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Let S be a nonunital commutative semigroup, 𝜎 : 𝑆 → 𝑆 an involution, and C the set of complex numbers. In this paper, first
we determine the general solutions 𝑓, 𝑔 : 𝑆 → C of Wilson’s generalizations of d’Alembert’s functional equations 𝑓 (𝑥 + 𝑦) +

𝑓 (𝑥 + 𝜎𝑦) = 2𝑓(𝑥)𝑔(𝑦) and 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑔(𝑥)𝑓(𝑦) on nonunital commutative semigroups, and then using the
solutions of these equations we solve a number of other functional equations on more general domains.

1. Introduction

The functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) 𝑓 (𝑦) (1)

is known as the d’Alembert’s functional equation. It has a long
history going back to d’Alembert [1]. As the name suggests
this functional equation was introduced by d’Alembert in
connection with the composition of forces and plays a central
role in determining the sum of two vectors in Euclidean and
non-Euclidean geometries [2].

Several authors have determined the general solution 𝑓 :

𝑆 → F of the functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑓 (𝑥) 𝑓 (𝑦) , (2)

for all 𝑥, 𝑦 ∈ 𝑆, where 𝜎 : 𝑆 → 𝑆 is an automorphism of
order 2. Stetkær [3] studied (2) when F = C, 𝑆 is an abelian
topological group and 𝑓 : 𝑆 → C and 𝜎 : 𝑆 → 𝑆 are
continuous. Sinopoulos [4] determined the general solution
𝑓 : 𝑆 → F of (2) when 𝑆 is a commutative semigroup, F
is a quadratically closed commutative field of characteristic
different from 2, and 𝜎 is an endomorphism of 𝑆 of order 2.

Wilson’s functional equation 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) =

2𝑓(𝑥)𝑔(𝑦) is a generalization of d’Alembert’s functional

equation. Among others Wilson’s functional equation was
studied by Wilson [5] and [6], Kaczmarz [7], van der Lyn
[8], Fenyö [9], Chung et al. [10], and Aczél [11]. Stetkær (see
[12] and [3]) studied Wilson’s equation with an involution;
namely,

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑓 (𝑥) 𝑔 (𝑦) , ∀𝑥, 𝑦 ∈ 𝑆, (3)

where 𝑆 is a topological monoid (i.e., 𝑆 is a semigroup with
an identity element), 𝑓, 𝑔 are continuous functions defined
on 𝑆 and taking values on C, and 𝜎 : 𝑆 → 𝑆 is a continuous
automorphism of order 2. He gave several properties of
the solution (𝑓, 𝑔) of Wilson’s equation (see [3, Chapter 11,
Lemmas 11.3 and 11.4]). In Chapter 11 of [3] (see Corollary
11.7) a complete and satisfactory description of the solutions
of Wilson’s equation (3) was given on abelian groups.

The functional equation 𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦) = 2𝑔(𝑥)𝑓(𝑦)

was introduced in [6] (see also [3] Chapter 11). For more
on known results related to Wilson’s functional equations we
refer the reader to [13–20]. The above functional equation
with an involution, namely,

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑔 (𝑥) 𝑓 (𝑦) , ∀𝑥, 𝑦 ∈ 𝑆, (4)

was studied by Stetkær (see [21]) on abelian groups.
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In this paper, first we present the solutions of Wilson’s
functional equations (3) and (4) on nonunital commutative
semigroups and then using the general solutions of these
functional equations we determine the general solutions of
several functional equations in two variables in more general
domains. In particular, we determine the general solutions
(𝑓, 𝑔) of functional equations; namely,

𝑓 (𝑝𝑟, 𝑞𝑠) + 𝑓 (𝑝𝑠, 𝑞𝑟) = 2𝑓 (𝑝, 𝑞) 𝑔 (𝑟, 𝑠)

∀𝑝, 𝑞, 𝑟, 𝑠 ∈ (0, 1] ,

𝑓 (𝑝𝑟, 𝑞𝑠) + 𝑓 (𝑝𝑠, 𝑞𝑟) = 2𝑔 (𝑝, 𝑞) 𝑓 (𝑟, 𝑠)

∀𝑝, 𝑞, 𝑟, 𝑠 ∈ (0, 1]

(5)

treated by Riedel and Sahoo in [22], on more general
domains. We also determine the general solutions of func-
tional equations:

𝑓 (𝑧𝑤) + 𝑓 (𝑧𝑤) = 2𝑓 (𝑧) 𝑔 (𝑤) ∀𝑧, 𝑤 ∈ C,

𝑓 (𝑧𝑤) + 𝑓 (𝑧𝑤) = 2𝑔 (𝑧) 𝑓 (𝑤) ∀𝑧, 𝑤 ∈ C,

𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 − V𝑥)

= 2𝑓 (𝑥, 𝑦) 𝑔 (𝑢, V) ∀𝑥, 𝑦, 𝑢, V ∈ R,

𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 − V𝑥)

= 2𝑓 (𝑥, 𝑦) 𝑔 (𝑢, V) ∀𝑥, 𝑦, 𝑢, V ∈ R.

(6)

2. Solution of Wilson’s Equations on
Commutative Nonunital Semigroups

In this section, we present the solutions (𝑓, 𝑔) of Wilson’s
functional equations (3) and (4) on nonunital semigroups.
We solve these equations on more general domains than the
domains used in [3]. In particular we give the description of
the solutions of Wilson’s equations (3) and (4) on nonunital
semigroups whereas in [3] the description of the solutions
of (3) is given on commutative topological monoids (i.e.,
semigroups with an identity element). Note that Lemmas 11.3
and 11.4 of Chapter 11 in [3] are not very useful for solving (3)
and (4) on nonunital commutative semigroups due to the lack
of identity element. Our method of proof is quite elementary
and transparent.

Throughout this paper we denote by 𝑆 a 2-divisible
commutative semigroup with no identity element and denote
by C the set of complex numbers. A function 𝜎 : 𝑆 → 𝑆 is
said to be an involution if 𝜎(𝑥 + 𝑦) = 𝜎(𝑦) + 𝜎(𝑥), for all
𝑥, 𝑦 ∈ 𝑆, and 𝜎(𝜎(𝑥)) = 𝑥, for all 𝑥 ∈ 𝑆. For simplicity we
write 𝜎𝑥 instead of 𝜎(𝑥). A function 𝑚 : 𝑆 → C is called an
exponential function provided that𝑚(𝑥+𝑦) = 𝑚(𝑥)𝑚(𝑦), for
all 𝑥, 𝑦 ∈ 𝑆, and 𝑎 : 𝑆 → C is called an additive function
provided that 𝑎(𝑥 + 𝑦) = 𝑎(𝑥) + 𝑎(𝑦), for all 𝑥, 𝑦 ∈ 𝑆.

As a direct consequence of a theorem of Sinopoulos [4]
we have the following lemma.

Lemma 1. Let 𝑔 : 𝑆 → C satisfy

𝑔 (𝑥 + 𝑦) + 𝑔 (𝑥 + 𝜎𝑦) = 2 𝑔 (𝑥) 𝑔 (𝑦) (7)

for all 𝑥, 𝑦 ∈ 𝑆. Then there exists an exponential function 𝑚 :

𝑆 → C such that

𝑔 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2

(8)

for all 𝑥 ∈ 𝑆.

