

⟩) ⟨𝜕
𝑛
, 𝐸

𝑛
1

⟩ + ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ 𝜕
𝛾
(⟨𝜕

𝑛
, 𝐸

𝑛
1

⟩))

× ⟨∇
𝐿

𝜕
𝑛

𝐸
𝑛
1

, 𝐸
𝑙
1

⟩ (𝑥
0
)

+ ⟨𝜕
𝑙
, 𝐸

𝑙
1

⟩ ⟨𝜕
𝑛
, 𝐸

𝑛
1

⟩ 𝜕
𝛾
(⟨∇

𝐿

𝜕
𝑛

𝐸
𝑛
1

, 𝐸
𝑙
1

⟩) (𝑥
0
)

= 𝜕
𝛾
𝜕
𝑖
(𝐻

𝑗𝑙
) (𝑥

0
) + 𝜕

𝛾
(⟨∇

𝐿

𝜕
𝑖

𝐸
𝑗
, 𝐸

𝑙
⟩) (𝑥

0
)

= −

1

3

∑

𝑖𝑙<𝑛

𝑅
𝜕
𝑀

𝑖𝛾𝑙𝑖
(𝑥

0
) + 𝜕

𝛾
(

√ℎ (𝑥
𝑛
)

2

𝐴
𝑙

𝑖𝑗
)(𝑥

0
)

=

5

6

∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝛾𝑖𝑘
(𝑥

0
) .

(41)

Similarly, when 𝛾 < 𝑛, 𝑘 = 𝑛, or 𝛾 = 𝑛, 𝑘 < 𝑛, 𝜕
𝑥
𝛾

Γ
𝑘
(𝑥

0
) = 0.

When 𝛾 = 𝑘 = 𝑛, 𝜕
𝑥
𝛾

Γ
𝑘
(𝑥

0
) = 3ℎ

󸀠󸀠
(0) − (9/2)(ℎ

󸀠
(0))

2.
On the other hand, from definitions (10) and (11), then

𝜎
𝑘
(𝑥

0
) =

1

4

∑

𝑠,𝑡

𝜔
𝑠,𝑡
(𝜕

𝑖
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
) . (42)
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When 𝛾 < 𝑛, 𝑘 < 𝑛,

𝜕
𝑥
𝛾

𝜎
𝑘
(𝑥

0
)

= 𝜕
𝑥
𝛾

(

1

4

∑

𝑠,𝑡

𝜔
𝑠,𝑡
(𝜕

𝑘
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)) (𝑥

0
)

=

1

4

𝜕
𝑥
𝛾

(∑

𝑠,𝑡

𝜔
𝑠,𝑡
(𝜕

𝑘
)) (𝑥

0
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)

=

1

4

(∑

𝑠,𝑡<𝑛

𝜕
𝑥
𝛾

𝜔
𝑠,𝑡
(𝜕

𝑘
) + ∑

𝑠=𝑛,𝑡<𝑛

𝜕
𝑥
𝛾

𝜔
𝑠,𝑡
(𝜕

𝑘
)

+ ∑

𝑠<𝑛,𝑡=𝑛

𝜕
𝑥
𝛾

𝜔
𝑠,𝑡
(𝜕

𝑘
)) (𝑥

0
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)

=

1

4

(∑

𝑠,𝑡<𝑛

𝜕
𝑥
𝛾

⟨∇
𝐿

𝜕
𝑥
𝑘

𝐸
𝑠
, 𝐸

𝑡
⟩𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)

+ ∑

𝑠=𝑛,𝑡<𝑛

𝜕
𝑥
𝛾

⟨∇
𝐿

𝜕
𝑥
𝑘

𝐸
𝑠
, 𝐸

𝑡
⟩𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)

+ ∑

𝑠<𝑛,𝑡=𝑛

𝜕
𝑥
𝛾

⟨∇
𝐿

𝜕
𝑥
𝑘

𝐸
𝑠
, 𝐸

𝑡
⟩𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)) (𝑥

0
)

=

1

4

∑

𝑠,𝑡<𝑛

𝜕
𝛾
(

√ℎ (𝑥
𝑛
)

2

𝐴
𝑡

𝑘𝑠
)(𝑥

0
)

=

1

8

∑

𝑠 ̸=𝑡<𝑛

𝑅
𝜕
𝑀

𝑘𝛾𝑠𝑡
(𝑥

0
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
) .

(43)

Similarly, when 𝛾 = 𝑛, 𝑘 < 𝑛, 𝜕
𝑥
𝛾

𝜎
𝑘
(𝑥

0
) =

∑
𝑡<𝑛
((3/8)(ℎ

󸀠
(0))

2
− (1/4)ℎ

󸀠󸀠
(0))𝑐(𝐸

𝑛
)𝑐(𝐸

𝑡
). When 𝛾 < 𝑛,

𝑘 = 𝑛, 𝜕
𝑥
𝛾

𝜎
𝑘
(𝑥

0
) = 0. When 𝛾 = 𝑘 = 𝑛, 𝜕

𝑥
𝛾

𝜎
𝑘
(𝑥

0
) =

(1/8)∑
𝑡<𝑛
((ℎ

󸀠
(0))

2
− ℎ

󸀠󸀠
(0))𝑐(𝐸

𝑠
)𝑐(𝐸

𝑡
).

Lemma 11. When 𝛾 < 𝑛,

𝜕
𝑥
𝛾

(𝜎
−3
(𝐷

−2
)) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= −

5𝑖

6

𝜉
𝑘

(1 + 𝜉
2

𝑛
)
2
∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝛾𝑖𝑘
(𝑥

0
)

+

𝑖

4

𝜉
𝑘

(1 + 𝜉
2

𝑛
)
2
∑

𝑠 ̸=𝑡<𝑛

𝑅
𝜕
𝑀

𝑘𝛾𝑠𝑡
(𝑥

0
) 𝑐 (𝐸

𝑠
) 𝑐 (𝐸

𝑡
)

+

2𝑖

3

1

(1 + 𝜉
2

𝑛
)
3
∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
.

(44)

When 𝛾 = 𝑛,

𝜕
𝑥
𝑛

(𝜎
−3
(𝐷

−2
)) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

2𝑖ℎ
󸀠
(0)

(1 + 𝜉
2

𝑛
)
3
(−

1

2

ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
) + 3ℎ

󸀠
(0) 𝜉𝑛

)

−

𝑖

(1 + 𝜉
2

𝑛
)
2

× (𝜉
𝑛
(3ℎ

󸀠󸀠
(0) −

9

2

(ℎ
󸀠
(0))

2

)

− 2𝜉
𝑘
(

3

8

(ℎ
󸀠
(0))

2

−

1

4

ℎ
󸀠󸀠
(0))∑

𝑡<𝑛

𝑐 (𝐸
𝑛
) 𝑐 (𝐸

𝑡
)

−

1

4

𝜉
𝑛
((ℎ

󸀠
(0))

2

− ℎ
󸀠󸀠
(0)) ∑

𝑠 ̸=𝑡<𝑛

𝑐 (𝐸
𝑠
) 𝑐 (𝐸

𝑡
)) .

