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Ordinary least squares estimators of variogram parameters in long-memory stochastic volatility are studied in this paper. We use
the discrete observations for practical purposes under the assumption that theHurst parameter𝐻 ∈ (1/2, 1) is known. Based on the
ordinary least squares method, we obtain both the explicit estimators for drift and diffusion by minimizing the distance function
between the variogram and the data periodogram. Furthermore, the resulting estimators are shown to be consistent and to have
the asymptotic normality. Numerical examples are also presented to illustrate the performance of our method.

1. Introduction

There has been a long history about the research of volatility
modelling and estimation from historical data since the
stochastic volatility was considered (see Taylor [1]). A series
of studies found that the volatility of stock price often had
long range dependence (LRD), meaning that the autocor-
relations of volatility process decreased at a hyperbolic rate
and were nonsummable (see Robinson [2]). Some work
about the long-memory stochastic volatility (LMSV) has
been done to describe and explain these slowly decaying
autocorrelations.There were a wide variety of LMSVmodels,
in terms of discrete and continuous time. Breidt et al.
[3] and Harvey [4] independently considered an LMSV
case where the log-volatility was modelled as a fractionally
integrated ARMA (autoregressive, integrated, and moving
average) or FARIMA process. Robinson and Zaffaroni [5]
formulated a nonlinear time series model of long-memory
stochastic volatility. Comte and Renault [6] and Comte et
al. [7] proposed a continuous-time fractionally stochastic
volatility (FSV) model which adopted a simpler represen-
tation of the fractional Brownian motion. Chronopoulou
and Viens [8] did a comparison of how poor many long-
memory-parameter estimators were for real data, using

various nonparametric methods, and they proposed implied
𝐻 approach.

Correspondingly, the statistical inference problem of a
volatility process under discrete and continuous cases is
quite important in the implements of LMSV. In terms of
the discrete-timemodels, Geweke and Porter-Hudak [9] pro-
posed a log-periodogram regression method. Furthermore,
the expressions for asymptotic bias and variance of the esti-
mators were presented by Deo and Hurvich [10]. Arteche [11]
developed parametric and semiparametric methods to esti-
mate the memory parameters. Chen and Deo [12] specified
and developed the generalized method of moments (GMM)
in a linear long memory process. Brockwell and Davis
[13] also showed frequency domain quasimaximum likeli-
hood (FDQML) estimators that were used in long-memory
stochastic volatility. However, very few papers developed the
parameter estimations for long-memory stochastic volatility
in the continuous-time case. Comte and Renault [6] used
the log-periodogram regression approach to estimate the
long-memory parameter. Their empirical study on CAC40
of the Paris Stock Exchange confirmed the short-memory
feature of stock price but illustrated the long-memory feature
of the volatility. Based on a first-order approximate version
of the volatility process, Casas and Gao [14] estimated
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the parameters in a special class of LMSV models by Whittle
estimationmethod. Chronopoulou andViens [8, 15] used real
S&P 500 data to compare the numerical performance of the
GPH estimator and the implied value of𝐻 by calibrating it to
option price. Their empirical study showed the instability of
GPH estimator.

Perhaps, the most popular approach to modelling long
memory in continuous time is to use fractional Brownian
motion (fBm) as a long-memory driving source in the
stochastic volatility. We assume that the stochastic volatility
follows a fractional Ornstein-Uhlenbeck process (fOU, see
Cheridito et al. [16], Xiao et al. [17], and Hu and Nualart
[18]). It is worthwhile to mention that it is usually only
possible to observe asset price at points of discrete time.
Therefore, statistical inference of long-memory stochastic
volatility through discretely observed asset price is of great
interest for practical purposes. It would be optimal to
estimate the parameters of fractional Ornstein-Uhlenbeck
process and the memory-parameter 𝐻 jointly. However, in
the majority of the long-memory models, a rigorous way
to jointly estimate this vector of parameters is unknown.
Rosenbaum [19] provides a strongly consistent estimator of
𝐻 for unobserved stochastic volatility, and he proves that the
convergence speed is very slow, even though his estimator
reaches optimal speed. His research indicates another reason
why one should try to select 𝐻 using calibration instead
of estimation. Chronopoulou and Viens [8, 15] suggest
to estimate the parameters separately. They propose using
a calibration technique to fit models with various Hurst
indexes to the options market, picking the model with the
best 𝐻. In this paper, we consider the estimators of the
variogram parameters from discrete observations through
the ordinary least squares method under the assumption
that 𝐻 is known. Here, the main obstacles are the fact
that volatility itself is never directly observed and variogram
method is limited to stationary process. In this paper, we
refer to Viens [20] for the idea of filter in the conditional
probability distribution of stochastic volatility through the
discrete observations of asset price. In addition, we also refer
to Cheridito et al. [16] for the stationary version solution of
fractional Ornstein-Uhlenbeck process and the asymptotic
form of autocovariance function when the time lag goes to
infinity.

This paper contributes to the expositions on theoretical
and practical aspects of parameter estimation for long-
memory stochastic volatility which follows a fractional
Ornstein-Uhlenbeck process. Firstly, we obtain the variance
of the stationary version solution to the fractional Ornstein-
Uhlenbeck process, which is important in identifying the
variogram function. Then, we deduce the approximate form
of the ordinary least squares estimators of (𝛼, 𝛽) in long-
memory stochastic volatility. Finally, the asymptotic proper-
ties are given in this paper.

The remainder of this paper proceeds as follows. In
Section 2, we state the estimation procedure. In Section 3,
we prove the asymptotic properties of the estimators. In
Section 4, we give simulation examples to show the perfor-
mance of these estimators. Concluding remarks are given in
Section 5.