In the following, we exclude the trivial cases when𝑓(𝑥) ≡

0 or 𝑔(𝑥) ≡ 0.

Theorem 2. Let 𝑓, 𝑔 : 𝑆 → C satisfy the functional equation
𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑓 (𝑥) 𝑔 (𝑦) (9)

for all 𝑥, 𝑦 ∈ 𝑆. Then either 𝑔, 𝑓 are of the form

𝑔 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2

, 𝑓 (𝑥) = 𝛼
1
𝑚(𝑥) + 𝛼

2
𝑚(𝜎𝑥) ,

(10)
for all 𝑥 ∈ 𝑆, where 𝑚 : 𝑆 → C is an exponential function
satisfying 𝑚 ̸= 𝑚 ∘ 𝜎 and 𝛼

1
, 𝛼
2
∈ C, or else

𝑔 (𝑥) = 𝑚 (𝑥) ,

𝑓 (𝑥) =

{
{

{
{

{

𝑚(𝑥) (𝛽 + 𝑎 (𝑥)) , if 𝑥 ∈ 𝑆 \ 𝐾,

0 if 𝑥 ∈ 𝐾,

(11)

where 𝑚 : 𝑆 → C is an exponential function satisfying 𝑚 =

𝑚 ∘ 𝜎, 𝐾 = {𝑥 ∈ 𝑆 | 𝑚(𝑥) = 0} and 𝑎 : 𝑆 \ 𝐾 → C is an
additive function satisfying 𝑎 = −𝑎 ∘ 𝜎 and 𝛽 ∈ C.

Proof. Choose an 𝑥
0
∈ 𝑆 such that 𝑓(𝑥

0
) ̸= 0. Replacing 𝑥 by

𝑥
0
in (9) and dividing the result by 2𝑓(𝑥

0
) we have

𝑔 (𝑦) =

𝑓 (𝑥
0
+ 𝑦) + 𝑓 (𝑥

0
+ 𝜎𝑦)

2𝑓 (𝑥
0
)

(12)

for all𝑦 ∈ 𝑆.Multiplying both sides of (12) by 2𝑔(𝑥) and using
(9) we have
2𝑔 (𝑦) 𝑔 (𝑥)

=

2𝑓 (𝑥
0
+ 𝑦) 𝑔 (𝑥) + 2𝑓 (𝑥

0
+ 𝜎𝑦) 𝑔 (𝑥)

2𝑓 (𝑥
0
)

= (𝑓 (𝑥
0
+ 𝑦 + 𝑥) + 𝑓 (𝑥

0
+ 𝑦 + 𝜎𝑥)

+𝑓 (𝑥
0
+ 𝜎𝑦 + 𝑥) + 𝑓 (𝑥

0
+ 𝜎𝑦 + 𝜎𝑥)) × (2𝑓(𝑥

0
))
−1

=

𝑓 (𝑥
0
+ 𝑦 + 𝑥) + 𝑓 (𝑥

0
+ 𝜎𝑦 + 𝜎𝑥)

2𝑓 (𝑥
0
)

+

𝑓 (𝑥
0
+ 𝑦 + 𝜎𝑥) + 𝑓 (𝑥

0
+ 𝜎𝑦 + 𝑥)

2𝑓 (𝑥
0
)

=

𝑓 (𝑥
0
+ 𝑦 + 𝑥) + 𝑓 (𝑥

0
+ 𝜎 (𝑦 + 𝑥))

2𝑓 (𝑥
0
)

+

𝑓 (𝑥
0
+ 𝑦 + 𝜎𝑥) + 𝑓 (𝑥

0
+ 𝜎 (𝑦 + 𝜎𝑥))

2𝑓 (𝑥
0
)

= 𝑔 (𝑦 + 𝑥) + 𝑔 (𝑦 + 𝜎𝑥)

(13)
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for all 𝑥, 𝑦 ∈ 𝑆. By Lemma 1, 𝑔 has the form

𝑔 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2

(14)

for all 𝑥 ∈ 𝑆. Now, we find 𝑓. Let 𝑓
𝑒
and 𝑓

𝑜
be the even part

and the odd part of 𝑓 with respect to 𝜎; that is,

𝑓
𝑒
(𝑥) =

1

2

(𝑓 (𝑥) + 𝑓 (𝜎𝑥)) ,

𝑓
𝑜
(𝑥) =

1

2

(𝑓 (𝑥) − 𝑓 (𝜎𝑥))

(15)

for all 𝑥, 𝑦 ∈ 𝑆. Then we have

𝑓 (𝑥) = 𝑓
𝑒
(𝑥) + 𝑓

𝑜
(𝑥) , 𝑓

𝑒
(𝜎𝑥) = 𝑓

𝑒
(𝑥) ,

𝑓
𝑜
(𝜎𝑥) = −𝑓

𝑜
(𝑥)

(16)

for all 𝑥 ∈ 𝑆. Replacing 𝑥 by 𝜎𝑥 in (14) we obtain
𝑔 (𝜎𝑥) = 𝑔 (𝑥) (17)

for all 𝑥 ∈ 𝑆. Replacing (𝑥, 𝑦) by (𝜎𝑥, 𝜎𝑦) in (9) and using (17)
we have

𝑓 (𝜎𝑥 + 𝜎𝑦) + 𝑓 (𝜎𝑥 + 𝑦) = 2𝑓 (𝜎𝑥) 𝑔 (𝑦) (18)

for all 𝑥, 𝑦 ∈ 𝑆. Adding (18) to (9) and dividing the result by
2 we have

𝑓
𝑒
(𝑥 + 𝑦) + 𝑓

𝑒
(𝑥 + 𝜎𝑦) = 2𝑓

𝑒
(𝑥) 𝑔 (𝑦) (19)

for all 𝑥, 𝑦 ∈ 𝑆. Replacing (𝑥, 𝑦) by (𝑦, 𝑥) in (19) and using
(16) we have

𝑓
𝑒
(𝑥 + 𝑦) + 𝑓

𝑒
(𝑥 + 𝜎𝑦) = 2𝑓

𝑒
(𝑦) 𝑔 (𝑥) . (20)

Putting 𝑦 = 𝑦
0
in (19) and (20) such that 𝑔(𝑦

0
) ̸= 0 and

equating the right hand sides of the results we have

𝑓
𝑒
(𝑥) =

𝑓
𝑒
(𝑦
0
)

𝑔 (𝑦
0
)

𝑔 (𝑥) := 𝛽𝑔 (𝑥) (21)

for all 𝑥 ∈ 𝑆. From now on, we determine 𝑓
𝑜
. Subtracting (18)

from (9) and dividing the result by 2 we have
𝑓
𝑜
(𝑥 + 𝑦) + 𝑓

𝑜
(𝑥 + 𝜎𝑦) = 2𝑓

𝑜
(𝑥) 𝑔 (𝑦) (22)

for all 𝑥, 𝑦 ∈ 𝑆. Replacing (𝑥, 𝑦) by (𝑦, 𝑥) and using (16) we
have

𝑓
𝑜
(𝑥 + 𝑦) − 𝑓

𝑜
(𝑥 + 𝜎𝑦) = 2𝑓

𝑜
(𝑦) 𝑔 (𝑥) (23)

for all 𝑥, 𝑦 ∈ 𝑆. Subtracting (23) from (22) and dividing the
result by 2 we have

𝑓
𝑜
(𝑥 + 𝜎𝑦) = 𝑓

𝑜
(𝑥) 𝑔 (𝑦) − 𝑓

𝑜
(𝑦) 𝑔 (𝑥) (24)

for all 𝑥, 𝑦 ∈ 𝑆. We divide into two cases when (i) 𝑚(𝜎𝑥) ̸=

𝑚(𝑥), for some 𝑥 ∈ 𝑆, and (ii) 𝑚(𝜎𝑥) = 𝑚(𝑥), for all 𝑥 ∈ 𝑆.