(45)

Proof. When 𝛾 < 𝑛, from Lemmas 7 and 8 and
𝜕
𝑥
𝛾

(𝑐(𝑑𝑥
𝑗
)) (𝑥

0
) = 0, we get

𝜕
𝑥
𝛾

(𝜎
−3
(𝐷

−2
))

= 𝜕
𝑥
𝛾

(−√−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
𝜉
𝑘
(Γ

𝑘
− 2𝜎

𝑘
) − √−1

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑗
𝑔
𝛼𝛽
)

= −√−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
𝜉
𝑘
𝜕
𝑥
𝛾

(Γ
𝑘
− 2𝜎

𝑘
)

− √−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑥
𝛾

𝜕
𝑗
𝑔
𝛼𝛽

= −√−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
(𝜉

𝑘
𝜕
𝑥
𝛾

(Γ
𝑘
− 2𝜎

𝑘
) + 𝜉

𝑛
𝜕
𝑥
𝛾

(Γ
𝑛
− 2𝜎

𝑛
))

− √−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑥
𝛾

𝜕
𝑗
𝑔
𝛼𝛽
.

(46)

Substituting Lemma 10 into (47), conclusion (45) then follows
easily. Similarly, we can obtain (45).

Next, we can compute Φ (see formula (23) for definition
ofΦ). Since the sum is taken over −𝑟 − ℓ + 1 + 𝑘 + 𝑗 + |𝛼| = 7,
𝑟, ℓ ≤ −2, then we have that ∫

𝜕
𝑀

Φ is the sum of the following
fifteen cases.

Case 1. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 0, 𝑗 = 1, and |𝛼| = 1.
From (23), we have

Case 1

=

𝑖

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕
𝑥
𝑛

𝜕
𝛼

𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)

× 𝜕
𝛼

𝑥
󸀠𝜕

2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(47)

By Lemma 8, for 𝑖 < 𝑛, we have

𝜕
𝑥
𝑖

𝜎
−2
(𝐷

−2
) (𝑥

0
) = 𝜕

𝑥
𝑖

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−2
) (𝑥

0
) = 0. (48)

So Case 1 vanishes.
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Case 2. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 0, 𝑗 = 2, and |𝛼| = 0.
From (23), we have

Case 2

=

𝑖

6

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

𝑗=2

trace [𝜕2
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)

× 𝜕
3

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(49)

By Lemma 7, a simple computation shows

𝜕
3

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= 𝜕
3

𝜉
𝑛

(

1

1 + 𝜉
2

𝑛

) =

24𝜉
𝑛
− 24𝜉

3

𝑛

(1 + 𝜉
2

𝑛
)
4
, (50)

𝜕
2

𝑥
𝑛

𝜎
−2
(𝐷

−2
) (𝑥

0
) =

2

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

6
𝜕
𝑥
𝑛

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) 𝜕

𝑥
𝑛

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

−

𝜕
2

𝑥
𝑛

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
)

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

6
(𝑥

0
)

=

2(ℎ
󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
3
−

ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
2
.

(51)

By (18) and the Cauchy integral formula, then

𝜋
+

𝜉
𝑛

[

𝑐 (𝜉)

(1 + 𝜉
2

𝑛
)
2
]

= 𝜋
+

𝜉
𝑛

[

𝑐 (𝜉
󸀠
) + 𝜉

𝑛
𝑐 (𝑑𝑥

𝑛
)

(1 + 𝜉
2

𝑛
)
2

]

=

1

2𝜋𝑖

lim
𝑢→0

−

∫

Γ
+

((

𝑐 (𝜉
󸀠
) + 𝜂

𝑛
𝑐 (𝑑𝑥

𝑛
)

(𝜂
𝑛
+ 𝑖)

2
(𝜉

𝑛
+ 𝑖𝑢 − 𝜂

𝑛
)

)

× (𝜂
𝑛
− 𝑖)

−2
) d𝜂

𝑛

= [

𝑐(𝜉
󸀠
) + 𝜂

𝑛
𝑐(𝑑𝑥

𝑛
)

(𝜂
𝑛
+ 𝑖)

2
(𝜉

𝑛
− 𝜂

𝑛
)

]

(1)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜂
𝑛
=𝑖

= −

𝑖𝑐 (𝜉
󸀠
)

4 (𝜉
𝑛
− 𝑖)

−

𝑐 (𝜉
󸀠
) + 𝑖𝑐 (𝑑𝑥

𝑛
)

4(𝜉
𝑛
− 𝑖)

2
.

(52)

Similarly, we obtain

𝜋
+

𝜉
𝑛

[

1

(1 + 𝜉
2

𝑛
)
2
] =

−2 − 𝑖𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

2
,

𝜋
+

𝜉
𝑛

[

1

(1 + 𝜉
2

𝑛
)
3
] =

−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖

16(𝜉
𝑛
− 𝑖)

3
.

(53)

From (51) and (53), we get

𝜕
2

𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖

8(𝜉
𝑛
− 𝑖)

3
(ℎ

󸀠
(0))

2

+

2 + 𝑖𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

2
ℎ
󸀠󸀠
(0) .

(54)

Note that tr[id] = 8; then, from (50), (54), and direct
computations, we obtain

trace [𝜕2
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)𝜕

3

𝜉
𝑛

𝜎
−2
(𝐷

−2
)](𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= (ℎ
󸀠
(0))

2 (−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
4

+ ℎ
󸀠󸀠
(0)

(4 + 2𝑖𝜉
𝑛
) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

2
(1 + 𝜉

2

𝑛
)
4

.

(55)

Therefore,

Case 2

=

𝑖

6

(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

(((−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖) (24𝜉

𝑛
− 24𝜉

3

𝑛
))

× ((𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)

4

)

−1

) d𝜉
𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

+

𝑖

6

ℎ
󸀠󸀠
(0)

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

(4 + 2𝑖𝜉
𝑛
) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

2
(1 + 𝜉

2

𝑛
)
4

d𝜉
𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

𝑖

6

(ℎ
󸀠
(0))

2

Ω
5

× ∫

Γ
+

(−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

7
(𝜉

𝑛
+ 𝑖)

4
d𝜉

𝑛
d𝑥󸀠

+

𝑖

6

ℎ
󸀠󸀠
(0)Ω5

∫

Γ
+

(4 + 2𝑖𝜉
𝑛
) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

6
(𝜉

2

𝑛
+ 𝑖)

4
d𝜉

𝑛
d𝑥󸀠

=

𝑖

6

(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

× [

(−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖)(24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
𝑛
+ 𝑖)

4
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+

𝑖

6

ℎ
󸀠󸀠
(0)

2𝜋𝑖

5!
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× [

(4 + 2𝑖𝜉
𝑛
) (24𝜉

𝑛
− 24𝜉

3

𝑛
)

(𝜉
2

𝑛
+ 𝑖)

4
]

(5)󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= (

7

8

(ℎ
󸀠
(0))

2

−

3

8

ℎ
󸀠󸀠
(0)) 𝜋Ω

5
d𝑥󸀠,

(56)

whereΩ
5
is the canonical volume of 𝑆5.