2. The Method of Estimation at
Discrete Observation

Let (Ω,F, (F
𝑡
)
𝑡≥0

, 𝑃) be a complete probability space on
which a standard Brownian motion 𝑊

𝑡
and a fractional

Brownian motion 𝐵
𝐻

𝑡
with Hurst exponent 𝐻 ∈ (1/2, 1) are

well defined, andF
𝑡
= 𝜎{𝑊

𝜏
, 𝐵

𝐻

𝜏
, 0 ≤ 𝜏 ≤ 𝑡}. We assume that

the asset price process {𝑋
𝑡
; 𝑡 ≥ 0} is conditionally lognormal

and the volatility process {𝑌
𝑡
; 𝑡 ≥ 0} is a fractional Ornstein-

Uhlenbeck process. {𝑋
𝑡
; 𝑡 ≥ 0} and {𝑌

𝑡
; 𝑡 ≥ 0} satisfy the

following equations:

𝑑𝑋
𝑡

𝑋
𝑡

= 𝜎 (𝑌
𝑡
) 𝑑𝑊

𝑡
, 𝑑𝑌

𝑡
= −𝛼𝑌

𝑡
𝑑𝑡 + 𝛽𝑑𝐵

𝐻

𝑡
, (1)

where 𝛼 is the rate of reversion, 𝛽 is the volatility of the
volatility process, (𝛼, 𝛽) ∈ Θ ⊂ R2, and Θ is compact. 𝜎(⋅) is
a chosen deterministic function. Here, we choose Scott [21]
model to make sure that the volatility remains positive; that
is, 𝜎(𝑦) = 𝑒

𝑦. In this paper, we also assume that {𝑊
𝑡
; 𝑡 ≥ 0} is

independent of {𝐵𝐻

𝑡
; 𝑡 ≥ 0}. Since there are no leverage effects

in our model, thus the model is identical whether one uses a
signed function 𝜎(𝑦) or its absolute value.

Before discussing the problem in this paper, we need
the following results taken from Cheridito et al. [16]. The
stationary version solution to (1) admits the following rep-
resentation:

𝑌
𝑡
= 𝛽∫

𝑡

−∞

𝑒
−𝛼(𝑡−𝑠)

𝑑𝐵
𝐻

𝑠
(2)

with initial condition 𝑌
0

= 𝛽∫
0

−∞
𝑒
𝛼𝑠
𝑑𝐵

𝐻

𝑠
which is explicitly

contained in the representation (2). The asymptotic autoco-
variance of {𝑌

𝑡
; 𝑡 ≥ 0} is given in Theorem 2.3 in Cheridito et

al. [16] as

Cov (𝑌
𝑡
, 𝑌

𝑡+𝑠
) =

1

2
𝛽
2

𝑁

∑

𝑛=1

𝛼
−2𝑛

(

2𝑛−1

∏

𝑘=0

(2𝐻 − 𝑘)) 𝑠
2𝐻−2𝑛

+ 𝑂 (𝑠
2𝐻−2𝑁−2

)

(3)

for fixed 𝑡 ∈ R, 𝑁 = 1, 2, . . ., and 𝑠 → ∞.
The following lemma, whose proof is given in Appendix,

gives the variance of {𝑌
𝑡
; 𝑡 ≥ 0} which is important for the

identification of the variogram function.

Lemma 1. Let 1/2 < 𝐻 < 1; then {𝑌
𝑡
; 𝑡 ≥ 0} is a Gaussian

process with 𝐸[𝑌
𝑡
] = 0 and Var[𝑌

𝑡
] = Γ(2𝐻)𝐻𝛼

−2𝐻
𝛽
2 for

every 𝑡 ∈ R.

Now, suppose that the price process is observed at
the discrete time instants (𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑁+1
) and 𝑡

𝑖
= 𝑖Δ𝑡,

𝑖 = 1, 2, . . . , 𝑁 + 1, for some fixed length Δ𝑡 > 0.
Use (𝑋

1
, . . . , 𝑋

𝑁+1
) and (𝑌

1
, . . . , 𝑌

𝑁+1
) to represent (𝑋

𝑡
1

,

. . . , 𝑋
𝑡
𝑁+1

) and (𝑌
𝑡
1

, . . . , 𝑌
𝑡
𝑁+1

), respectively. Nourdin [22]
and Neuenkirch and Nourdin [23] give the error of Euler
approximations for the homogeneous one-dimensional SDEs
involving fBm and having bounded coefficients.Mishura [24]
presents the rate of convergence of Euler approximations of
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the solutions for SDEwith nonstationary coefficient. Inspired
by their work, we consider the Euler discretization in the form
of

Δ𝑌
𝑖
:= 𝑌

𝑖+1
− 𝑌

𝑖
= −𝛼𝑌

𝑖
Δ𝑡 + 𝛽 (𝐵

𝐻

𝑡
𝑖+1

− 𝐵
𝐻

𝑡
𝑖

) , (4)

Δ𝑋
𝑖
:= 𝑋

𝑖+1
− 𝑋

𝑖
= 𝑋

𝑖
𝑒
𝑌
𝑖𝜉
𝑖
√Δ𝑡, (5)

where {𝜉
𝑖
} and {𝐵

𝐻

𝑖
} are independent sequences and {𝜉

𝑖
} is an

independent sequence of 𝑁(0, 1) random variables.
For simplicity, we denote

𝜇 = 𝛽
2
𝐻𝛼

−2𝐻
. (6)

In what follows, it is necessary to estimate the parameters
(𝛼, 𝜇) first. We still denote (𝛼, 𝜇) ∈ Θ below where Θ is
compact. Then, we will get the estimators of (𝛼, 𝛽) when𝐻 ∈

(1/2, 1) is known.
Volatility itself cannot be directly observed. In practice,

even for the most liquid assets or indexes, one would be
restricted to using the values of the asset at discrete times.
Therefore, we normalize the fluctuation sequence

𝐷
𝑖
=

Δ𝑋
𝑖

𝑋
𝑖
√Δ𝑡

, (7)

which is proved to be the discrete observed realization of 𝑒𝑌𝑖𝜉
𝑖

in Lemmas 2 and 3.

Lemma 2. Let 𝜏 ≪ 1 and 𝑀
𝑡
= ∫

𝑡

0
𝑒
𝑌
𝑠𝑑𝑊

𝑠
. Then,

𝐸[ln𝑋
𝑡+𝜏

− ln𝑋
𝑡
]
2

= 𝐸[𝑀
𝑡+𝜏

− 𝑀
𝑡
]
2

+ 𝑂 (𝜏) . (8)

Proof of Lemma 2. Since {𝑊
𝑡
; 𝑡 ≥ 0} is independent of

{𝐵
𝐻

𝑡
; 𝑡 ≥ 0}, so we have

𝑋
𝑡
= 𝑒

𝑋
0𝑒
−∫
𝑡

0
𝑒
2𝑌𝑠𝑑𝑠+∫

𝑡

0
𝑒
𝑌𝑠𝑑𝑊
𝑠 ,

𝑋
𝑡+𝜏

= 𝑒
𝑋
0𝑒
−∫
𝑡+𝜏

0
𝑒
2𝑌𝑠𝑑𝑠+∫

𝑡+𝜏

0
𝑒
𝑌𝑠𝑑𝑊
𝑠 .