Case 1. First, we consider the case when 𝑚(𝜎𝑥) ̸= 𝑚(𝑥), for
some 𝑥 ∈ 𝑆. We show that if 𝑚 ̸= 𝑚 ∘ 𝜎, then 𝑔 is not an
exponential function. Indeed, from (10) we have

𝑔 (𝑥 + 𝑦) =

1

2

(𝑚 (𝑥 + 𝑦) + 𝑚 (𝜎𝑥 + 𝜎𝑦))

=

1

2

(𝑚 (𝑥)𝑚 (𝑦) + 𝑚 (𝜎𝑥)𝑚 (𝜎𝑦))

(25)

for all 𝑥, 𝑦 ∈ 𝑆, and

𝑔 (𝑥) 𝑔 (𝑦) =

1

4

(𝑚 (𝑥) + 𝑚 (𝜎𝑥)) (𝑚 (𝑦) + 𝑚 (𝜎𝑦)) (26)

for all 𝑥, 𝑦 ∈ 𝑆. If 𝑔 is exponential, equating (25) and (26) and
multiplying the result by 4 we have

(𝑚 (𝑥) − 𝑚 (𝜎𝑥)) (𝑚 (𝑦) − 𝑚 (𝜎𝑦)) = 0 (27)

for all 𝑥, 𝑦 ∈ 𝑆, which implies 𝑚(𝑥) = 𝑚(𝜎𝑥), for all 𝑥 ∈ 𝑆,
contradicting our assumption that 𝑚(𝑥) ̸= 𝑚(𝜎𝑥), for some
𝑥 ∈ 𝑆. Thus, 𝑔 is not exponential. Let

𝑓
𝑜𝑝

(𝑥) =

1

2

(𝑚 (𝑥) − 𝑚 (𝜎𝑥)) . (28)

Then it is easy to see that (𝑓
𝑝
, 𝑔) satisfies the functional

equation (22). Since 𝑔 is not exponential, we can choose
𝑥
0
, 𝑦
0

∈ 𝑆 such that 𝑔(𝑥
0
+ 𝑦
0
) ̸= 𝑔(𝑥

0
)𝑔(𝑦
0
). Let 𝑓

𝑜
be

an arbitrary solution of the functional equation (22). We can
choose 𝑐

1
, 𝑐
2
∈ C (not both zero) such that

𝑐
1
𝑓
𝑜
(𝑥
0
) + 𝑐
2
𝑓
𝑜𝑝

(𝑥
0
) = 0. (29)

Let
ℎ
𝑜
(𝑥) = 𝑐

1
𝑓
𝑜
(𝑥) + 𝑐

2
𝑓
𝑜𝑝

(𝑥) (30)

for all 𝑥 ∈ 𝑆. Then ℎ
0
(𝑥
0
) = 0 and ℎ

𝑜
satisfies the functional

equation (22) and satisfies

ℎ
𝑜
(𝑥 + 𝜎𝑦) = ℎ

𝑜
(𝑥) 𝑔 (𝑦) − ℎ

𝑜
(𝑦) 𝑔 (𝑥) (31)

for all 𝑥, 𝑦 ∈ 𝑆. We claim that ℎ
0
(𝑥) ≡ 0. If not, that is, there

exists 𝛼 ∈ 𝑆 such that ℎ
0
(𝛼) ̸= 0; then putting 𝑦 = 𝛼 in (31)

and dividing the result by ℎ
0
(𝛼) we have

𝑔 (𝑥) =

ℎ
𝑜
(𝑥) 𝑔 (𝛼) − ℎ

𝑜
(𝑥 + 𝜎𝛼)

ℎ
𝑜
(𝛼)

(32)

for all 𝑥 ∈ 𝑆. Putting 𝑦 = 𝜎𝑥
0
in (31) and using (17) and (30)

we have
ℎ
𝑜
(𝑥 + 𝑥

0
) = ℎ
𝑜
(𝑥) 𝑔 (𝜎𝑥

0
) − ℎ
0
(𝜎𝑥
0
) 𝑔 (𝑥)

= ℎ
𝑜
(𝑥) 𝑔 (𝑥

0
) + ℎ
0
(𝑥
0
) 𝑔 (𝑥)

= ℎ
𝑜
(𝑥) 𝑔 (𝑥

0
)

(33)

for all 𝑥 ∈ 𝑆. Now, from (32) and (33) we have

𝑔 (𝑥
0
) 𝑔 (𝑥) =

−ℎ
𝑜
(𝑥
0
+ 𝜎𝛼) (ℎ

𝑜
(𝑥) 𝑔 (𝛼) − ℎ

𝑜
(𝑥 + 𝜎𝛼))

ℎ
𝑜
(𝛼)
2

= (ℎ
𝑜
(𝛼) 𝑔 (𝑥

0
) ℎ
0
(𝑥) 𝑔 (𝛼)

− ℎ
𝑜
(𝛼) 𝑔 (𝑥

0
) ℎ
𝑜
(𝑥 + 𝜎𝛼)) × (ℎ

𝑜
(𝛼)
2
)

−1

=

𝑔 (𝑥
0
) ℎ
0
(𝑥) 𝑔 (𝛼) − 𝑔 (𝑥

0
) ℎ
𝑜
(𝑥 + 𝜎𝛼)

ℎ
𝑜
(𝛼)

=

ℎ
0
(𝑥 + 𝑥

0
) 𝑔 (𝛼) − ℎ

𝑜
(𝑥 + 𝑥

0
+ 𝜎𝛼)

ℎ
𝑜
(𝛼)

= 𝑔 (𝑥 + 𝑥
0
)

(34)



4 Abstract and Applied Analysis

for all 𝑥 ∈ 𝑆, which contradicts the fact that 𝑔(𝑥
0
+ 𝑦
0
) ̸=

𝑔(𝑥
0
)𝑔(𝑦
0
). Thus, we conclude that ℎ

0
(𝑥) ≡ 0 and it follows

from (30) that

𝑐
1
𝑓
𝑜
(𝑥) + 𝑐

2
𝑓
𝑜𝑝

(𝑥) = 0 (35)

for all 𝑥 ∈ 𝑆. If 𝑐
1
= 0, then 𝑐

2
̸= 0 and hence

𝑓
𝑜𝑝

(𝑥) =

1

2

(𝑚 (𝑥) − 𝑚 (𝜎𝑥)) = 0 (36)

for all 𝑥 ∈ 𝑆, which contracts the assumption 𝑚(𝑥) ̸= 𝑚(𝜎𝑥)

for some 𝑥 ∈ 𝑆. Thus, 𝑐
1

̸= 0 and from (35) we have

𝑓
𝑜
(𝑥) = −

𝑐
2

𝑐
1

𝑓
𝑜𝑝

(𝑥) (37)

for all 𝑥 ∈ 𝑆. From (21), (28), and (37) we have

𝑓 (𝑥) = 𝑓
𝑒
(𝑥) + 𝑓

𝑜
(𝑥)

= 𝛽𝑔 (𝑥) −

𝑐
2

𝑐
1

𝑓
𝑜𝑝

(𝑥)

= 𝛼
1
𝑚(𝑥) + 𝛼

2
𝑚(𝜎𝑥)

(38)

for all 𝑥 ∈ 𝑆, where 𝛼
1
= (1/2)(𝛽 − (𝑐

2
/𝑐
1
)), 𝛼
2
= (1/2)(𝛽 +

(𝑐
2
/𝑐
1
)). Thus, we get (10).