Case 3. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 2.
From (23), we have
Case 3

=

𝑖

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=2

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2

× (𝐷
−2
) 𝜕

𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(57)

By Lemma 7, a simple computation shows

𝜕
𝛼

𝜉
󸀠𝜎−2

(𝐷
−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= 𝜕
𝜉
𝑗

𝜕
𝜉
𝑖

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−1

(1 + 𝜉
2

𝑛
)
2
𝜕
𝜉
𝑖

𝜕
𝜉
𝑗

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

+

2

(1 + 𝜉
2

𝑛
)
3
𝜕
𝜉
𝑗

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) 𝜕

𝜉
𝑖

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

=

−2𝛿
𝑗

𝑖

(1 + 𝜉
2

𝑛
)
2
+

8

(1 + 𝜉
2

𝑛
)
3
𝜉
𝑖
𝜉
𝑗
.

(58)

By (53) and (58), we obtain

𝜋
+

𝜉
𝑛

𝜕
𝛼

𝜉
󸀠𝜎−2

(𝐷
−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

(2 + 𝑖𝜉
𝑛
) 𝛿

𝑗

𝑖

2(𝜉
𝑛
− 𝑖)

2

+

−3𝑖𝜉
2

𝑛
− 9𝜉

𝑛
+ 8𝑖

2(𝜉
𝑛
− 𝑖)

3
𝜉
𝑖
𝜉
𝑗
.

(59)

On the other hand, by Lemmas 7 and 8, we obtain

𝜕
𝛼

𝑥
󸀠𝜎−2

(𝐷
−2
) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−1

(1 + 𝜉
2

𝑛
)
2
𝜕
𝑥
𝑖

𝜕
𝑥
𝑗

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

+

2

(1 + 𝜉
2

𝑛
)
3
𝜕
𝑥
𝑗

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) 𝜕

𝑥
𝑖

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

=

1

3(1 + 𝜉
2

𝑛
)
2
∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝛼
𝜉
𝛽

+

2(ℎ
󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
3
.

(60)

Hence, in this case,

𝜕
𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−4𝜉
𝑛

3(1 + 𝜉
2

𝑛
)
3
∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝛼
𝜉
𝛽

+

−12𝜉
𝑛
(ℎ

󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
4

.

(61)

From (59), (61), and direct computations, we obtain

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜎
−2
(𝐷

−2
)] (𝑥

0
)

=

−4𝜉
𝑛
− 2𝑖𝜉

2

𝑛

3(𝜉
𝑛
− 𝑖)

2
(1 + 𝜉

2

𝑛
)
3
∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝛼
𝜉
𝛽

+

−16𝑖𝜉
𝑛
+ 18𝜉

2

𝑛
+ 6𝑖𝜉

3

𝑛

3(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3

× ∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝑖
𝜉
𝑗
𝜉
𝛼
𝜉
𝛽

+ (ℎ
󸀠
(0))

2 −12𝜉
𝑛
− 6𝑖𝜉

2

𝑛

(𝜉
𝑛
− 𝑖)

2
(1 + 𝜉

2

𝑛
)
4

+ (ℎ
󸀠
(0))

2−48𝑖𝜉𝑛
+ 54𝜉

2

𝑛
+ 18𝑖𝜉

3

𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
4

.

(62)

Similar to (16) in [6], we have

∫𝜉
𝜇
𝜉
]
=

1

6

[
𝜇]
] , ∫ 𝜉

𝜇
𝜉
]
𝜉
𝛼
𝜉
𝛽
= 𝑐

0
[
𝜇]𝛼𝛽

] , (63)

where [𝜇]𝛼𝛽] stands for the sumof products of𝑔𝛼𝛽 determined
by all “pairings” of 𝜇]𝛼𝛽 and 𝑐

0
is a constant. Using the

integration over 𝑆5 and the shorthand ∫ = (1/𝜋
3
) ∫

𝑆
5
d5], we

obtainΩ
5
= 𝜋

3. Let 𝑠
𝜕
𝑀

be the scalar curvature 𝜕
𝑀
; then,

∑

𝑖,𝛼,𝑗,𝛽<𝑛

𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) ∫

|𝜉
󸀠
|=1

𝜉
𝛼
𝜉
𝛽
𝜉
𝑖
𝜉
𝑗
𝜎 (𝜉

󸀠
) = 𝑐𝜋

3

∑

𝑖,𝛼,𝑗,𝛽<𝑛

𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) (𝛿

𝛽

𝛼
𝛿
𝑗

𝑖
+ 𝛿

𝑖

𝛼
𝛿
𝑗

𝛽
+ 𝛿

𝑗

𝛼
𝛿
𝑖

𝛽
) = 0,

(64)
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where 𝑐 is a constant. Therefore,

Case 3

=

𝑖

2

Ω
5
(𝑠

𝜕
𝑀

∫

+∞

−∞

−4𝜉
𝑛
− 2𝑖𝜉

2

𝑛

9(𝜉
𝑛
− 𝑖)

2
(1 + 𝜉

2

𝑛
)
3
d𝜉

𝑛

+ (ℎ
󸀠
(0))

2

∫

+∞

−∞

4𝑖𝜉
𝑛
− 9𝜉

2

𝑛
− 3𝑖𝜉

3

𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
4
d𝜉

𝑛
) d𝑥󸀠

=

𝑖

2

Ω
5
(𝑠

𝜕
𝑀

2𝜋𝑖

4!

[

−4𝜉
𝑛
− 2𝑖𝜉

2

𝑛

9(𝜉
𝑛
+ 𝑖)

3
]

(4)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

+ (ℎ
󸀠
(0))

2 2𝜋𝑖

6!

[

4𝑖𝜉
𝑛
− 9𝜉

2

𝑛
− 3𝑖𝜉

3

𝑛

(𝜉
𝑛
+ 𝑖)

4
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

) d𝑥󸀠

=

𝜋

6

𝑠
𝜕
𝑀

Ω
5
d𝑥󸀠 + 11𝜋

128

(ℎ
󸀠
(0))

2

Ω
5
d𝑥󸀠,

(65)

where ∑
𝑡,𝑙<𝑛

𝑅
𝜕
𝑀

𝑡𝑙𝑡𝑙
(𝑥

0
) is the scalar curvature 𝑠

𝜕
𝑀

.

Case 4. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 1, 𝑗 = 1, and |𝛼| = 0.
From (23) and the Leibniz rule, we obtain

Case 4

=

𝑖

6

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2

× (𝐷
−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(66)

By (54), we obtain

𝜕
𝑥
𝑛

𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= ℎ
󸀠
(0)

−3 − 𝑖𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

3
. (67)

From (50) and (51), we obtain

𝜕
2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= ℎ
󸀠
(0)

4 − 20𝜉
2

𝑛

(1 + 𝜉
2

𝑛
)
4
. (68)

Therefore,

Case 4

=

𝑖

6

(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

−24 − 8𝑖𝜉
𝑛
+ 120𝜉

2

𝑛
+ 40𝑖𝜉

3

𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
4

d𝜉
𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

𝑖

6

(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

× [

−24 − 8𝑖𝜉
𝑛
+ 120𝜉

2

𝑛
+ 40𝑖𝜉

3

𝑛

(𝜉
𝑛
+ 𝑖)

4
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= −

5

8

(ℎ
󸀠
(0))

2

𝜋Ω
5
d𝑥󸀠.