(9)

Thus,

ln
𝑋
𝑡+𝜏

𝑋
𝑡

= −∫

𝑡+𝜏

𝑡

𝑒
2𝑌
𝑠𝑑𝑠 + ∫

𝑡+𝜏

𝑡

𝑒
𝑌
𝑠𝑑𝑊

𝑠
, (10)

where ∫
𝑡+𝜏

𝑡
𝑒
𝑌
𝑠𝑑𝑊

𝑠
is the martingale term of 𝑀

𝑡+𝜏
− 𝑀

𝑡
.

According to Belfadli et al. [25], for all 𝜀 ∈ (0,𝐻), 𝑌
𝑡

admits a modification with (𝐻−𝜀)-Hölder continuous paths.
Replace 𝑒

𝑌
𝑠 by 𝑒

𝑌
𝑡 at the order 𝑂(𝜏). Then,

𝐸[(ln
𝑋
𝑡+𝜏

𝑋
𝑡

)

2

] = 𝐸[(−𝑒
2𝑌
𝑡𝜏 + ∫

𝑡+𝜏

𝑡

𝑒
𝑌
𝑠𝑑𝑊

𝑠
)

2

]

= 𝐸 [𝑒
2𝑌
𝑡] 𝜏 + 𝑂 (𝜏) .

(11)

Therefore, 𝐸[ln𝑋
𝑡+𝜏

− ln𝑋
𝑡
]
2 and 𝐸[𝑀

𝑡+𝜏
− 𝑀

𝑡
]
2 are equiv-

alent at the order 𝑂(𝜏). Additionally,

𝐸[𝑀
𝑡+𝜏

− 𝑀
𝑡
]
2

= ∫

𝑡+𝜏

𝑡

𝐸 [𝑒
2𝑌
𝑠] 𝑑𝑠 = 𝜏𝑒

2𝛽
2
𝐻𝛼
−2𝐻

Γ(2𝐻)
. (12)

Thus, this completes the proof.

Lemma 3. Let 𝜏 ≪ 1, 𝑡
1
+ 𝜏 < 𝑡

2
, 𝑀

𝑡
= ∫

𝑡

0
𝑒
𝑌
𝑠𝑑𝑊

𝑠
. Then,

𝐸 [(ln𝑋
𝑡
1
+𝜏

− ln𝑋
𝑡
1

)
2

(ln𝑋
𝑡
2
+𝜏

− ln𝑋
𝑡
2

)
2

]

= 𝐸 [(𝑀
𝑡
1
+𝜏

− 𝑀
𝑡
1

)
2

(𝑀
𝑡
2
+𝜏

− 𝑀
𝑡
2

)
2

] + 𝑂 (𝜏
2
) .

(13)

Proof of Lemma 3. Since {𝑌
𝑡
; 𝑡 ≥ 0} and {𝑊

𝑡
; 𝑡 ≥ 0} are

independent, we replace 𝑒
𝑌
𝑠 by 𝑒

𝑌
𝑡1 and 𝑒

𝑌
𝑢 by 𝑒

𝑌
𝑡2 at the order

𝑂(𝜏), respectively; it follows that

𝐸 [(ln𝑋
𝑡
1
+𝜏

− ln𝑋
𝑡
1

)
2

(ln𝑋
𝑡
2
+𝜏

− ln𝑋
𝑡
2

)
2

]

= 𝐸[(−∫

𝑡
1
+𝜏

𝑡
1

𝑒
2𝑌
𝑠𝑑𝑠 + ∫

𝑡
1
+𝜏

𝑡
1

𝑒
𝑌
𝑠𝑑𝑊

𝑠
)

2

×(−∫

𝑡
2
+𝜏

𝑡
2

𝑒
2𝑌
𝑢𝑑𝑢 + ∫

𝑡
2
+𝜏

𝑡
2

𝑒
𝑌
𝑢𝑑𝑊

𝑢
)

2

]

= 𝐸[((∫

𝑡
1
+𝜏

𝑡
1

𝑒
𝑌
𝑠𝑑𝑊

𝑠
)

2

+ (∫

𝑡
1
+𝜏

𝑡
1

𝑒
2𝑌
𝑠𝑑𝑠)

2

−2∫

𝑡
1
+𝜏

𝑡
1

𝑒
2𝑌
𝑠𝑑𝑠∫

𝑡
1
+𝜏

𝑡
1

𝑒
𝑌
𝑠𝑑𝑊

𝑠
)

× ((∫

𝑡
2
+𝜏

𝑡
2

𝑒
𝑌
𝑢𝑑𝑊

𝑢
)

2

+ (∫

𝑡
2
+𝜏

𝑡
2

𝑒
2𝑌
𝑢𝑑𝑢)

2

−2∫

𝑡
2
+𝜏

𝑡
2

𝑒
2𝑌
𝑢𝑑𝑢∫

𝑡
2
+𝜏

𝑡
2

𝑒
𝑌
𝑢𝑑𝑊

𝑢
)]

= 𝐸[(∫

𝑡
1
+𝜏

𝑡
1

𝑒
𝑌
𝑠𝑑𝑊

𝑠
)

2

(∫

𝑡
2
+𝜏

𝑡
2

𝑒
𝑌
𝑢𝑑𝑊

𝑢
)

2

] + 𝑂 (𝜏
2
) ,

(14)

which completed the proof of Lemma 3.

Applying Lemmas 2 and 3, we can get the discrete
observations of volatility through asset price.

Let

𝐿
𝑡
= ln 𝐷𝑡

 . (15)

Define the variogram function V(𝑡, 𝛼, V) as half the vari-
ance of the increments of 𝐿

𝑡
:

2V (𝑡, 𝛼, 𝜇) = 𝐸 [(𝐿
𝑡+𝑠

− 𝐿
𝑠
)
2

] . (16)

For each fixed 𝐻 ∈ (1/2, 1), we consider an ordinary
least squares variogram (see Lahiri et al. [26]) to obtain the
estimators of (𝛼, 𝜇) byminimizing a certain distance between
the variogram and the data periodogram at a finite number
of lags. The ordinary least squares method of estimating
variogram parameters used in this paper first needs to get the
variogram function.