Case 2. Next, we assume that 𝑚(𝜎𝑥) = 𝑚(𝑥), for all 𝑥 ∈ 𝑆.
Then from (14) we have

𝑔 (𝑥) = 𝑚 (𝑥) , 𝑚 (𝜎𝑥) = 𝑚 (𝑥) (39)

for all 𝑥 ∈ 𝑆. Thus, from (24) and (39) we have

𝑓
𝑜
(𝑥 + 𝜎𝑦) = 𝑓

𝑜
(𝑥)𝑚 (𝑦) − 𝑓

𝑜
(𝑦)𝑚 (𝑥) (40)

for all 𝑥, 𝑦 ∈ 𝑆.
Let 𝐾 = {𝑥 ∈ 𝑆 | 𝑚(𝑥) = 0}. Then 𝐾 is an ideal in 𝑆 and

𝑆 \ 𝐾 is a subsemigroup of 𝑆. Dividing (40) by𝑚(𝑥 + 𝜎𝑦) and
using (39) we have

𝑓
𝑜
(𝑥 + 𝜎𝑦)

𝑚 (𝑥 + 𝜎𝑦)

=

𝑓
𝑜
(𝑥)

𝑚 (𝑥)

−

𝑓
𝑜
(𝑦)

𝑚 (𝑦)

(41)

for all 𝑥, 𝑦 ∈ 𝑆 \ 𝐾. Let

𝑎 (𝑥) =

𝑓
𝑜
(𝑥)

𝑚 (𝑥)

(42)

for all 𝑥 ∈ 𝑆 \ 𝐾. Then we have

𝑎 (𝑥 + 𝜎𝑦) = 𝑎 (𝑥) − 𝑎 (𝑦) (43)

for all 𝑥, 𝑦 ∈ 𝑆 \ 𝐾. Replacing 𝑥 by 𝑦 in (43) we have

𝑎 (𝑦 + 𝜎𝑦) = 𝑎 (𝑦) − 𝑎 (𝑦) = 0. (44)

Replacing 𝑥 by 𝑥 + 𝑦 in (43) we have

𝑎 (𝑥 + 𝑦 + 𝜎𝑦) = 𝑎 (𝑥 + 𝑦) − 𝑎 (𝑦) , (45)

and replacing 𝑦 by 𝑦 + 𝜎𝑦 in (43) and using (44) we have

𝑎 (𝑥 + 𝑦 + 𝜎𝑦) = 𝑎 (𝑥) − 𝑎 (𝑦 + 𝜎𝑦) = 𝑎 (𝑥) . (46)

From (45) and (46) we have

𝑎 (𝑥 + 𝑦) = 𝑎 (𝑥) + 𝑎 (𝑦) (47)

for all 𝑥, 𝑦 ∈ 𝑆 \ 𝐾. Replacing 𝑦 by 𝜎𝑦 in (47) and using (43)
we have

𝑎 (𝜎𝑦) = −𝑎 (𝑦) (48)

for all 𝑦 ∈ 𝑆 \ 𝐾. From (21), (39), (42), and (48) we have

𝑓 (𝑥) = 𝑓
𝑒
(𝑥) + 𝑓

𝑜
(𝑥) = 𝛽𝑔 (𝑥) + 𝑎 (𝑥)𝑚 (𝑥)

= 𝛽𝑚 (𝑥) + 𝑎 (𝑥)𝑚 (𝑥) = 𝑚 (𝑥) (𝛽 + 𝑎 (𝑥))

(49)

for all 𝑥 ∈ 𝑆 \ 𝐾. Let 𝑥 ∈ 𝐾. Then we have 𝑚(𝑥/2) =

𝑚(𝜎(𝑥/2)) = 0. Thus, replacing both 𝑥 and 𝜎(𝑦) by (𝑥/2) in
(40) we have 𝑓

𝑜
(𝑥) = 0 and also by (21) 𝑓

𝑒
(𝑥) = 0. Hence

𝑓(𝑥) = 0 for any 𝑥 ∈ 𝐾. Thus, from (39), (48), and (49) we
get (11). This completes the proof of the theorem.

Remark 3. The solution (𝑔, 𝑓) in (11) can be written in the
form

𝑔 (𝑥) = 𝑚 (𝑥 + 𝜎𝑥) ,

𝑓 (𝑥) =

{
{

{
{

{

𝑚(𝑥 + 𝜎𝑥) (𝛽 + 𝑎 (𝑥) − 𝑎 (𝜎𝑥)) , if 𝑥 ∈ 𝑆 \ 𝐾,

0, if 𝑥 ∈ 𝐾,

(50)

where 𝑚 is an exponential function and 𝑎 is an additive
function. Also, let us assume that 𝑆 has the property: for any
𝑥, 𝑦 ∈ 𝑆, there exists a positive integer 𝑘 and 𝑧 ∈ 𝑆 such that

𝑥 + 𝑧 = 𝑘𝑦, (51)

which is satisfied by every group and alsomost of well known
semigroups such as 𝑆 = (0, 1), (0,∞). Then, if 𝑚(𝑥

0
) = 0 for

some 𝑥
0

∈ 𝑆, then for any 𝑦 ∈ 𝑆 we can choose a positive
integer 𝑘 and 𝑧 ∈ 𝑆 such that 𝑥

0
+ 𝑧 = 𝑘𝑦. Thus, we have

𝑚(𝑦)
𝑘

= 𝑚 (𝑘𝑦) = 𝑚 (𝑥
0
+ 𝑧) = 𝑚 (𝑥

0
)𝑚 (𝑧) = 0, (52)

which implies 𝑚(𝑦) = 0 for all 𝑦 ∈ 𝑆. Thus, 𝐾 = {𝑥 ∈ 𝑆 |

𝑚(𝑥) = 0} = 0 and 𝑔, 𝑓 in (11) are given by

𝑔 (𝑥) = 𝑚 (𝑥 + 𝜎𝑥) ,

𝑓 (𝑥) = 𝑚 (𝑥 + 𝜎𝑥) (𝛽 + 𝑎 (𝑥) − 𝑎 (𝜎𝑥))

(53)

for all 𝑥 ∈ 𝑆.