(69)

Case 5. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 1, 𝑗 = 0, and |𝛼| = 1.
From (23), we have

Case 5

=

𝑖

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕𝛼
𝜉
󸀠𝜕𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2

× (𝐷
−2
) 𝜕

𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(70)

From Lemmas 7 and 8, for 𝑖 < 𝑛, we obtain

𝜕
𝑥
󸀠𝜕

𝑥
𝑛

𝜎
−2
(𝐷

−2
) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−1

(1 + 𝜉
2

𝑛
)
2
𝜕
𝑥
𝑖

𝜕
𝑥
𝑛

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
)

+

2

(1 + 𝜉
2

𝑛
)
3
𝜕
𝑥
𝑛

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) 𝜕

𝑥
𝑖

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

2
) (𝑥

0
) = 0.

(71)

Therefore, Case 5 vanishes.

Case 6. Consider 𝑟 = −2, ℓ = −2, 𝑘 = 2, 𝑗 = 0, and |𝛼| = 0.
From (23), we have

Case 6

=

𝑖

6

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

𝑘=2

trace [𝜕2
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝜉
𝑛

× 𝜕
2

𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(72)

From (50)–(53), we have

𝜕
2

𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−𝑖

(𝜉
𝑛
− 𝑖)

3
, (73)

𝜕
𝜉
𝑛

𝜕
2

𝑥
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

4𝜉
𝑛
ℎ
󸀠󸀠
(𝑥

0
)

(1 + 𝜉
2

𝑛
)
3
+

−12𝜉
𝑛
(ℎ

󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
4

.

(74)
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Therefore,

Case 6

=

𝑖

6

ℎ
󸀠󸀠
(0)

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

−32𝑖𝜉
𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3
d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

+

𝑖

6

(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

96𝑖𝜉
𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
4
d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

𝑖

6

ℎ
󸀠󸀠
(0)

2𝜋𝑖

5!

[

−32𝑖𝜉
𝑛

(𝜉
𝑛
+ 𝑖)

3
]

(5)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+

𝑖

6

(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

[

96𝑖𝜉
𝑛

(𝜉
𝑛
+ 𝑖)

4
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= (−

3

8

ℎ
󸀠󸀠
(0) +

7

8

(ℎ
󸀠
(0))

2

)𝜋Ω
5
d𝑥󸀠.

(75)

Case 7. Consider 𝑟 = −2, ℓ = −3, 𝑘 = 0, 𝑗 = 1, and |𝛼| = 0.
From (23) and the Leibniz rule, we obtain

Case 7

=

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝜉
𝑛

𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2

× (𝐷
−2
) 𝜕

𝜉
𝑛

𝜎
−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= −

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕2
𝜉
𝑛

𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2

× (𝐷
−2
) 𝜎

−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(76)

By Lemma 8, we have

𝜋
+

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= ℎ
󸀠
(0)

2 + 𝑖𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

2
. (77)

Then,

𝜕
2

𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= ℎ
󸀠
(0)

4 + 𝑖𝜉
𝑛

2(𝜉
𝑛
− 𝑖)

4
. (78)

In the normal coordinate, 𝑔𝑖𝑗(𝑥
0
) = 𝛿

𝑗

𝑖
and 𝜕

𝑥
𝑗

(𝑔
𝛼𝛽
)(𝑥

0
) =

0, if 𝑗 < 𝑛; = ℎ
󸀠
(0)𝛿

𝛼

𝛽
, if 𝑗 = 𝑛. By Lemma A.2 in [13] and

Lemma 7, we obtain

𝜎
−3
(𝐷

−2
) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= −√−1|𝜉|
−4
𝜉
𝑘
(Γ

𝑘
− 2𝛿

𝑘
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

−√−1|𝜉|
−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑗
𝑔
𝛼𝛽
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−𝑖

(1 + 𝜉
2

𝑛
)
2
(−

1

2

ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
) + 3ℎ

󸀠
(0) 𝜉

𝑛
)

−

2𝑖ℎ
󸀠
(0) 𝜉𝑛

(1 + 𝜉
2

𝑛
)
3
.

(79)

We note that ∫
|𝜉
󸀠
|=1

𝜉
1
⋅ ⋅ ⋅ 𝜉

2𝑞+1
𝜎(𝜉

󸀠
) = 0, so the first term

in (79) has no contribution for computing Case 7. Combining
(78), (79), and direct computations, we obtain

trace [𝜕2
𝜉
𝑛

𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜎

−3
(𝐷

−2
)] (𝑥

0
)

= (ℎ
󸀠
(0))

2−80𝑖𝜉𝑛
+ 20𝜉

2

𝑛
− 48𝑖𝜉

3

𝑛
+ 12𝜉

4

𝑛

(𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)
3

.

(80)

Therefore,

Case 7

= −

1

2

(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

((−80𝑖𝜉
𝑛
+ 20𝜉

2

𝑛
− 48𝑖𝜉

3

𝑛
+ 12𝜉

4

𝑛
)

× ((𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)

3

)

−1

) d𝜉
𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= −

1

2

(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

× [

−80𝑖𝜉
𝑛
+ 20𝜉

2

𝑛
− 48𝑖𝜉

3

𝑛
+ 12𝜉

4

𝑛

(𝜉
𝑛
+ 𝑖)

3
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

=

21

8

(ℎ
󸀠
(0))

2

𝜋Ω
5
d𝑥󸀠.

(81)
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Case 8. Consider 𝑟 = −2, ℓ = −3, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 1.
From (23) and the Leibniz rule, we obtain

Case 8

= −∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)

× 𝜕
𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜎
−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕
𝜉
𝑛

𝜕
𝛼

𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)

× 𝜕
𝛼

𝑥
󸀠𝜎−3

(𝐷
−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(82)

By Lemma 7, a simple computation shows

𝜕
𝛼

𝜉
󸀠𝜎−2

(𝐷
−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= 𝜕
𝜉
𝑖

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−2𝜉
𝑖

(1 + 𝜉
2

𝑛
)
2
.

(83)

From (53) and (83), we obtain

𝜕
𝜉
𝑛

𝜕
𝛼

𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= 𝜕
𝜉
𝑖

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−3 − 𝑖𝜉
𝑛

2(𝜉
𝑛
− 𝑖)

3
𝜉
𝑖
.

(84)

By (44), (84), and direct computations, we obtain

trace [𝜕
𝜉
𝑛

𝜕
𝛼

𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝛼

𝑥
󸀠𝜎−3

(𝐷
−2
)] (𝑥

0
)

=

8𝜉
𝑛
− 24𝑖

3(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3

× ∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝑖𝛼𝑗𝛽
(𝑥

0
) + 𝑅

𝜕
𝑀

𝑖𝛽𝑗𝛼
(𝑥

0
)) 𝜉

𝑖
𝜉
𝑗
𝜉
𝛼
𝜉
𝛽

+

30𝑖 − 10𝜉
𝑛

3(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2
∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝛾𝑖𝑘
(𝑥

0
) 𝜉

𝑘
𝜉
𝛾
.

(85)

From (63), (64), and (85), we obtain

Case 8 = 1

9

𝑠
𝜕
𝑀

Ω
5
∫

+∞

−∞

15𝑖 − 5𝜉
𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2
d𝜉

𝑛
d𝑥󸀠

=

1

9

𝑠
𝜕
𝑀

2𝜋𝑖

4!

[

15𝑖 − 5𝜉
𝑛

(𝜉
𝑛
+ 𝑖)

2
]

(4)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

=

5

16

𝑠
𝜕
𝑀

𝜋Ω
5
d𝑥󸀠.

