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Based on the norm in the Hilbert Space 𝐿
2
[0, 1], the second order detrended Brownian motion is defined as the orthogonal

component of projection of the standard Brownian motion into the space spanned by nonlinear function subspace. Karhunen-
Loève expansion for this process is obtained together with the relationship of that of a generalized Brownian bridge. As applications,
Laplace transform, large deviation, and small deviation are given.

1. Introduction

Let 𝑋 = {𝑋(𝑡), 0 ≤ 𝑡 ≤ 1} be a centered and continuous
Gaussian process on [0, 1] with covariance function

𝐾
𝑋
(𝑡, 𝑠) = 𝐸𝑋 (𝑡)𝑋 (𝑠) . (1)

The Karhunen-Loève expansion of 𝑋 is given by the
(convergent in mean squares) series

𝑋(𝑡) =

∞

∑

𝑘=1

𝜂
𝑘
√𝜆
𝑘
𝑓
𝑘
(𝑡) , (2)

where {𝜂
𝑘
, 𝑘 ≥ 1} is a sequence of i.i.d. 𝑁(0, 1) random

variables and {𝜆
𝑘
, 𝑘 ≥ 1} is at most the countable set of

eigenvalues of Fredholm integral operator

𝑇
𝑋
𝑓 (𝑡) = ∫

1

0

𝐾
𝑋
(𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠 (3)

{𝑓
𝑘
(𝑡), 𝑘 ≥ 1} and forms an orthogonal sequence in 𝐿

2
[0, 1]

and ∫1
0
𝐾
𝑋
(𝑡, 𝑡)𝑑𝑡 < ∞.

Deheuvels et al. in [1–4] provided the Karhunen-Loève
expansions for the processes that are related with Brown-
ian motion. The Karhunen-Loève expansion for detrended
Brownian motion has been studied by Ai et al. [5]. Note

that the detrended Brownian motion in [5] can be viewed as
projection to a constant function subspace in 𝐿2[0, 1].That is,

∫

1

0

�̂�
1
(𝑡)
2
𝑑𝑡 = min

𝑐
1
,𝑐
2

∫

1

0

(𝑊 (𝑡) − 𝑐
1
− 𝑐
2
𝑡)
2

𝑑𝑡. (4)

To generalize the projection idea into nonlinear detre-
nded process, now we consider

min
𝑐
1
,𝑐
2
,𝑐
3

∫

1

0

(𝑊 (𝑡) − 𝑐
1
− 𝑐
2
𝑡 − 𝑐
3
𝑡
2
)
2

𝑑𝑡 (5)

and the optimal constant 𝑐
𝑗
satisfy

𝜕

𝜕𝑐
𝑗

∫

1

0

(𝑊 (𝑡) − 𝑐
1
− 𝑐
2
𝑡 − 𝑐
3
𝑡
2
)
2

𝑑𝑡 = 0, 𝑗 = 1, 2, 3. (6)

It is easy to obtain

𝑐
1
= 9∫

1

0

𝑊(𝑠) 𝑑𝑠 − 36∫

1

0

𝑊(𝑠) 𝑠 𝑑𝑠 + 30∫

1

0

𝑊(𝑠) 𝑠
2
𝑑𝑠,

𝑐
2
= − 36∫

1

0

𝑊(𝑠) 𝑑𝑠 + 192∫

1

0

𝑊(𝑠) 𝑠 𝑑𝑠
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− 180∫

1

0

𝑊(𝑠) 𝑠
2
𝑑𝑠,

𝑐
3
= 30∫

1

0

𝑊(𝑠) 𝑑𝑠 − 180∫

1

0

𝑊(𝑠) 𝑠 𝑑𝑠 + 180∫

1

0

𝑊(𝑠) 𝑠
2
𝑑𝑠.