Let

𝛾 (𝑡, 𝛼, 𝜇) = 𝜇Γ (2𝐻) − 𝜇 (2𝐻 − 1) (𝛼𝑡)
2𝐻−2

. (17)
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For fractional Ornstein-Uhlenbeck process, it is not
possible to get the exact variogram function. In Lemma 4,
we give conditions on the time lag that ensure that 𝛾(𝑡, 𝛼, 𝜇)

is an approximation of variogram function V(𝑡, 𝛼, 𝜇) with an
approximation error less than any 𝜀.

Lemma 4. For any 𝜀 > 0, there are some𝐾 = 9(2𝐻−2)(2𝐻−

3) and 𝑇 = (𝜀/𝐾)
1/(2𝐻−4), such that, for any 𝑡 > 𝑇,
V (𝑡, 𝛼, 𝜇) − 𝛾 (𝑡, 𝛼, 𝜇)

 < 𝜀. (18)

Proof of Lemma 4. ApplyingTheorem 2.3 in [16], for any 𝜀 >

0, there exist 𝐾 = 9(2𝐻 − 2)(2𝐻 − 3) and 𝑇 = (𝜀/𝐾)
1/(2𝐻−4),

such that, for any 𝑡 > 𝑇,

cov (𝑌

0
, 𝑌

𝑡
) − 𝜇 (2𝐻 − 1) (𝛼𝑡)

2𝐻−2

≤

(2𝐻 − 2) (2𝐻 − 3) 𝑡

2𝐻−4

+2
4−2𝐻

(2𝐻 − 2) (2𝐻 − 3) 𝑡
2𝐻−4

< 9 (2𝐻 − 2) (2𝐻 − 3) 𝑡
2𝐻−4

< 𝜀.

(19)

From Lemma 1, it follows that, for any 𝜀 > 0, if 𝑡 > 𝑇, we have
V (𝑡, 𝛼, V) − 𝛾 (𝑡, 𝛼, 𝜇)



=



1

2
𝐸 [(𝑌

𝑡
+ ln 𝜉𝑡

 − 𝑌
0
− ln 𝜉0

)
2

] − 𝛾 (𝑡, 𝛼, 𝜇)



=

𝐸 [𝑌

2

0
] − 𝐸 [𝑌

0
𝑌
𝑡
] − 𝜇Γ (2𝐻) + 𝜇 (2𝐻 − 1) (𝛼𝑡)

2𝐻−2

=

cov (𝑌

0
, 𝑌

𝑡
) − 𝜇 (2𝐻 − 1) (𝛼𝑡)

2𝐻−2
< 𝜀.

(20)

This completes the proof.

Accordingly, from (15), we have {𝐿
𝑖Δ𝑡

}
𝑖=1,...,𝑁

at the dis-
crete time instants. For notational simplicity, when there is no
chance of confusion, wewill dropΔ𝑡 from the subscript {𝐿

𝑖Δ𝑡
}

and write them as {𝐿
𝑖
}. Let {ℎ

1
Δ𝑡, ℎ

2
Δ𝑡, . . . , ℎ

𝑀
Δ𝑡} be a finite

set of lag vectors.We denote V(ℎ
𝑘
Δ𝑡, 𝛼, 𝜇) and 𝛾(ℎ

𝑘
Δ𝑡, 𝛼, 𝜇) by

V(𝑘, 𝛼, 𝜇) and 𝛾(𝑘, 𝛼, 𝜇), respectively, where 𝑘 = 1, 2, . . . ,𝑀.
In this paper, our results will require the following

assumption for time lag in the parameter estimation prob-
lems to be satisfied.

Assumption 5. Consider (1) 𝜀 → 0, (2) ℎ
𝑘
Δ𝑡 > 𝑇, 𝑘 =

1, 2, . . . ,𝑀, where 𝐾 = 9(2𝐻 − 2)(2𝐻 − 3) and 𝑇 =

(𝜀/𝐾)
1/(2𝐻−4), and (3) 𝐻 ∈ (1/2, 1) and 𝐻 is known.

Ordinary least squares (OLS) estimate method for var-
iogram parameters fits a parametric model of valid vari-
ograms to a pointwise nonparametric variogram estimator by
minimizing their certain distance at a finite number of lags.
Suppose that𝑊

𝑘,𝑁
is a variogram estimator based on a sample

of size 𝑁 and suppose that 2V(𝑘, 𝛼, 𝜇) is a valid variogram
model.Themost ordinary choice of distance function is given
by

𝑀

∑

𝑘=1

[𝑊
𝑘,𝑁

− 2V (𝑘, 𝛼, 𝜇)]
2 (21)

which, when minimized with respect to 𝛼 and 𝜇, yields the
ordinary least squares (OLS) estimators of (𝛼, 𝜇). Therefore,
the OLS estimation of variogram parameters 𝛼 and 𝜇 is
defined as

(�̂�, 𝜇) = argmin {𝑔
𝑁
(𝛼, 𝜇)



𝑔
𝑁

(𝛼, 𝜇)} , (22)

where

𝑔
𝑁

(𝛼, 𝜇) = (𝑊
1,𝑁

− 2V (1, 𝛼, 𝜇) , . . . ,𝑊
𝑀,𝑁

− 2V (𝑀, 𝛼, 𝜇))


.

(23)

In the following, we take 𝑊
𝑘,𝑁

as the moment estimator
of 2V(𝑘, 𝛼, V), which follows

𝑊
𝑘,𝑁

=
1

𝑁 − ℎ
𝑘

𝑁−ℎ
𝑘

∑

𝑖=1

(𝐿
𝑖+ℎ
𝑘

− 𝐿
𝑖
)
2

, 𝑘 = 1, 2, . . . ,𝑀. (24)

The main result is summarized in the following theorem.

Theorem 6. Let Assumption 5 be satisfied. Then,

�̂� = [
2𝑀𝜇Γ (2𝐻) − ∑

𝑀

𝑘=1
𝑊

𝑘,𝑁

2𝜇 (2𝐻 − 1)∑
𝑀

𝑘=1
(ℎ

𝑘
Δ𝑡)

2𝐻−2
]

1/(2𝐻−2)

,

𝜇 = (

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

4𝐻−4

−

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

(ℎ
𝑘
Δ𝑡)

2𝐻−2

)

× (2Γ(2𝐻)[

[

𝑀

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

4𝐻−4

−[

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

]

2

]

]

)

−1

.