(86)

Case 9. Consider 𝑟 = −2, ℓ = −3, 𝑘 = 1, 𝑗 = 0, and |𝛼| = 0.
From (23) and the Leibniz rule, we obtain

Case 9

= −

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)

× 𝜕
𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕2
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝑥
𝑛

𝜎
−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(87)

From (73), we have

𝜕
2

𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−𝑖

(𝜉
𝑛
− 𝑖)

3
. (88)

Combining (45) and (88), we obtain

trace[𝜕2
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝑥
𝑛

𝜎
−3
(𝐷

−2
)] (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

(ℎ
󸀠
(0))

2

(84𝜉
𝑛
+ 36𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3

+

−24𝜉
𝑛
ℎ
󸀠󸀠
(0)

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2
.

(89)

Therefore,

Case 9

=

1

2

(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

(84𝜉
𝑛
+ 36𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3
d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

+

1

2

ℎ
󸀠󸀠
(0)

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

−24𝜉
𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2
d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

1

2

(ℎ
󸀠
(0))

2

Ω
5
∫

Γ
+

84𝜉
𝑛
+ 36𝜉

3

𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
3
d𝜉

𝑛
d𝑥󸀠

+

1

2

ℎ
󸀠󸀠
(0)Ω

5
∫

Γ
+

−24𝜉
𝑛

(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2
d𝜉

𝑛
d𝑥󸀠

=

1

2

(ℎ
󸀠
(0))

2 2𝜋𝑖

5!

[

84𝜉
𝑛
+ 36𝜉

3

𝑛

(𝜉
𝑛
+ 𝑖)

3
]

(5)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+

1

2

ℎ
󸀠󸀠
(0)

2𝜋𝑖

4!

[

−24𝜉
𝑛

(𝜉
𝑛
+ 𝑖)

2
]

(4)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= (

9

8

ℎ
󸀠󸀠
(0) −

27

8

(ℎ
󸀠
(0))

2

)𝜋Ω
5
d𝑥󸀠.

(90)
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Case 10. Consider 𝑟 = −3, ℓ = −2, 𝑘 = 0, 𝑗 = 1, and |𝛼| = 0.
From (23), we have

Case 10

= −

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(91)

By the Leibniz rule, trace property, and “++” and “− −”
vanishing after the integration over 𝜉

𝑛
in [9], then

∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

= ∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

− ∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛
.

(92)

Combining these assertions, we obtain

Case 10

= Case 9

−

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜎
−3
(𝐷

−2
)

× 𝜕
2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(93)

By Lemma 7, a simple computation shows

𝜕
2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

6𝜉
2

𝑛
− 2

(1 + 𝜉
2

𝑛
)
3
. (94)

Combining (45) and (94), we obtain

trace [𝜕
𝑥
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] (𝑥

0
)

= (ℎ
󸀠
(0))

2 (84𝑖𝜉𝑛
+ 36𝑖𝜉

3

𝑛
) (−2 + 6𝜉

2

𝑛
)

(1 + 𝜉
2

𝑛
)
6

+ ℎ
󸀠󸀠
(0)

24𝑖𝜉
𝑛
(2 − 6𝜉

2

𝑛
)

(1 + 𝜉
2

𝑛
)
5

.

(95)

We note that

∫

+∞

−∞

(84𝑖𝜉
𝑛
+ 36𝑖𝜉

3

𝑛
) (−2 + 6𝜉

2

𝑛
)

(1 + 𝜉
2

𝑛
)
6

d𝜉
𝑛

=

2𝜋𝑖

5!

[

(84𝑖𝜉
𝑛
+ 36𝑖𝜉

3

𝑛
) (−2 + 6𝜉

2

𝑛
)

(𝜉
𝑛
+ 𝑖)

6
]

(5)󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

= 0,

∫

+∞

−∞

24𝑖𝜉
𝑛
(2 − 6𝜉

2

𝑛
)

(1 + 𝜉
2

𝑛
)
5

d𝜉
𝑛
= 0.

(96)

Therefore,

Case 10 = (9
8

ℎ
󸀠󸀠
(0) −

27

8

(ℎ
󸀠
(0))

2

)𝜋Ω
5
d𝑥󸀠. (97)

Case 11. Consider 𝑟 = −3, ℓ = −2, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 1.
From (23), we have

Case 11

= −∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉
𝑛

𝜎
−3
(𝐷

−2
)

× 𝜕
𝛼

𝑥
󸀠𝜕𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(98)

By Lemma 8, for 𝑖 < 𝑛, we have

𝜕
𝑥
𝑖

𝜎
−2
(𝐷

−2
) (𝑥

0
) = 𝜕

𝑥
𝑖

(
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−2
) (𝑥

0
) = 0. (99)

So Case 11 vanishes.

Case 12. Consider 𝑟 = −3, ℓ = −2, 𝑘 = 1, 𝑗 = 0, and |𝛼| = 0.
From (23) and the Leibniz rule, we have

Case 12

= −

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

=

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(100)

By the Leibniz rule, trace property, and “++” and “− −”
vanishing after the integration over 𝜉

𝑛
in [9], then

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

= ∫

+∞

−∞

trace [𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

− ∫

+∞

−∞

trace [𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛
.

(101)

Combining these assertions, we see

Case 12 = Case 7

+

1

2

∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(102)
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From (68) and direct computations, we obtain

𝜕
2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

4 − 20𝜉
2

𝑛

(1 + 𝜉
2

𝑛
)
4
ℎ
󸀠
(0) . (103)

Combining (79) and (103), we obtain

trace [𝜎
−3
(𝐷

−2
) 𝜕

2

𝜉
𝑛

𝜕
𝑥
𝑛

𝜎
−2
(𝐷

−2
)] (𝑥

0
)

= (ℎ
󸀠
(0))

2−20𝑖𝜉𝑛
+ 88𝑖𝜉

3

𝑛
+ 60𝑖𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
7

.

(104)

We note that

∫

+∞

−∞

−20𝑖𝜉
𝑛
+ 88𝑖𝜉

3

𝑛
+ 60𝑖𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
7

d𝜉
𝑛

=

2𝜋𝑖

6!

[

−20𝑖𝜉
𝑛
+ 88𝑖𝜉

3

𝑛
+ 60𝑖𝜉

5

𝑛

(𝜉
𝑛
+ 𝑖)

7
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

= 0.

(105)

Therefore,

Case 12 = 21

8

(ℎ
󸀠
(0))

2

𝜋Ω
5
d𝑥󸀠. (106)

Case 13. Consider 𝑟 = −3, ℓ = −3, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 0.
From (23) and the Leibniz rule, we have

Case 13

= −𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= 𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜎

−3
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(107)

By (79), we obtain

𝜎
−3
(𝐷

−2
) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= −√−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−4
𝜉
𝑘
(Γ

𝑘
− 2𝛿

𝑘
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

−√−1
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨

−6
2𝜉

𝑗
𝜉
𝛼
𝜉
𝛽
𝜕
𝑗
𝑔
𝛼𝛽
(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−𝑖

(1 + 𝜉
2

𝑛
)
2
(−

1

2

ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
) + 3ℎ

󸀠
(0) 𝜉

𝑛
)

−

2𝑖ℎ
󸀠
(0) 𝜉𝑛

(1 + 𝜉
2

𝑛
)
3

=

𝑖

2(1 + 𝜉
2

𝑛
)
2
ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
) + ℎ

󸀠
(0)

−5𝑖𝜉
𝑛
− 3𝑖𝜉

3

𝑛

(1 + 𝜉
2

𝑛
)
3
.