(7)

Let

𝐴 = (𝑎
𝑖𝑗
)
3×3

= (

9 −36 30

−36 192 −180

30 −180 180

) ; (8)

we have

𝑐
𝑗
=

3

∑

𝑖=1

𝑎
𝑖𝑗
∫

1

0

𝑠
𝑖−1

𝑊(𝑠) 𝑑𝑠, 𝑗 = 1, 2, 3. (9)

Now we can define the second order detrended process

�̂�
2
(𝑡) = 𝑊 (𝑡) −

3

∑

𝑗=1

𝑐
𝑗
𝑡
𝑗−1

= 𝑊(𝑡) + (−9 + 36𝑡 − 30𝑡
2
)∫

1

0

𝑊(𝑠) 𝑑𝑠

+ (36 − 192𝑡 + 180𝑡
2
) ∫

1

0

𝑊(𝑠) 𝑠 𝑑𝑠

+ (−30 + 180𝑡 − 180𝑡
2
)∫

1

0

𝑊(𝑠) 𝑠
2
𝑑𝑠.

(10)

2. Main Results

We give the following lemma that provides the explicit
covariance function.

Lemma 1. For convenience, we add𝐾
𝑋
(𝑠, 𝑡) into formula (11),

that is

𝐾
𝑋
(𝑠, 𝑡) = 𝐸 (�̂�

2
(𝑡) �̂�
2
(𝑠))

= 𝑡 ∧ 𝑠 −

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞
(
𝑡

𝑝
−

𝑡
𝑝+1

𝑝 (𝑝 + 1)
) 𝑠
𝑞−1

−

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
) 𝑡
𝑗−1

+

3

∑

𝑝,𝑞=1

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑎
𝑝𝑞

𝑝 + 𝑖 + 2

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
𝑡
𝑗−1

𝑠
𝑞−1

,

(11)

where 𝑎
𝑖𝑗
, 𝑎
𝑝𝑞
, 𝑖, 𝑗, 𝑝, 𝑞 = 1, 2, 3 is given in (8).

Proof. Consider

�̂�
2
(𝑡) = 𝑊 (𝑡) −

3

∑

𝑗=1

𝑐
𝑗
𝑡
𝑗−1

, 0 ≤ 𝑡 ≤ 1 (12)

and �̂�
2
(𝑡) is a mean zero Gaussian process; we obtain

𝐸 (�̂�
2
(𝑡) �̂�
2
(𝑠))

= 𝐸�̂�
2
(𝑡) �̂�
2
(𝑠)

= 𝐸(𝑊(𝑡) −

3

∑

𝑗=1

𝑐
𝑗
𝑡
𝑗−1

)(𝑊(𝑠) −

3

∑

𝑞=1

𝑐
𝑞
𝑠
𝑞−1

)

= 𝐸(𝑊(𝑡) −

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(∫

1

0

𝑢
𝑖−1

𝑊(𝑢) 𝑑𝑢) 𝑡
𝑗−1

)

⋅ 𝐸(𝑊(𝑠) −

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞
(∫

1

0

V𝑝−1𝑊(V) 𝑑V) 𝑠
𝑞−1

) .

(13)

We notice that

𝐸 (𝑊 (𝑡)𝑊 (𝑠)) = 𝑡 ∧ 𝑠, (14)

𝐸(𝑊(𝑡) ∫

1

0

V𝑝−1𝑊(V) 𝑑V)

= 𝐸(∫

1

0

𝑊(𝑡)𝑊 (V) V𝑝−1𝑑V)

= ∫

1

0

(𝑡 ∧ V) V𝑝−1𝑑V

= ∫

𝑡

0

V𝑝𝑑V + ∫

1

𝑡

𝑡V𝑝−1𝑑V

=
𝑡

𝑝
−

𝑡
𝑝+1

𝑝 (𝑝 + 1)
,

(15)

𝐸(∫

1

0

𝑢
𝑖−1

𝑊(𝑢) 𝑑𝑢)(∫

1

0

V𝑝−1𝑊(V) 𝑑V)

= ∫

1

0

𝑢
𝑖−1

𝐸(𝑊(𝑢)∫

1

0

V𝑝−1𝑊(V) 𝑑V)𝑑𝑢

= ∫

1

0

𝑢
𝑖−1

(
𝑢

𝑝
−

𝑢
𝑝+1

𝑝 (𝑝 + 1)
)𝑑𝑢

=
𝑝 + 𝑖 + 2

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
.