In view of the proof of Theorem 2, we can see that 2-
divisibility of 𝑆 is necessary only in showing that𝑓(𝑥) = 0, for
all 𝑥 ∈ 𝐾. Thus, if 𝑆 is a commutative group possibly without
2-divisibility, we have the following.
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Corollary 4. Let 𝐺 be a commutative group and 𝑓, 𝑔 : 𝐺 →

C satisfy the functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑓 (𝑥) 𝑔 (𝑦) (54)

for all 𝑥, 𝑦 ∈ 𝐺. Then either 𝑔, 𝑓 are of the form

𝑔 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2

,

𝑓 (𝑥) = 𝛼
1
𝑚(𝑥) + 𝛼

2
𝑚(𝜎𝑥)

(55)

for all 𝑥 ∈ 𝐺, where 𝑚 is an exponential function satisfying
𝑚 ̸= 𝑚 ∘ 𝜎 and 𝛼

1
, 𝛼
1
∈ C, or else

𝑔 (𝑥) = 𝑚 (𝑥) , 𝑓 (𝑥) = 𝑚 (𝑥) (𝛽 + 𝑎 (𝑥)) (56)

for all 𝑥 ∈ 𝐺, where 𝑚 : 𝐺 → C is an exponential function
satisfying 𝑚 = 𝑚 ∘ 𝜎, 𝑎 : 𝐺 → C is an additive function
satisfying 𝑎 = −𝑎 ∘ 𝜎, and 𝛽 ∈ C.

Remark 5. Note that in general 2-divisible commutative
semigroup, the solution (𝑔, 𝑓) cannot bewritten in the simple
form as above (e.g., 𝑆 = (R, ×): see Theorem 18).

Example 6. Let 𝐺 = ⟨R2, +⟩ in Corollary 4 and let 𝑎, 𝑏 ∈ R

with 𝑏 ̸= 0 and let

𝜎 = (

𝑎 𝑏

1 − 𝑎
2

𝑏

−𝑎

) . (57)

Then 𝜎 is an involution on R2 and we can consider the
functional equation

𝑓 (𝑡 + 𝑢, 𝑠 + V) + 𝑓 (𝑡 + 𝑎𝑢 + 𝑏V, 𝑠 +
1

𝑏

(1 − 𝑎
2
) 𝑢 − 𝑎V)

= 2𝑓 (𝑡, 𝑠) 𝑔 (𝑢, V)
(58)

for all 𝑡, 𝑠, 𝑢, V ∈ R. As a direct consequence of Corollary 4 we
can exhibit all regular solutions of (58) in a transparent form.
By Corollary 4, 𝑔 has the form

𝑔 (𝑡, 𝑠) =

𝑚 (𝑡, 𝑠) + (𝑚 ∘ 𝜎) (𝑡, 𝑠)

2

=

𝑚 (𝑡, 𝑠) + 𝑚 (𝑎𝑡 + 𝑏𝑠, (1/𝑏) (1 − 𝑎
2
) 𝑡 − 𝑎𝑠)

2

(59)

for all 𝑡, 𝑠 ∈ R, where 𝑚 : R2 → C is an exponential
function. In view of the proof in [4], 𝑚 is given by 𝑚(𝑥) =

𝑔(𝑥) − 𝛼(𝑔(𝑥 + 𝑥
0
) − 𝑔(𝑥 + 𝜎𝑥

0
)), for all 𝑥 ∈ R2 and for some

𝛼 ∈ C, 𝑥
0

∈ R2. Thus, if 𝑔 is Lebesgue measurable, so is 𝑚

and has the form𝑚(𝑡, 𝑠) = 𝑒
𝑐1𝑡+𝑐2𝑠 for some 𝑐

1
, 𝑐
2
∈ C. Thus, 𝑔

has the form

𝑔 (𝑡, 𝑠)

=

1

2

(𝑒
𝑐1𝑡+𝑐2𝑠

+ 𝑒
(1/𝑏)(𝑎𝑏𝑐1+𝑐2−𝑎

2
𝑐2)𝑡+(𝑏𝑐1−𝑎𝑐2)𝑠

)

(60)

for all 𝑡, 𝑠 ∈ R. Also, by Corollary 4, if 𝑚 ̸= 𝑚 ∘ 𝜎, that is,
𝑐
1

̸= (1/𝑏)(1 + 𝑎)𝑐
2
, then 𝑓 has the form

𝑓 (𝑡, 𝑠) = 𝛼
1
𝑒
𝑐1𝑡+𝑐2𝑠

+ 𝛼
2
𝑒
(1/𝑏)(𝑎𝑏𝑐1+𝑐2−𝑎

2
𝑐2)𝑡+(𝑏𝑐1−𝑎𝑐2)𝑠

(61)

for all 𝑡, 𝑠 ∈ R and for some 𝛼
1
, 𝛼
2
∈ C, and if 𝑐

1
= (1/𝑏)(1 +

𝑎)𝑐
2
, then 𝑓 has the form

𝑓 (𝑡, 𝑠) = 𝑒
𝑑1((1+𝑎)𝑡+𝑏𝑠)

(𝛽 + 𝑑
2
((1 − 𝑎) 𝑡 + 𝑏𝑠)) (62)

for all 𝑡, 𝑠 ∈ R and for some 𝑑
1
, 𝑑
2
, 𝛽 ∈ C.

In the following theorem, we present the general solution
of the second Wilson’s functional equation.

Theorem 7. Let 𝑓, 𝑔 : 𝑆 → C satisfy

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎 (𝑦)) = 2𝑔 (𝑥) 𝑓 (𝑦) (63)

for all 𝑥, 𝑦 ∈ 𝑆. Then there exists an exponential function 𝑚

and 𝛽 ∈ C with 𝛽 ̸= 0 such that

𝑓 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2𝛽

, 𝑔 (𝑥) =

𝑚 (𝑥) + 𝑚 (𝜎𝑥)

2

(64)

for all 𝑥 ∈ 𝑆.

Proof. Replacing 𝑦 by 𝜎𝑦 in (63) we see that

𝑓 (𝑦) = 𝑓 (𝜎𝑦) (65)

for all 𝑦 ∈ 𝑆. Replacing (𝑥, 𝑦) by (𝑦, 𝑥) in (63) and using (65)
we have

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝜎𝑦) = 2𝑔 (𝑦) 𝑓 (𝑥) (66)

for all 𝑥, 𝑦 ∈ 𝑆. Choosing 𝑦
0
∈ 𝑆 such that 𝑔(𝑦

0
) ̸= 0, putting

𝑦 = 𝑦
0
in (63) and (66), and equating the right hand sides of

the results we have

𝑓 (𝑥) =

𝑓 (𝑦
0
)

𝑔 (𝑦
0
)

𝑔 (𝑥) :=

1

𝛽

𝑔 (𝑥) (67)

for all 𝑥 ∈ 𝑆. Replacing 𝑓(𝑥) by (1/𝛽)𝑔(𝑥) in (63) and multi-
plying the result by 𝛽 we have

𝑔 (𝑥 + 𝑦) + 𝑔 (𝑥 + 𝜎𝑦) = 2𝑔 (𝑥) 𝑔 (𝑦) (68)

for all 𝑥, 𝑦 ∈ 𝑆. By Lemma 1 and (67) we get (64). This com-
pletes the proof.