(108)

By (18) and the Cauchy integral formula, then

𝜋
+

𝜉
𝑛

[

−5𝑖𝜉
𝑛
− 3𝑖𝜉

3

𝑛

(1 + 𝜉
2

𝑛
)
3
]

= 𝜋
+

𝜉
𝑛

[

−5𝑖𝜉
𝑛
− 3𝑖𝜉

3

𝑛

(𝜉
𝑛
+ 𝑖)

3
(𝜉

𝑛
− 𝑖)

3
]

=

1

2𝜋𝑖

lim
𝑢→0

−

∫

Γ
+

(−5𝑖𝜂
𝑛
− 3𝑖𝜂

3

𝑛
) / ((𝜂

𝑛
+ 𝑖)

3
(𝜉

𝑛
+ 𝑖𝑢 − 𝜂

𝑛
))

(𝜂
𝑛
− 𝑖)

3
d𝜂

𝑛

=

1

2

[

−5𝑖𝜂
𝑛
− 3𝑖𝜂

3

𝑛

(𝜂
𝑛
+ 𝑖)

3
(𝜉

𝑛
− 𝜂

𝑛
)

]

(1)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜂
𝑛
=𝑖

=

9𝑖 − 7𝜉
𝑛

8(𝜉
𝑛
− 𝑖)

3
.

(109)

Then, we obtain

𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

3𝑖 − 𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

3
ℎ
󸀠
(0) ∑

𝑘<𝑛

𝜉
𝑘
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑛
)

+ ℎ
󸀠
(0)

7𝜉
𝑛
− 10𝑖

4(𝜉
𝑛
− 𝑖)

4
.

(110)

By the relation of the Clifford action and tr𝐴𝐵 = tr𝐵𝐴, then
we have the equalities

tr [𝑐 (𝜉󸀠) 𝑐 (𝑑𝑥
𝑛
)] = 0; tr [𝑐(𝑑𝑥

𝑛
)
2
] = −8;

tr [𝑐(𝜉󸀠)
2

] (𝑥
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

= −8;

tr [𝑐 (𝐸
𝑗
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸

𝑘
) 𝑐 (𝐸

𝑛
)] = − tr [id] 𝛿𝑘

𝑗
= −8𝛿

𝑘

𝑗
.

(111)

Then,

trace [𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−3
(𝐷

−2
) 𝜎

−3
(𝐷

−2
)] (𝑥

0
)

=

(−3 − 𝑖𝜉
𝑛
) ℎ

󸀠
(0)

8(𝜉
𝑛
− 𝑖)

3
(1 + 𝜉

2

𝑛
)
2

× ∑

𝑘<𝑛

𝜉
𝑗
𝜉
𝑘
trace [𝑐 (𝐸

𝑗
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸

𝑘
) 𝑐 (𝐸

𝑛
)]

+ (ℎ
󸀠
(0))

2 2 (10𝑖 − 7𝜉𝑛
) (5𝑖𝜉

𝑛
+ 3𝑖𝜉

3

𝑛
)

(𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)
3

= (ℎ
󸀠
(0))

2−3𝑖 − 96𝜉𝑛
− 72𝑖𝜉

2

𝑛
− 56𝜉

3

𝑛
− 41𝑖𝜉

4

𝑛

(𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)
3

.

(112)
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Therefore,

Case 13

= 𝑖(ℎ
󸀠
(0))

2

× ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

((−3𝑖 − 96𝜉
𝑛
− 72𝑖𝜉

2

𝑛
− 56𝜉

3

𝑛
− 41𝑖𝜉

4

𝑛
)

× ((𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)

3

)

−1

) d𝜉
𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= 𝑖(ℎ
󸀠
(0))

2

Ω
5

× ∫

Γ
+

−3𝑖 − 96𝜉
𝑛
− 72𝑖𝜉

2

𝑛
− 56𝜉

3

𝑛
− 41𝑖𝜉

4

𝑛

(𝜉
𝑛
− 𝑖)

4
(1 + 𝜉

2

𝑛
)
3

d𝜉
𝑛
d𝑥󸀠

= 𝑖(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

× [

−3𝑖 − 96𝜉
𝑛
− 72𝑖𝜉

2

𝑛
− 56𝜉

3

𝑛
− 41𝑖𝜉

4

𝑛

(𝜉
𝑛
+ 𝑖)

3
]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= −

57

8

(ℎ
󸀠
(0))

2

𝜋Ω
5
d𝑥󸀠.

(113)

Case 14. Consider 𝑟 = −2, ℓ = −4, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 0.
From (23) and the Leibniz rule, we have

Case 14

= −𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−4
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= 𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜎

−4
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(114)

From (73), we have

𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

𝑖

2(𝜉
𝑛
− 𝑖)

2
. (115)

From Lemmas 7 and 10, we obtain

𝜎
−4
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
3
𝑐 (𝐸

𝜇
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

) −

9(ℎ
󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
3
𝜉
3

𝑛
𝜉
𝜇
𝜉]

+

(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
2
𝜉
𝜇
𝜉]𝑐 (𝐸𝜇

) 𝑐 (𝐸
𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

)

−

1

4(1 + 𝜉
2

𝑛
)
2
𝑠 (𝑥

0
)

−

5

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝜇
𝜉]∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝜇𝑖] (𝑥0) −
6

(1 + 𝜉
2

𝑛
)
3
ℎ
󸀠󸀠
(0) 𝜉

2

𝑛

−

4

3(1 + 𝜉
2

𝑛
)
4
𝜉
𝜇
𝜉]𝜉𝛾𝜉𝛿 ∑

𝛾,𝛿<𝑛

(𝑅
𝜕
𝑀

𝜇𝛾]𝛿 (𝑥0) + 𝑅
𝜕
𝑀

]𝛾𝜇𝛿 (𝑥0))

+

4ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
4
𝜉
2

𝑛

−

1

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝛼
𝜉
𝛽
∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝜇𝛼]𝛽 (𝑥0) + 𝑅
𝜕
𝑀

]𝛽𝜇𝛼 (𝑥0))

+

ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
3
+

2 + 3𝜉
𝑛
+ 10𝜉

2

𝑛
+ 12𝜉

3

𝑛
− 4𝜉

4

𝑛
+ 9𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
5

(ℎ
󸀠
(0))

2

.