(25)

Proof of Theorem 6. Let 𝑔
∗

𝑁
(𝛼, 𝜇) = (𝑊

1,𝑁
− 2𝛾(1, 𝛼, 𝜇), . . . ,

𝑊
𝑀,𝑁

− 2𝛾(𝑀, 𝛼, 𝜇))
. Since𝑊

𝑘,𝑁
is themoment estimator of

V(𝑘, 𝛼, 𝜇), from Lemma 4, it follows that

𝐸 [

𝑔
𝑁
(𝛼, 𝜇)



𝑔
𝑁

(𝛼, 𝜇) − 𝑔
∗

𝑁
(𝛼, 𝜇)



𝑔
∗

𝑁
(𝛼, 𝜇)


]

= 𝐸[



2

𝑀

∑

𝑘=1

[𝑊
𝑘,𝑁

− 2V (𝑘, 𝛼, 𝜇)]

× [2𝛾 (𝑘, 𝛼, 𝜇) − 2V (𝑘, 𝛼, 𝜇)]

+

𝑀

∑

𝑘=1

[2𝛾 (𝑘, 𝛼, 𝜇) − 2V (𝑘, 𝛼, 𝜇)]
2



] < 𝜀.

(26)

Then, (�̂�, 𝜇) follows that

𝜕 (𝑔
∗

𝑁
(𝛼, 𝜇)



𝑔
∗

𝑁
(𝛼, 𝜇))

𝜕𝛼

𝛼=�̂�

= 0,

𝜕 (𝑔
∗

𝑁
(𝛼, 𝜇)



𝑔
∗

𝑁
(𝛼, 𝜇))

𝜕𝜇

𝜇=𝜇

= 0.

(27)
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Substituting 𝑔
∗

𝑁
(𝛼, 𝜇) by its explicit expression, we have

𝑀

∑

𝑘=1

[2𝜇Γ (2𝐻) − 2𝜇 (2𝐻 − 1) (�̂�ℎ
𝑘
Δ𝑡)

2𝐻−2

− 𝑊
𝑘,𝑁

] = 0,

𝑀

∑

𝑘=1

[2𝜇Γ (2𝐻) − 2𝜇 (2𝐻 − 1) (�̂�ℎ
𝑘
Δ𝑡)

2𝐻−2

− 𝑊
𝑘,𝑁

]

× (ℎ
𝑘
Δ𝑡)

2𝐻−2

= 0.

(28)

Then, (28) can be written as

2𝑀𝜇Γ (2𝐻) − 2𝜇 (2𝐻 − 1) �̂�
2𝐻−2

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

−

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

= 0,

2𝜇Γ (2𝐻)

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

− 2𝜇 (2𝐻 − 1) �̂�
2𝐻−2

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

4𝐻−4

−

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

(ℎ
𝑘
Δ𝑡)

2𝐻−2

= 0.

(29)

Removing the common term 2𝜇(2𝐻 − 1)�̂�
2𝐻−2 gives

2𝑀𝜇Γ (2𝐻) − ∑
𝑀

𝑘=1
𝑊

𝑘,𝑁

∑
𝑀

𝑘=1
(ℎ

𝑘
Δ𝑡)

2𝐻−2

=
2𝜇Γ (2𝐻)∑

𝑀

𝑘=1
(ℎ

𝑘
Δ𝑡)

2𝐻−2

− ∑
𝑀

𝑘=1
𝑊

𝑘,𝑁
(ℎ

𝑘
Δ𝑡)

2𝐻−2

∑
𝑀

𝑘=1
(ℎ

𝑘
Δ𝑡)

4𝐻−4
.

(30)

Solving for 𝜇 in (30) gives

𝜇 = (

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

4𝐻−4

−

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

𝑀

∑

𝑘=1

𝑊
𝑘,𝑁

(ℎ
𝑘
Δ𝑡)

2𝐻−2

)

×(2Γ(2𝐻)[

[

𝑀

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

4𝐻−4

−[

𝑀

∑

𝑘=1

(ℎ
𝑘
Δ𝑡)

2𝐻−2

]

2

]

]

)

−1

.

(31)

Substituting for 𝜇 in (28) gives

�̂� = [
2𝑀𝜇Γ (2𝐻) − ∑

𝑀

𝑘=1
𝑊

𝑘,𝑁

2𝜇 (2𝐻 − 1)∑
𝑀

𝑘=1
(ℎ

𝑘
Δ𝑡)

2𝐻−2
]

1/(2𝐻−2)

. (32)

Thus, the proof is completed.

Remark 7. According to the estimators of parameters (𝛼, 𝜇)

and (6), we can easily get the representation of 𝛽 as 𝛽 =

√𝜇�̂�2𝐻/𝐻.

3. The Asymptotic Properties of the Estimators

Theorem 8. Let Assumption 5 be satisfied; then the estimators
(�̂�, 𝜇) converge to (𝛼, 𝜇)with probability 1 as𝑁 goes to infinity.

Proof of Theorem 8. Theorem 3.1 in Lahiri et al. [26] gives the
sufficient conditions for that OLS estimators are consistent as
follows.

(C1) For any (𝛼
1
, 𝜇

1
), (𝛼

2
, 𝜇

2
) ∈ Θ, ∑

𝑀

𝑘=1
(2𝛾(𝑘; 𝛼

1
, 𝜇

1
)

−2𝛾(𝑘; 𝛼
2
, 𝜇

2
))
2
≥ 0.

(C2) sup{𝛾(𝑘; 𝛼, 𝜇), ℎ ∈ 𝑅, (𝛼, 𝜇) ∈ Θ} < ∞, and 𝛾(𝑘; 𝛼, 𝜇)

has continuous partial derivatives of order 𝑠 (≥ 0)
with respect to 𝛼 and 𝜇.

(C3) For any 𝑘 = 1, 2, . . . ,𝑀,𝑊
𝑘,𝑁

is consistent for 2V(𝑘; 𝜃).

Therefore, it remains to check the conditions required to
complete this proof.