3. Applications of Wilson’s Equations in
Solving Several Other Equations

Let (𝐻, ∘) be a commutative semigroup, and 𝑓, 𝑔 : 𝐻 × 𝐻 →

C. As an application of Theorems 2 and 7, we determine all
general solutions of the functional equations

𝑓 (𝑝 ∘ 𝑟, 𝑞 ∘ 𝑠) + 𝑓 (𝑝 ∘ 𝑠, 𝑞 ∘ 𝑟) = 2𝑓 (𝑝, 𝑞) 𝑔 (𝑟, 𝑠) , (69)

𝑓 (𝑝 ∘ 𝑟, 𝑞 ∘ 𝑠) + 𝑓 (𝑝 ∘ 𝑠, 𝑞 ∘ 𝑟) = 2𝑔 (𝑝, 𝑞) 𝑓 (𝑟, 𝑠) (70)

for all 𝑝, 𝑞 ∈ 𝐻. For the case 𝐻 = (0, 1], (69) was treated by
Riedel and Sahoo [22]. In the following we exclude the trivial
cases when 𝑓 = 0 or 𝑔 = 0.
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Theorem 8 (c.f. [22]). Let 𝑓, 𝑔 : 𝐻×𝐻 → C satisfy the func-
tional equation (69) for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐻. Then either 𝑔, 𝑓 are
of the form

𝑔 (𝑝, 𝑞) =

1

2

(𝑚
1
(𝑝)𝑚

2
(𝑞) + 𝑚

2
(𝑝)𝑚

1
(𝑞)) ,

𝑓 (𝑝, 𝑞) = 𝛼
1
𝑚
1
(𝑝) 𝑚

2
(𝑞) + 𝛼

2
𝑚
2
(𝑝) 𝑚

1
(𝑞)

(71)

for all 𝑝, 𝑞 ∈ 𝐻, where𝑚
1
, 𝑚
2
: 𝐻 → C are exponential func-

tions such that 𝑚
1

̸= 𝑚
2
and 𝛼

1
, 𝛼
2
∈ C, or else

𝑔 (𝑝, 𝑞) = 𝑚
∗
(𝑝 ∘ 𝑞) , 𝑝, 𝑞 ∈ 𝐻,

𝑓 (𝑝, 𝑞) = {

𝑚
∗
(𝑝 ∘ 𝑞) (𝛽 + 𝑎

∗
(𝑝) − 𝑎

∗
(𝑞)) , if 𝑝, 𝑞 ∈ 𝐻 \ 𝐼,

0, if 𝑝 ∈ 𝐼 o𝑟 𝑞 ∈ 𝐼,
(72)

where 𝐼 = {𝑝 ∈ 𝐻 | 𝑚
∗
(𝑝) = 0}, 𝑎∗ : 𝐻\𝐼 → C is an additive

function,𝑚∗ : 𝐻 → C is an exponential function, and 𝛽 ∈ C.

Proof. Let 𝜎(𝑝, 𝑞) = (𝑞, 𝑝) for all (𝑝, 𝑞) ∈ 𝑆. Then by
Theorem 2 for the case when𝑚 ∘ 𝜎 ̸= 𝑚, all general solutions
(𝑓, 𝑔) of (69) are given by

𝑔 (𝑝, 𝑞) =

𝑚 (𝑝, 𝑞) + 𝑚 (𝑞, 𝑝)

2

,

𝑓 (𝑝, 𝑞) = 𝛼
1
𝑚(𝑝, 𝑞) + 𝛼

2
𝑚(𝑞, 𝑝)

(73)

for all 𝑝, 𝑞 ∈ 𝐻, where𝑚 : 𝑆 → C is an exponential function
and 𝛼

1
, 𝛼
2
∈ C. Since 𝑚 can be written in the form 𝑚(𝑝, 𝑞) =

𝑚
1
(𝑝)𝑚
2
(𝑞), for some exponential functions 𝑚

1
, 𝑚
2
: 𝐻 →

C, from (73) we get (71). Assume that 𝑚 = 𝑚 ∘ 𝜎; that is,
𝑚(𝑝, 𝑞) = 𝑚(𝑞, 𝑝), for all 𝑝, 𝑞 ∈ 𝐻. Then we have

𝑚(𝑝, 𝑞) = 𝑚
1
(𝑝)𝑚

2
(𝑞) = 𝑚

1
(𝑞)𝑚
2
(𝑝) (74)

for all 𝑝, 𝑞 ∈ 𝐻. Let 𝐼
1
= {𝑝 ∈ 𝐻 | 𝑚

1
(𝑝) = 0}, 𝐼

2
= {𝑝 ∈ 𝐻 |

𝑚
2
(𝑝) = 0}. If there exists 𝑞

0
∈ 𝐼
1
\ 𝐼
2
, putting 𝑞 = 𝑞

0
in (74)

we have 𝑚
1
(𝑝) = 0, for all ∈ 𝐻, and hence 𝑚 = 𝑔 = 0. Since

we exclude the case𝑓 = 0 or 𝑔 = 0, we have 𝐼
1
⊂ 𝐼
2
. Similarly,

we have 𝐼
2
⊂ 𝐼
1
and 𝐼
1
= 𝐼
2
:= 𝐼. From (74), we have

𝑚
1
(𝑝)

𝑚
2
(𝑝)

=

𝑚
1
(𝑞)

𝑚
2
(𝑞)

(75)

for all 𝑝, 𝑞 ∉ 𝐼, which implies

𝑚
1
(𝑝) = 𝛼𝑚

2
(𝑝) (76)

for all 𝑝 ∉ 𝐼 and for some 𝛼 ∈ C. Thus, we have

𝑚
1
(𝑝)
2

= 𝛼
2
𝑚
2
(𝑝)
2

= 𝛼 ⋅ 𝛼𝑚
2
(𝑝
2
) = 𝛼𝑚

1
(𝑝
2
) = 𝛼𝑚

1
(𝑝)
2

(77)

for all 𝑝 ∉ 𝐼, which implies 𝛼 = 1 and hence 𝑚
1
= 𝑚
2
:= 𝑚
∗.

Thus, from (73) and (74) we have

𝑔 (𝑝, 𝑞) =

𝑚 (𝑝, 𝑞) + 𝑚 (𝑞, 𝑝)

2

= 𝑚 (𝑝, 𝑞)

= 𝑚
1
(𝑝)𝑚

2
(𝑞) = 𝑚

∗
(𝑝 ∘ 𝑞)

(78)

for all 𝑝, 𝑞 ∈ 𝐻. Since𝑚(𝑝, 𝑞) = 0 if and only if 𝑝 ∈ 𝐼 or 𝑞 ∈ 𝐼,
by Remark 3 we have

𝑓 (𝑝, 𝑞) = 𝑚
∗
(𝑝 ∘ 𝑞) (𝛽 + 𝑎 (𝑝, 𝑞) − 𝑎 (𝑞, 𝑝))

= 𝑚
∗
(𝑝 ∘ 𝑞) (𝛽 + 𝑎

1
(𝑝) + 𝑎

2
(𝑞) − 𝑎

1
(𝑞) − 𝑎

2
(𝑝))

= 𝑚
∗
(𝑝 ∘ 𝑞) (𝛽 + (𝑎

1
− 𝑎
2
) (𝑝) − (𝑎

1
− 𝑎
2
) (𝑞))

:= 𝑚
∗
(𝑝 ∘ 𝑞) (𝛽 + 𝑎

∗
(𝑝) − 𝑎

∗
(𝑞))

(79)

for all 𝑝, 𝑞 ∈ 𝐻 \ 𝐼, where 𝑎
∗

: 𝐻 \ 𝐼 → C is an additive
function and 𝛽 ∈ C. Thus, we get (72). This completes the
proof.