(116)

From (115), (116), and direct computations, we obtain

trace [𝜕
𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
) 𝜎

−4
(𝐷

−2
)] (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

−(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
3
tr [𝑐 (𝐸

𝜇
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

)]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

9(ℎ
󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
3
𝜉
3

𝑛
𝜉
𝜇
𝜉] tr [id]

+

𝑖

2(𝜉
𝑛
− 𝑖)

2

×

(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
2
𝜉
𝜇
𝜉] tr [𝑐 (𝐸𝜇

) 𝑐 (𝐸
𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

)]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

1

4(1 + 𝜉
2

𝑛
)
2
𝑠 (𝑥

0
) tr [id]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

5

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝜇
𝜉]∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝜇𝑖] (𝑥0) tr [id]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

6

(1 + 𝜉
2

𝑛
)
3
ℎ
󸀠󸀠
(0) 𝜉

2

𝑛
tr [id]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

4

3(1 + 𝜉
2

𝑛
)
4
𝜉
𝜇
𝜉]𝜉𝛾𝜉𝛿

× ∑

𝛾,𝛿<𝑛

(𝑅
𝜕
𝑀

𝜇𝛾]𝛿 (𝑥0) + 𝑅
𝜕
𝑀

]𝛾𝜇𝛿 (𝑥0)) tr [id]

−

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

1

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝛼
𝜉
𝛽

× ∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝜇𝛼]𝛽 (𝑥0) + 𝑅
𝜕
𝑀

]𝛽𝜇𝛼 (𝑥0)) tr [id]
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+

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

4ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
4
𝜉
2

𝑛
tr [id]

+

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
3
tr [id]

+

𝑖

2(𝜉
𝑛
− 𝑖)

2
×

2 + 3𝜉
𝑛
+ 10𝜉

2

𝑛
+ 12𝜉

3

𝑛
− 4𝜉

4

𝑛
+ 9𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
5

× (ℎ
󸀠
(0))

2

tr [id] .
(117)

Combining (64), (113), and (117), we obtain

Case 14

= 𝑠 (𝑥
0
)Ω

5
∫

+∞

−∞

1

(𝜉
𝑛
− 𝑖)

4
(𝜉

𝑛
+ 𝑖)

2
d𝜉

𝑛
d𝑥󸀠

+ 𝑠
𝜕
𝑀

(𝑥
0
)Ω

5
∫

+∞

−∞

14

9(𝜉
𝑛
− 𝑖)

5
(𝜉

𝑛
+ 𝑖)

3
d𝜉

𝑛
d𝑥󸀠

+ (ℎ
󸀠
(0))

2

Ω
5

× ∫

+∞

−∞

((−53 − 72𝜉
𝑛
− 33𝜉

2

𝑛
− 288𝜉

3

𝑛
+ 525𝜉

4

𝑛
− 216𝜉

5

𝑛

+ 217𝜉
6

𝑛
) × (6(𝜉

𝑛
− 𝑖)

7
(𝜉

𝑛
+ 𝑖)

5
)

−1

) d𝜉
𝑛
d𝑥󸀠

+ ℎ
󸀠󸀠
(0)Ω

5
∫

+∞

−∞

−4 (1 − 𝜉
2

𝑛
− 6𝜉

4

𝑛
)

(𝜉
𝑛
− 𝑖)

6
(𝜉

𝑛
+ 𝑖)

4
d𝜉

𝑛
d𝑥󸀠

= 𝑠 (𝑥
0
)

2𝜋𝑖

3!

[

1

(𝜉
𝑛
+ 𝑖)

2
]

(3)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+ 𝑠
𝜕
𝑀

(𝑥
0
)

2𝜋𝑖

4!

[

14

9(𝜉
𝑛
+ 𝑖)

3
]

(4)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+ (ℎ
󸀠
(0))

2 2𝜋𝑖

6!

× [ (−53 − 72𝜉
𝑛
− 33𝜉

2

𝑛
− 288𝜉

3

𝑛
+ 525𝜉

4

𝑛

−216𝜉
5

𝑛
+ 217𝜉

6

𝑛
) × (6(𝜉

𝑛
+ 𝑖)

5
)

−1

]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

+ ℎ
󸀠󸀠
(0)

2𝜋𝑖

5!

[

−4(1 − 𝜉
2

𝑛
− 6𝜉

4

𝑛
)

(𝜉
𝑛
+ 𝑖)

4
]

(5)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= (

−1

4

𝑠 (𝑥
0
) −

35

96

𝑠
𝜕
𝑀

(𝑥
0
)

+ (

343

192

−

3𝑖

2

) (ℎ
󸀠
(0))

2

+

13

16

ℎ
󸀠󸀠
(0)) 𝜋Ω

5
d𝑥󸀠.

(118)

Case 15. Consider 𝑟 = −4, ℓ = −2, 𝑘 = 0, 𝑗 = 0, and |𝛼| = 0.
From (23), we have

Case 15

= −𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(119)

By the Leibniz rule, trace property, and “++” and “− −”
vanishing after the integration over 𝜉

𝑛
in [9], then

∫

+∞

−∞

trace [𝜋+

𝜉
𝑛

𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

= ∫

+∞

−∞

trace [𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛

− ∫

+∞

−∞

trace [𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜋
+

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] d𝜉

𝑛
.

(120)

Combining these assertions, we see

Case 15 = Case 14

− 𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠.

(121)

By Lemma 7, a simple computation shows

𝜕
𝜉
𝑛

𝜎
−2
(𝐷

−2
)(𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
. (122)

From (116), (122), and direct computations, we obtain

trace [𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)] (𝑥

0
)

󵄨
󵄨
󵄨
󵄨
󵄨|𝜉
󸀠
|=1

=

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

−(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
3
tr [𝑐 (𝐸

𝜇
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

)]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

9(ℎ
󸀠
(0))

2

(1 + 𝜉
2

𝑛
)
3
𝜉
3

𝑛
𝜉
𝜇
𝜉] tr [id]

+

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

(ℎ
󸀠
(0))

2

4(1 + 𝜉
2

𝑛
)
2
𝜉
𝜇
𝜉]
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× tr [𝑐 (𝐸
𝜇
) 𝑐 (𝐸

𝑛
) 𝑐 (𝐸]) 𝑐 (𝐸𝑛

)]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

1

4(1 + 𝜉
2

𝑛
)
2
𝑠 (𝑥

0
) tr [id]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

5

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝜇
𝜉]∑

𝑖<𝑛

𝑅
𝜕
𝑀

𝑖𝜇𝑖] (𝑥0) tr [id]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

6

(1 + 𝜉
2

𝑛
)
3
ℎ
󸀠󸀠
(0) 𝜉

2

𝑛
tr [id]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

4

3(1 + 𝜉
2

𝑛
)
4
𝜉
𝜇
𝜉]𝜉𝛾𝜉𝛿

× ∑

𝛾,𝛿<𝑛

(𝑅
𝜕
𝑀

𝜇𝛾]𝛿 (𝑥0) + 𝑅
𝜕
𝑀

]𝛾𝜇𝛿 (𝑥0)) tr [id]

−

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

1

3(1 + 𝜉
2

𝑛
)
3
𝜉
𝛼
𝜉
𝛽

× ∑

𝛼,𝛽<𝑛

(𝑅
𝜕
𝑀

𝜇𝛼]𝛽 (𝑥0) + 𝑅
𝜕
𝑀

]𝛽𝜇𝛼 (𝑥0)) tr [id]

+

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2
×

4ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
4
𝜉
2

𝑛
tr [id] +

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2

×

ℎ
󸀠󸀠
(0)

(1 + 𝜉
2

𝑛
)
3
tr [id] +

−2𝜉
𝑛

(1 + 𝜉
2

𝑛
)
2

×

2 + 3𝜉
𝑛
+ 10𝜉

2

𝑛
+ 12𝜉

3

𝑛
− 4𝜉

4

𝑛
+ 9𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
5

(ℎ
󸀠
(0))

2

tr [id] .