Since Θ is compact, it is obvious that, for any
(𝛼

1
, 𝜇

1
), (𝛼

2
, 𝜇

2
) ∈ Θ, we have

𝑀

∑

𝑘=1

(𝛾 (𝑘, 𝛼
1
, 𝜇

1
) − 𝛾 (𝑘, 𝛼

2
, 𝜇

2
))
2

≥ 0. (33)

Then, it is not difficult to show that 𝛾(𝑘, 𝛼, 𝜇) is continuous
with respect to 𝛼 and 𝜇 as well as sup{𝛾(𝑘, 𝛼, 𝜇) : 𝛼, 𝜇 ∈ Θ} <

∞ when ℎ
𝑘
> 𝑇, for any 𝑘 = 1, 2, . . . ,𝑀.

According to Lemma 4, for any 𝜀 > 0, if ℎ
𝑘
Δ𝑡 > 𝑇, 𝑘 =

1, 2, . . .𝑀, we have

2V (𝑘, 𝛼, 𝜇) − 2𝛾 (𝑘, 𝛼, 𝜇)
 < 2𝜀. (34)

Since 𝑊
𝑘,𝑁

is the moment estimator of 2V(𝑘, 𝛼, 𝜇), using the
consistent results of Hall [28], for any 𝜀 > 0, then we get

𝑃 {
𝑊𝑘,𝑁

− 2𝛾 (𝑘, 𝛼, 𝜇)
 > 3𝜀}

≤ 𝑃 {
𝑊𝑘,𝑁

− 2V (𝑘, 𝛼, 𝜇)


+
2V (𝑘, 𝛼, 𝜇) − 2𝛾 (𝑘, 𝛼, 𝜇)

 > 3𝜀}
𝑁→∞

→ 0.

(35)

Therefore, conditions (C1)–(C3) hold for our estimators. It is
sufficient to deduce the desired result.

Next, we consider the distribution of the ordinary
least squares estimators. We refer to Lahiri et al. [26]
for the detailed notations. For any lag (ℎ

1
, ℎ

2
, . . . , ℎ

𝑀
),

let 𝑔
𝑗
(𝛼, 𝜇) be an 𝑀 × 1 vector of partial derivatives of
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(𝛾(1, 𝛼, 𝜇), 𝛾(2, 𝛼, 𝜇), . . . , 𝛾(𝑀, 𝛼, 𝜇)) with the 𝑗th parameter;
that is,

𝑔
1
(𝛼, 𝜇)

= (
𝜕

𝜕𝛼
𝛾 (1, 𝛼, 𝜇) ,

𝜕

𝜕𝛼
𝛾 (2, 𝛼, 𝜇) , . . . ,

𝜕

𝜕𝛼
𝛾 (𝑀, 𝛼, 𝜇))



,

𝑔
2
(𝛼, 𝜇)

= (
𝜕

𝜕𝜇
𝛾 (1, 𝛼, 𝜇) ,

𝜕

𝜕𝜇
𝛾 (2, 𝛼, 𝜇) , . . . ,

𝜕

𝜕𝜇
𝛾 (𝑀, 𝛼, 𝜇))



.

(36)

Also, set Γ(𝛼, 𝜇) = (−2𝑔
1
(𝛼, 𝜇), −2𝑔

2
(𝛼, 𝜇)) to be a matrix of

dimension 𝑀 × 2.
As derived in Theorem 3.2 in Lahiri et al. [26], if the

nonparametric variogram estimator 𝑊
𝑘,𝑁

is asymptotically
normal, then the OLS estimators of (𝛼, 𝜇) are asymptotically
normal with the same scaling constant that yield the asymp-
totic distribution for 𝑊

𝑘,𝑁
. Therefore, we need to prove the

asymptotically normal property of𝑊
𝑘,𝑁

first. The asymptotic
normality of (�̂�, 𝜇) is presented as follows.

Theorem 9. Let Assumption 5 be satisfied; then one has the
following results:
(1)

√𝑁((𝑊
1,𝑁

−2𝛾
1
) , . . . , (𝑊

𝑀,𝑁
−2𝛾

𝑀
))
 𝑑

→ 𝑁(0, Σ
1
(𝛼, 𝜇))

(37)

as 𝑁 → ∞, where the (𝑖, 𝑗)th element of Σ
1
(𝛼, 𝜇) is given by

(Σ
1
(𝛼, 𝜇))

𝑖,𝑗
= Σ

𝑠∈𝑁
cov ((𝐿

0
− 𝐿

ℎ
𝑖

)
2

, (𝐿
𝑠
− 𝐿

𝑠+ℎ
𝑗

)

2

) ;

(38)

(2)

√𝑁((�̂�, 𝜇) − (𝛼, 𝜇))
 𝑑

→ 𝑁(0, Σ
𝑉
(𝛼, 𝜇)) (39)

as 𝑁 → ∞, where

Σ
𝑉
(𝛼, 𝜇) = 𝐵 (𝛼, 𝜇) Γ


(𝛼, 𝜇) Σ

1
(𝛼, 𝜇) Γ (𝛼, 𝜇) 𝐵 (𝛼, 𝜇) ,

𝐵 (𝛼, 𝜇) = (Γ(𝛼, 𝜇)


Γ (𝛼, 𝜇))
−1

.

(40)

Proof of Theorem 9. In order to prove (37), by the Cramer-
Wold device, it is enough to show that, for any a = (𝑎

1
, 𝑎

2
, . . . ,

𝑎
𝑀
)

∈ 𝑅

𝑀, and ∑
𝑀

𝑘=1
|𝑎
𝑘
| < ∞, 𝐹

1𝑛
= ∑

𝑀

𝑘=1
√𝑁𝑎

𝑘
(𝑊

𝑘,𝑁
−

2𝛾(𝑘, 𝛼, 𝜇))
𝑑

→ 𝑁(0, aΣ
1
(𝛼, 𝜇)a). Fix a ∈ 𝑅

𝑀 and let 𝜀 = 1/𝑁

and Assumption 5 hold; then define

𝐹
2𝑛

=

𝑀

∑

𝑘=1

√𝑁𝑎
𝑘
{|𝑁|

−1

𝑁

∑

𝑖=1

(𝐿
𝑖
− 𝐿

𝑖+ℎ
𝑘

)
2

− 2𝛾 (𝑘, 𝛼, 𝜇)} ,

𝐹
3𝑛

=

𝑀

∑

𝑘=1

√𝑁𝑎
𝑘
{|𝑁|

−1

𝑁

∑

𝑖=1

(𝐿
𝑖
− 𝐿

𝑖+ℎ
𝑘

)
2

− 2V (𝑘, 𝛼, 𝜇)} .