Remark 9. Since 𝐻 = (0, 1] has the property stated in
Remark 3, we have 𝐼 = {𝑝 ∈ 𝐻 | 𝑚

∗
(𝑝) = 0} = 0. Thus,

Theorem 8 includes the result of Riedel and Sahoo [22].

UsingTheorem 7, we have the following.

Theorem 10. Let 𝑓, 𝑔 : 𝑆 → C satisfy the functional equation
(70) for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ 𝐻. Then 𝑔, 𝑓 are of the form

𝑔 (𝑝, 𝑞) =

𝑚
1
(𝑝)𝑚

2
(𝑞) + 𝑚

2
(𝑝)𝑚

1
(𝑞)

2

,

𝑓 (𝑝, 𝑞) =

𝑚
1
(𝑝)𝑚

2
(𝑞) + 𝑚

2
(𝑝)𝑚

1
(𝑞)

2𝛽

(80)

for all 𝑝, 𝑞 ∈ 𝐻, where 𝑚
1
, 𝑚
2

: 𝐻 → C are exponential
functions and 𝛽 ∈ C with 𝛽 ̸= 0.

Using polar form of complex numbers, we have the
following two lemmas. In the following we define arg(𝑧) = 0

for 𝑧 = 0.

Lemma 11. Let 𝑚 : C → C satisfy the functional equation

𝑚(𝑧𝑤) = 𝑚 (𝑧)𝑚 (𝑤) (81)

for all 𝑧, 𝑤 ∈ C. Then 𝑚 has the form

𝑚(𝑧) = 𝑀 (|𝑧|) 𝐸 (arg 𝑧) (82)

for all 𝑧 ∈ C, where 𝑀 : R → C is a multiplicative function,
that is,𝑀(𝑥𝑦) = 𝑀(𝑥)𝑀(𝑦), for all 𝑥, 𝑦 ∈ R, and𝐸 : R → C

is an exponential function such that 𝐸(𝑥 + 2𝜋) = 𝐸(𝑥) for all
𝑥 ∈ R.

Lemma 12. Let 𝑎 : C → C satisfy the functional equation

𝑎 (𝑧𝑤) = 𝑎 (𝑧) + 𝑎 (𝑤) (83)

for all 𝑧, 𝑤 ∈ C. Then 𝑎 has the form

𝑎 (𝑧) = 𝑀 (|𝑧|) + 𝐴 (arg 𝑧) (84)

for all 𝑧 ∈ C, where 𝑀 : R → C is a multiplicative function
and𝐴 : R → C is an additive function such that𝐴(𝑥+ 2𝜋) =

𝐴(𝑥) for all 𝑥 ∈ R.

UsingTheorem 2 and Lemma 11 we have the following.
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Theorem 13. Let𝑓, 𝑔 : C → C satisfy the functional equation

𝑓 (𝑧𝑤) + 𝑓 (𝑧𝑤) = 2𝑓 (𝑧) 𝑔 (𝑤) (85)

for all 𝑧, 𝑤 ∈ C. Then 𝑓, 𝑔 are of the form

𝑓 (𝑧) = 𝑀 (|𝑧|) (𝛼
1
𝐸 (arg 𝑧) + 𝛼

2
𝐸 (arg 𝑧)) ,

𝑔 (𝑧) =

1

2

𝑀 (|𝑧|) (𝐸 (arg 𝑧) + 𝐸 (arg 𝑧))

(86)

for all 𝑧 ∈ C, or

𝑔 (𝑧) = 𝑀 (|𝑧|) ,

𝑓 (𝑧) = 𝑀 (|𝑧|) (𝛽 + 𝐴 (arg 𝑧))

(87)

for all 𝑧 ∈ C, where 𝑀 : R → C is a multiplicative function,
𝐸 : R → C is an exponential function such that 𝐸(𝑥 + 2𝜋) =

𝐸(𝑥), for all 𝑥 ∈ R, and 𝐴 : R → C is an additive function
such that 𝐴(𝑥 + 2𝜋) = 𝐴(𝑥), for all 𝑥 ∈ R, and 𝛼

1
, 𝛼
2
, 𝛽 ∈ C.

Remark 14. If some regularities on 𝑚 are assumed in
Theorem 13, it can be verified that 𝐸 = 1 and 𝐴 = 0. Thus,
all regular solutions (𝑔, 𝑓) (e.g., continuous solutions) of (85)
are given by

𝑔 (𝑧) = |𝑧|
𝑐
, 𝑓 (𝑧) = 𝛽|𝑧|

𝑐 (88)

for all 𝑧 ∈ C, where 𝑐, 𝛽 ∈ C.

UsingTheorem 7 and Lemma 11 we have the following.

Theorem 15. Let𝑓, 𝑔 : C → C satisfy the functional equation

𝑓 (𝑧𝑤) + 𝑓 (𝑧𝑤) = 2𝑔 (𝑧) 𝑓 (𝑤) (89)

for all 𝑧, 𝑤 ∈ C. Then 𝑓, 𝑔 are of the form

𝑓 (𝑧) = 𝛼𝑀 (|𝑧|) (𝐸 (arg 𝑧) + 𝐸 (arg 𝑧)) ,

𝑔 (𝑧) =

1

2

𝑀 (|𝑧|) (𝐸 (arg 𝑧) + 𝐸 (arg 𝑧))

(90)

for all 𝑧 ∈ C, where 𝑀 : R → C is a multiplicative function
and 𝛼 ∈ C.

As consequence of Theorems 13 and 15, we also find
general solutions of the following functional equations:

𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 − V𝑥)

− 2𝑓 (𝑥, 𝑦) 𝑔 (𝑢, V) = 0,

(91)

𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 − V𝑥)

− 2𝑔 (𝑥, 𝑦) 𝑓 (𝑢, V) = 0,

(92)

𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 − V𝑥)

− 2𝑓 (𝑥, 𝑦) 𝑔 (𝑢, V) = 0,

(93)

𝑓 (𝑢𝑥 + V𝑦, 𝑢𝑦 + V𝑥) + 𝑓 (𝑢𝑥 − V𝑦, 𝑢𝑦 − V𝑥)

− 2𝑔 (𝑥, 𝑦) 𝑓 (𝑢, V) = 0,

(94)

for all 𝑥, 𝑦, 𝑢, V ∈ R, where 𝑓, 𝑔 : R2 → R.

Theorem 16. Let 𝑓, 𝑔 : R2 → C satisfy the functional equa-
tion (91). Then 𝑓, 𝑔 are of the form

𝑓 (𝑥, 𝑦) = 𝑀(√𝑥
2
+ 𝑦
2
)

× (𝛼
1
𝐸(arctan(

𝑦

𝑥

)) + 𝛼
2
𝐸(− arctan(

𝑦

𝑥

))) ,

𝑔 (𝑥, 𝑦) =

1

2

𝑀(√𝑥
2
+ 𝑦
2
)

× (𝐸(arctan(

𝑦

𝑥

)) + 𝐸(− arctan(

𝑦

𝑥

)))

(95)

for all (𝑥, 𝑦) ∈ R2, or

𝑔 (𝑥, 𝑦) = 𝑀(√𝑥
2
+ 𝑦
2
) ,

𝑓 (𝑥, 𝑦) = 𝑀(√𝑥
2
+ 𝑦
2
) (𝛽 + 𝐴(arctan(

𝑦

𝑥

)))

(96)

for all (𝑥, 𝑦) ∈ R2, where 𝑀 : [0,∞) → C is a multiplicative
function, 𝐸 : R → C is an exponential function such that
𝐸(𝑥 + 2𝜋) = 𝐸(𝑥), for all 𝑥 ∈ R, and 𝐴 : R → C is an addi-
tive function such that 𝐴(𝑥 + 2𝜋) = 𝐴(𝑥), for all 𝑥 ∈ R, and
𝛼
1
, 𝛼
2
, 𝛽 ∈ C.