(16)

Substituting (16), (17), and (19) into (15), we derive

𝐸 (�̂�
2
(𝑡) �̂�
2
(𝑠))

= 𝑡 ∧ 𝑠 −

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞
(
𝑡

𝑝
−

𝑡
𝑝+1

𝑝 (𝑝 + 1)
) 𝑠
𝑞−1
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−

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
) 𝑡
𝑗−1

+

3

∑

𝑝,𝑞=1

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑎
𝑝𝑞

𝑝 + 𝑖 + 2

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
𝑡
𝑗−1

𝑠
𝑞−1

.

(17)

Lemma 2 (see [3]). If 𝑡 ∈ [0, 1], 𝜍
𝑗
(𝑡) = ∑

∞

𝑘=1
𝜔
𝑘√𝜆
𝑘,𝑗
𝑒
𝑘,𝑗
(𝑡),

𝑗 = 1, 2, . . ., then the condition

∫
[0,1]

𝜍
2

1
(𝑡) 𝑑𝑡

𝑙𝑎𝑤

= ∫
[0,1]

𝜍
2

2
(𝑡) 𝑑𝑡 (18)

is equivalent to the identity

𝜆
𝑘,1

= 𝜆
𝑘,2

∀𝑘 ≥ 1. (19)

In the following, wewill give some preliminaries, notions,
and facts that are needed in Theorem 3. For V > −1, 𝐽V(⋅) is
Bessel function [6] with index V and the positive zeros of 𝐽V(⋅)
are infinite sequence 0 < 𝑧V,1 < 𝑧V,2 < ⋅ ⋅ ⋅ . When V = 3/2,
V = 5/2, the positive zeros of 𝐽

3/2,𝑘
, 𝐽
5/2,𝑘

are 𝑧
3/2,𝑘

, 𝑧
5/2,𝑘

, 𝑘 =

1, 2, . . ., and they are in such a way that

0 < 𝑧
3/2,1

< 𝑧
5/2,1

< 𝑧
3/2,2

< ⋅ ⋅ ⋅ . (20)

Now we can state one of the main results of this paper.

Theorem 3. For the second order detrended Brownian motion
�̂�
2
(𝑡) and a generalized Brownian bridge 𝐵

2
(𝑡) with 𝑛 = 2 in

[7],

𝐵
2
(𝑡) = 𝐵 (𝑡) −

1

36
𝑡 (60𝑡

2
+ 18𝑡 − 67) 𝐵 (1)

− 𝑡 (60𝑡
2
− 96𝑡 + 11)∫

1

0

𝐵 (𝑠) 𝑑𝑠

+ 10𝑡 (12𝑡
2
− 18𝑡 + 1)∫

1

0

𝐵 (𝑠) 𝑠 𝑑𝑠.

(21)

One has the distribution identities

∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡
𝑙𝑎𝑤

= ∫

1

0

𝐵
2
(𝑡)
2
𝑑𝑡

𝑙𝑎𝑤

= ∑

𝑘≥1

𝜂
2

𝑘

4𝑧
2

3/2,𝑘

+ ∑

𝑘≥1

𝜂
∗2

𝑘

4𝑧
2

5/2,𝑘

,

(22)

where {𝜂
𝑘
, 𝑘 ≥ 1} and {𝜂

∗

𝑘
, 𝑘 ≥ 1} denote two independent

sequences of independently and identically distributed𝑁(0, 1)

random variables.