(41)

Based onCauchy-Schwarz theorem and Lemma A.1 in Lahiri
et al. [26], there exist 𝐶

1
and 𝐶

2
satisfying the following

inequations:

𝐸
𝐹1𝑛 − 𝐹

2𝑛



≤ √𝑁

𝑁

∑

𝑘=1

𝑎𝑘

[

[


(𝑁 − ℎ

𝑘
)
−1

− 𝑁
−1

𝐸



𝑁−ℎ
𝑘

∑

𝑖=1

(𝐿
𝑖
− 𝐿

𝑖+ℎ
𝑘

)
2



+𝑁
−1

𝐸



𝑁

∑

𝑖=𝑁−ℎ
𝑘
+1

(𝐿
𝑖
− 𝐿

𝑖+ℎ
𝑘

)
2



]

]

≤ 𝐶
1
√𝑁

𝑁

∑

𝑘=1

𝑎𝑘

[

[



𝑁 − ℎ
𝑘

 − 𝑁
𝑁

−2

× (𝐸(

𝑁

∑

𝑖=1

(𝐿
𝑖
− 𝐿

𝑖+ℎ
𝑘

)
2

)

2

)

1/2

+ 𝑁
−1

× {∑

𝑠∈𝑁

ℎ
𝑘


cov ((𝐿

0
− 𝐿

ℎ
𝑘

)
2

,

(𝐿
𝑠
− 𝐿

𝑠+ℎ
𝑘

)
2

)

}

1/2

]

]

≤ 𝐶
2

𝑁

∑

𝑘=1

𝑎𝑘
 [𝑁

−1 𝑁 −
𝑁 − ℎ

𝑘



 + 𝑁
−1/2

ℎ
1/2

𝑘
]

→ 0 as 𝑁 → ∞.

(42)

Then, from Lemma 4, we have

𝐹2𝑛 − 𝐹
3𝑛

 ≤
√𝑁

𝑁

∑

𝑘=1

𝑎𝑘


2V (𝑘, 𝛼, 𝜇) − 2𝛾 (𝑘, 𝛼, 𝜇)


≤ 2𝑁
1/2

𝑁
−1

𝑁

∑

𝑘=1

𝑎𝑘


𝑁→∞

→ 0.

(43)

By Lemma A.1 in Lahiri et al. [26], we could obtain that, as
𝑁 → ∞,

𝐹
3𝑛

𝑑

→ 𝑁(0, aΣ
1
(𝛼, 𝜇) a) . (44)

This implies that 𝐹
1𝑛
converges to 𝑁(0, aΣ

1
(𝛼, 𝜇)a) in distri-

bution as 𝑁 goes to infinity. Thus, we complete the proof of
(37).

Finally, (37) combinedwith conditions (C1)–(C3) verified
inTheorem 8, we conclude the desired result in (39).

4. Numerical Illustration

In this section, we present numerical examples for different
values of 𝐻, 𝛼, and 𝛽 to illustrate the performance of our
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Table 1: The means and standard deviations of the estimators.

𝐻 = 0.65 𝐻 = 0.70 𝐻 = 0.75 𝐻 = 0.85

𝛼 𝛽 𝛼 𝛽 𝛼 𝛽 𝛼 𝛽

Panel A. Low parameter value 𝛼 = 0.7880, 𝛽 = 0.8215

Mean 0.7859 0.8166 0.7861 0.8280 0.7865 0.8164 0.7858 0.8333
Median 0.7868 0.8120 0.7865 0.8348 0.7865 0.8115 0.7860 0.8452
Standard deviation 0.1560 0.1030 0.1234 0.2933 0.7240 0.5533 0.8203 0.7709

Panel B. Median parameter value 𝛼 = 1.5880, 𝛽 = 1.8215

Mean 1.5845 1.8138 1.5832 1.8132 1.5851 1.8233 1.5829 1.8344
Median 1.5863 1.8067 1.5839 1.8053 1.5849 1.8251 1.5837 1.8477
Standard deviation 0.7819 0.5739 0.3454 0.2733 0.1074 0.5993 0.3145 0.3164

Panel C. High parameter value 𝛼 = 3.5880, 𝛽 = 5.8215

Mean 3.6069 5.9416 3.5999 5.7968 3.6031 5.9822 3.5741 5.7902
Median 3.6215 6.0701 3.6002 5.7722 3.6056 6.1446 3.5782 5.7618
Standard deviation 0.4331 0.4931 0.2272 0.2529 0.5654 0.7608 0.7594 1.0289

estimators. We sum up the estimation procedures by Monte
Carlo simulation method as follows.

(a) Based on Paxson [27] method, we generate fractional
Gaussian noise by fast Fourier transform. Then using
the result that a fractional Brownianmotion is defined
as the partial sums of the fractional Gaussian noise,
we get the fractional Brownian motion.

(b) We simulate the processes 𝑌(⋅) of (4) and 𝑋(⋅) of (5),
using Euler-Mauyama method for different values of
𝐻, 𝛼, and 𝛽. For simplicity, we set the valuation of the
two variables𝛼 and𝛽 according to the simulation part
in Xiao et al. [17]. For a fixed length Δ𝑡 = 0.01, we
simulate 100 sample paths on the interval [0, 20] using
a regular partition of 2000 intervals.

(c) Calculate the term 𝑇. Here, we take 𝜀 = 0.009 (in
order to make sure that 𝜀 = 0.009 is sufficiently
small) as an example to show how to calculate 𝑇 in
Assumption 5. If 𝐻 = 0.85, from the formula 𝑇 =

(𝜀/𝐾)
1/(2𝐻−4), we need to choose 𝑇 = 13.39. Hence,

for the estimation procedure, we only use {𝑊
𝑘,𝑁

}, 𝑘 =

13391, . . . , 20000.
(d) We implement these generated data sets to obtain the

estimators by (25).