Proof. Define 𝐹, 𝐺 : C → R by

𝐹 (𝑥 + 𝑖𝑦) = 𝑓 (𝑥, 𝑦) , 𝐺 (𝑥 + 𝑖𝑦) = 𝑔 (𝑥, 𝑦) (97)

for all 𝑥, 𝑦 ∈ R. Then, (91) is reduced to

𝐹 (𝑧𝑤) + 𝐹 (𝑧𝑤) − 2𝐹 (𝑧) 𝐺 (𝑤) = 0 (98)

for all 𝑧, 𝑤 ∈ C. UsingTheorem 13 we get the result.

Similarly, usingTheorem 15 we have the following.

Theorem 17. Let 𝑓, 𝑔 : R2 → C satisfy the functional equa-
tion (92). Then 𝑓, 𝑔 are of the form

𝑓 (𝑥, 𝑦) = 𝛼𝑀(√𝑥
2
+ 𝑦
2
)

× (𝐸(arctan(

𝑦

𝑥

)) + 𝐸(− arctan(

𝑦

𝑥

))) ,

𝑔 (𝑥, 𝑦) =

1

2

𝑀(√𝑥
2
+ 𝑦
2
)

× (𝐸(arctan(

𝑦

𝑥

)) + 𝐸(− arctan(

𝑦

𝑥

))) ,

(99)

for all (𝑥, 𝑦) ∈ R2, where 𝑀 : [0,∞) → C is a multiplicative
function, 𝐸 : R → C is an exponential function such that
𝐸(𝑥 + 2𝜋) = 𝐸(𝑥), for all 𝑥 ∈ R, and 𝛼 ∈ C.
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Theorem 18. Let 𝑓, 𝑔 : R2 → C satisfy the functional equa-
tion (93). Then either 𝑔, 𝑓 are of the form

𝑔 (𝑝, 𝑞) =

1

2

(𝑀
1
(𝑝 + 𝑞)𝑀

2
(𝑝 − 𝑞)

+𝑀
2
(𝑝 + 𝑞)𝑀

1
(𝑝 − 𝑞)) ,

𝑓 (𝑝, 𝑞) = 𝛼
1
𝑀
1
(𝑝 + 𝑞)𝑀

2
(𝑝 − 𝑞)

+ 𝛼
2
𝑀
2
(𝑝 + 𝑞)𝑀

1
(𝑝 − 𝑞)

(100)

for all 𝑝, 𝑞 ∈ R, where 𝑀
1
,𝑀
2
: R → C are multiplicative

functions such that 𝑀
1

̸= 𝑀
2
and 𝛼

1
, 𝛼
2
∈ C, or

𝑔 (𝑝, 𝑞) = 𝑀(𝑝
2
− 𝑞
2
) , 𝑝, 𝑞 ∈ R,

𝑓 (𝑝, 𝑞) = {

𝑀(𝑝
2
− 𝑞
2
) (𝛽 + 𝐿 (𝑝 + 𝑞) − 𝐿 (𝑝 − 𝑞)) , if 𝑝2 ̸= 𝑞

2
,

0, if 𝑝2 = 𝑞
2
,

(101)

where 𝐿 : R \ {0} → C is a logarithmic function, that is,
𝐿(𝑥𝑦) = 𝐿(𝑥)+𝐿(𝑦),𝑀 : R → C is a multiplicative function,
and 𝛽 ∈ C, or

𝑔 (𝑝, 𝑞) = 1, 𝑓 (𝑝, 𝑞) = 𝛽 (102)

for all 𝑝, 𝑞 ∈ R.

Proof. Define 𝐹, 𝐺 : R2 → R by

𝐹 (𝑥, 𝑦) = 𝑓(

𝑥 + 𝑦

2

,

𝑥 − 𝑦

2

) ,

𝐺 (𝑥, 𝑦) = 𝑔 (

𝑥 + 𝑦

2

,

𝑥 − 𝑦

2

)

(103)

for all 𝑥, 𝑦 ∈ R. Then, (93) is reduced to

𝐹 (𝑝𝑟, 𝑞𝑠) + 𝐹 (𝑝𝑠, 𝑞𝑟) = 2 𝐹 (𝑝, 𝑞) 𝐺 (𝑟, 𝑠) (104)

for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ R. Applying Theorem 8 with 𝐻 = ⟨R, ×⟩

for 𝑚 ̸= 𝑚𝜎, we get (100). It is easy to see that 𝐼 := {𝑥 ∈

R : 𝑚
∗
(𝑥) = 0} = {0} or 𝐼 = 0 in the case when 𝑚 = 𝑚𝜎

of Theorem 8. If 𝐼 = {0}, from (71) we get (101) with 𝑀 =

𝑚
∗
, 𝐿 = 𝑎

∗. If 𝐼 = 0, then 𝑚
∗
(0) ̸= 0 and it follows that

𝑔 = 𝑚
∗

= 1. In this case, 𝑎∗ is a logarithmic function on R;
that is, 𝑎∗ satisfies

𝑎
∗
(𝑝𝑞) = 𝑎

∗
(𝑝) + 𝑎

∗
(𝑞) (105)

for all 𝑝, 𝑞 ∈ R. Putting 𝑞 = 0 in (105) we have 𝑎
∗
= 0. Thus,

from (71) we get (102). This completes the proof.

Define 𝐹, 𝐺 : R2 → R by

𝐹 (𝑥, 𝑦) = 𝑓(

𝑥 + 𝑦

2

,

𝑥 − 𝑦

2

) ,

𝐺 (𝑥, 𝑦) = 𝑔 (

𝑥 + 𝑦

2

,

𝑥 − 𝑦

2

)

(106)

for all 𝑥, 𝑦 ∈ R. Then, (94) is reduced to

𝐹 (𝑝𝑟, 𝑞𝑠) + 𝐹 (𝑝𝑠, 𝑞𝑟) = 2𝐺 (𝑝, 𝑞) 𝐹 (𝑟, 𝑠) (107)

for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ R. UsingTheorem 10 we have the following.

Theorem 19. Let 𝑓, 𝑔 : R2 → C satisfy the functional equa-
tion (94). Then either 𝑔 or 𝑓 has the form

𝑔 (𝑝, 𝑞) =

𝑀
1
(𝑝 + 𝑞)𝑀

2
(𝑝 − 𝑞) + 𝑀

2
(𝑝 + 𝑞)𝑀

1
(𝑝 − 𝑞)

2

,

𝑓 (𝑝, 𝑞) =

𝑀
1
(𝑝 + 𝑞)𝑀

2
(𝑝 − 𝑞) + 𝑀

2
(𝑝 + 𝑞)𝑀

1
(𝑝 − 𝑞)

2𝛽

,

(108)

for all 𝑝, 𝑞 ∈ R, where 𝑀
1
,𝑀
2
: R → C are multiplicative

functions and 𝛽 ∈ C with 𝛽 ̸= 0.
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