(123)

Combining (64), (111), and (123), we obtain

− 𝑖 ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜎
−4
(𝐷

−2
) 𝜕

𝜉
𝑛

𝜎
−2
(𝐷

−2
)]

× (𝑥
0
) d𝜉

𝑛
𝜎 (𝜉

󸀠
) d𝑥󸀠

= −𝑖𝑠 (𝑥
0
)Ω

5
∫

+∞

−∞

4𝜉
𝑛

(1 + 𝜉
2

𝑛
)
4
d𝜉

𝑛
d𝑥󸀠

− 𝑖𝑠
𝜕
𝑀

(𝑥
0
)Ω

5
∫

+∞

−∞

56𝜉
𝑛

9(1 + 𝜉
2

𝑛
)
5
d𝜉

𝑛
d𝑥󸀠

− 𝑖ℎ
󸀠󸀠
(0)Ω5

∫

+∞

−∞

−16𝜉
𝑛
+ 16𝜉

3

𝑛
+ 96𝜉

5

𝑛

(1 + 𝜉
2

𝑛
)
6

d𝜉
𝑛
d𝑥󸀠

− 𝑖(ℎ
󸀠
(0))

2

Ω
5
∫

+∞

−∞

((−100𝜉
𝑛
− 144𝜉

2

𝑛
− 66𝜉

3

𝑛
− 576𝜉

4

𝑛

+1050𝜉
5

𝑛
− 432𝜉

6

𝑛
+ 434𝜉

7

𝑛
)

× (3(1 + 𝜉
2

𝑛
)

7

)

−1

) d𝜉
𝑛
d𝑥󸀠

= −𝑖𝑠 (𝑥
0
)

2𝜋𝑖

3!

[

4𝜉
𝑛

(𝜉
𝑛
+ 𝑖)

4
]

(3)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

− 𝑖𝑠
𝜕
𝑀

(𝑥
0
)

2𝜋𝑖

4!

[

56𝜉
𝑛

9(𝜉
𝑛
+ 𝑖)

5
]

(4)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

− 𝑖ℎ
󸀠󸀠
(0)

2𝜋𝑖

5!

[

−16𝜉
𝑛
+ 16𝜉

3

𝑛
+ 96𝜉

5

𝑛

(𝜉
𝑛
+ 𝑖)

6
]

(5)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

− 𝑖(ℎ
󸀠
(0))

2 2𝜋𝑖

6!

[(−100𝜉
𝑛
− 144𝜉

2

𝑛
− 66𝜉

3

𝑛
− 576𝜉

4

𝑛

+1050𝜉
5

𝑛
− 432𝜉

6

𝑛
+ 434𝜉

7

𝑛
)

× (3(𝜉
𝑛
+ 𝑖)

7
)

−1

]

(6)󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝜉
𝑛
=𝑖

Ω
5
d𝑥󸀠

= 3𝑖(ℎ
󸀠
(0))

2

𝜋Ω
5
d𝑥󸀠.

(124)

Therefore,

Case 15 = (−1
4

𝑠 (𝑥
0
) −

35

96

𝑠
𝜕
𝑀

(𝑥
0
) + (

343

192

+

3𝑖

2

)

× (ℎ
󸀠
(0))

2

+

13

16

ℎ
󸀠󸀠
(0)) 𝜋Ω

5
d𝑥󸀠.

(125)

Now, Φ is the sum of the case (1, 2, . . . , 15), so

Φ =

15

∑

𝐼=1

case 𝐼 = (−1475
384

(ℎ
󸀠
(0))

2

+

25

8

ℎ
󸀠󸀠
(0)

−

1

2

𝑠 −

77

192

𝑠
𝜕
𝑀

)𝜋Ω
5
d𝑥󸀠.

(126)

Hence, we conclude that, for 7-dimensional compact mani-
fold𝑀 with the boundary 𝜕𝑀,

Vol(2,2)
7

=

1

2

∫

𝜕
𝑀

(−

1475

192

(ℎ
󸀠
(0))

2

+

25

4

ℎ
󸀠󸀠
(0)

−𝑠 −

77

96

𝑠
𝜕
𝑀

)𝜋Ω
5
d vol

𝜕
𝑀

.

(127)

Next, we recall the Einstein-Hilbert action for manifolds
with boundary (see [13] or [14]):

𝐼Gr =
1

16𝜋

∫

𝑀

𝑠d vol
𝑀
+ 2∫

𝜕𝑀

𝐾d vol
𝜕
𝑀

:= 𝐼Gr,𝑖 + 𝐼Gr,𝑏,

(128)

where

𝐾 = ∑

1≤𝑖,𝑗≤𝑛−1

𝐾
𝑖,𝑗
𝑔
𝑖,𝑗

𝜕𝑀
; 𝐾

𝑖,𝑗
= −Γ

𝑛

𝑖,𝑗
, (129)

and 𝐾
𝑖,𝑗
is the second fundamental form or extrinsic curva-

ture. Take themetric in Section 2; then, by LemmaA.2 in [13],
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we have 𝐾
𝑖,𝑗
(𝑥

0
) = −Γ

𝑛

𝑖,𝑗
(𝑥

0
) = −(1/2)ℎ

󸀠
(0) for 𝑖 = 𝑗 < 𝑛;

Γ
𝑖

𝑠,𝑡
(𝑥

0
) = 0, if 𝑖 < 𝑛. For 𝑛 = 7, then

𝐾(𝑥
0
) = ∑

𝑖,𝑗

𝐾
𝑖.𝑗
(𝑥

0
) 𝑔

𝑖,𝑗

𝜕𝑀
(𝑥

0
) =

6

∑

𝑖=1

𝐾
𝑖,𝑖
(𝑥

0
) = −

5

2

ℎ
󸀠
(0) .

(130)

So

𝐼Gr,𝑏 = −5ℎ
󸀠
(0)Vol

𝜕𝑀
. (131)

On the other hand, by Proposition 2.10 in [21], we have
the following lemma.

Lemma 12. Let𝑀 be a 7-dimensional compact manifold with
the boundary 𝜕𝑀; then,

𝑠
𝑀
(𝑥

0
) =

3

2

(ℎ
󸀠
(0))

2

− 6ℎ
󸀠󸀠
(0) + 𝑠

𝜕
𝑀

(𝑥
0
) . (132)

Proof. From Proposition 2.10 in [21], let 𝐵 = [0, 1), 𝑏2 =

(1/ℎ(𝑥
𝑛
)), and 𝐹 = 𝜕

𝑀
; we obtain 𝑠

𝐵
= 0, |grad

𝐵
𝑏|

2
= (𝑏

󸀠
)
2,

and

𝑠
𝑀
(𝑥

0
) = 12𝑏

󸀠󸀠
(𝑥

0
) − 30(𝑏

󸀠
(𝑥

0
))

2

+ 𝑠
𝜕
𝑀

(𝑥
0
) . (133)

By a simple computation, the lemma as follows.

Hence, from (127) and (133), we obtain the following.

Theorem 13. Let 𝑀 be a 7-dimensional compact manifold
with the boundary 𝜕𝑀; then,

W̃res [(𝜋+
𝐷

−2
)

2

]

=

𝜋
4

48

∫

𝜕
𝑀

(−

47

2

𝐾
2
− 49𝑠

𝑀

󵄨
󵄨
󵄨
󵄨𝜕
𝑀

−

77

4

𝑠
𝜕
𝑀

) d vol
𝜕M
.

(134)
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