The simulated mean, median value, and standard devi-
ation of these estimators are given in Table 1. As shown
in Table 1, both mean and median value of all parameters
are close to the true value. The standard deviations are
small which also demonstrated a good finite sample behavior
of our method. There is not a decrease in quality as 𝐻

increases. The theoretical results in Section 2 are confirmed
by these simulation studies. In summary, the simulation
results match the chosen parameters exactly, which shows
that our estimators perform well.

Finally, in order to illustrate the asymptotical normality
for the estimators, we plot the histogram of the empirical

distribution that we obtain from the Monte Carlo procedure
(see Figures 1, 2, 3, 4, 5, and 6).

5. Conclusion

The process of long memory has evolved into the descrip-
tion of stochastic volatility during the last decades, as
researchers in empirical finance have sought to use long-
memory stochastic volatility models in terms of discrete
time and continuous time for practical application. Among
them, fractional Ornstein-Uhlenbeck process has been used
by many authors for its brief form and good properties.
However, no volatility process can be directly observed from
the financial market. We get the approximate logarithm
form of {𝑒

𝑌
𝑖𝜉
𝑖
} in the discrete time, which is available for

us to adopt the least squares variogram method. For this
reason, obtaining the estimators 𝛼 and 𝜇 would be feasible.
This paper establishes an ordinary least squares estimation
of the variogram parameters to deal with the case where
the volatility process is described by a fractional Ornstein-
Uhlenbeck process.We also give the results for the asymptotic
properties of the two estimators. The numerical results show
that this is an accurate and reliable method to estimate the
parameters.

As stated in this paper, we assume the mutual indepen-
dence between {𝑊

𝑡
} and {𝐵

𝐻

𝑡
} for showing the estimation

procedure clearly. In order to consider leverage effects, we
would need to impose some kind of dependent structure on
the covariancematrix of these two processes. Such dependent
structure would make the current discussion much more
complicated and we thus wish to leave such an extension for
future research.

Appendix

Proof of Lemma 1. Note that the fBm {𝐵
𝐻

𝑡
} is a Gaussian

process with 𝐸[𝐵
𝐻

𝑡
] = 0 for every 𝑡 ∈ R. Hence, we can easily
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Figure 1: Histogram of the estimator �̂� (𝛼 = 0.7880) for different values of 𝐻.
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Figure 2: Histogram of the estimator �̂� (𝛼 = 1.5880) for different values of 𝐻.

obtain that 𝐸[𝑌
𝑡
] = 0 and {𝑌

𝑡
} is also a Gaussian process.

Based onTheorem 3.1 in Nualart [29], the variance of {𝑌
𝑡
} is

Var [𝑌
𝑡
]

= 𝐸 [𝛽∫

𝑡

−∞

𝑒
−𝛼(𝑡−𝑟)

𝑑𝐵
𝐻

𝑟
𝛽∫

𝑡

−∞

𝑒
−𝛼(𝑡−𝑢)

𝑑𝐵
𝐻

𝑢
]

= 𝐻 (2𝐻 − 1) 𝛽
2
𝑒
−2𝛼𝑡

× [∫

𝑡

−∞

𝑒
𝛼𝑟

∫

𝑟

−∞

(𝑟 − 𝑢)
2𝐻−2

𝑒
𝛼𝑢

𝑑𝑢 𝑑𝑟

+∫

𝑡

−∞

𝑒
𝛼𝑟

∫

𝑡

𝑟

(𝑢 − 𝑟)
2𝐻−2

𝑒
𝛼𝑢

𝑑𝑢 𝑑𝑟] .

(A.1)

Set

I = 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
𝛼𝑟

∫

𝑟

−∞

(𝑟 − 𝑢)
2𝐻−2

𝑒
𝛼𝑢

𝑑𝑢 𝑑𝑟,

II = 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
𝛼𝑟

∫

𝑡

𝑟

(𝑢 − 𝑟)
2𝐻−2

𝑒
𝛼𝑢

𝑑𝑢 𝑑𝑟.

(A.2)

Let 𝑟 − 𝑢 = V and 𝛼V = 𝑥. Then, we obtain that

I = 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
𝛼𝑟

∫

∞

0

V2𝐻−2𝑒𝛼(𝑟−V)𝑑V 𝑑𝑟

= 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
2𝛼𝑟

∫

∞

0

𝛼
1−2𝐻

𝑥
2𝐻−2

𝑒
−𝑥

𝑑𝑥 𝑑𝑟

= 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
2𝛼𝑟

𝛼
1−2𝐻

Γ (2𝐻 − 1) 𝑑𝑟

=
1

2
𝛼
−2𝐻

Γ (2𝐻 − 1) .

(A.3)

Let 𝑢 − 𝑟 = V, 𝛼V = 𝑥. Similarly, we get that

II = 𝑒
−2𝛼𝑡

∫

𝑡

−∞

𝑒
𝛼𝑟

∫

𝑡

𝑟

(𝑢 − 𝑟)
2𝐻−2

𝑒
𝛼𝑢

𝑑𝑢 𝑑𝑟

= 𝑒
−2𝛼𝑡

∫

∞

0

V2𝐻−2𝑒𝛼V ∫
𝑡−V

−∞

𝑒
2𝛼𝑟

𝑑𝑟 𝑑V

=
1

2
𝛼
−2𝐻

∫

∞

0

𝑥
2𝐻−2

𝑒
−𝑥

𝑑𝑥

=
1

2
𝛼
−2𝐻

Γ (2𝐻 − 1) .

(A.4)
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Figure 3: Histogram of the estimator �̂� (𝛼 = 3.5880) for different values of 𝐻.
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Figure 4: Histogram of the estimator 𝛽 (𝛽 = 0.8215) for different values of 𝐻.
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Figure 5: Histogram of the estimator 𝛽 (𝛽 = 1.8215) for different values of 𝐻.
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Figure 6: Histogram of the estimator 𝛽 (𝛽 = 5.8215) for different values of 𝐻.
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Hence, Var[𝑌
𝑡
] can be written as

Var [𝑌
𝑡
] = 𝐻 (2𝐻 − 1) 𝛽

2
𝛼
−2𝐻

Γ (2𝐻 − 1)

= Γ (2𝐻)𝐻𝛼
−2𝐻

𝛽
2
.

(A.5)

Thus, we deduce the desired conclusion.
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différentielle dirigée par une fonction höldérienne; cas dumou-
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