Proof. By straightforward induction based on the equation
and splitting the integration range from 𝑡, we get

𝜆𝑓 (𝑡) = ∫

𝑡

0

𝑠𝑓 (𝑠) 𝑑𝑠 + 𝑡 ∫

1

𝑡

𝑓 (𝑠) 𝑑𝑠

−

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞
(
𝑡

𝑝
−

𝑡
𝑝+1

𝑝 (𝑝 + 1)
)∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠

−

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑡
𝑗−1

∫

1

0

(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
)𝑓 (𝑠) 𝑑𝑠

+

3

∑

𝑝,𝑞=1

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑎
𝑝𝑞

𝑝 + 𝑖 + 2

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
𝑡
𝑗−1

× ∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠.

(23)

By differentiation of both sides of (23) with respect to 𝑡, we
have

𝜆𝑓

(𝑡) = ∫

1

𝑡

𝑓 (𝑠) 𝑑𝑠 −

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞

1 − 𝑡
𝑝

𝑝
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠

−

3

∑

𝑖=1,𝑗=2

(𝑗 − 1) 𝑎
𝑖𝑗
𝑡
𝑗−2

∫

1

0

(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
)𝑓 (𝑠) 𝑑𝑠

+

3

∑

𝑝,𝑞=1

3

∑

𝑖=1,𝑗=2

𝑎
𝑖𝑗
𝑎
𝑝𝑞

(𝑝 + 𝑖 + 2) (𝑗 − 1)

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
𝑡
𝑗−2

× ∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠.

(24)

By differentiation of both sides of (24) with respect to 𝑡, we
have

𝜆𝑓

(𝑡) + 𝑓 (𝑡)

=

3

∑

𝑖,𝑝,𝑞=1

𝑎
𝑖3
𝑎
𝑝𝑞

2 (𝑝 + 𝑖 + 2)

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠

− 2

3

∑

𝑖=1

𝑎
𝑖3
∫

1

0

(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
)𝑓 (𝑠) 𝑑𝑠

+

3

∑

𝑞=1

𝑎
1𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠

+ (

3

∑

𝑞=1

𝑎
2𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠) 𝑡

+ (

3

∑

𝑞=1

𝑎
3𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠) 𝑡
2
.

(25)
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We can simplify this equation to

𝜆𝑓

(𝑡) + 𝑓 (𝑡) + 𝑏

1
+ 𝑏
2
𝑡 + 𝑏
3
𝑡
2
= 0, (26)

where

𝑏
1
= −

3

∑

𝑖,𝑝,𝑞=1

𝑎
𝑖3
𝑎
𝑝𝑞

2 (𝑝 + 𝑖 + 2)

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠

+ 2

3

∑

𝑖=1

𝑎
𝑖3
∫

1

0

(
𝑠

𝑖
−

𝑠
𝑖+1

𝑖 (𝑖 + 1)
)𝑓 (𝑠) 𝑑𝑠

−

3

∑

𝑞=1

𝑎
1𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠,

(27)

𝑏
2
= −

3

∑

𝑞=1

𝑎
2𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠, (28)

𝑏
3
= −

3

∑

𝑞=1

𝑎
3𝑞
∫

1

0

𝑠
𝑞−1

𝑓 (𝑠) 𝑑𝑠. (29)

We solve the inhomogeneous seconddifferential equation
to obtain

𝑓 (𝑡) = 𝑐
1
cos 𝑡

√𝜆

+ 𝑐
2
sin 𝑡

√𝜆

+ 2𝜆𝑏
3
− 𝑏
1
− 𝑏
2
𝑡 − 𝑏
3
𝑡
2
. (30)

We substitute 𝑓(𝑡) into (28) and (29) to obtain

(√𝜆 sin 1

√𝜆

+ 6𝜆 cos 1

√𝜆

− 12𝜆√𝜆 sin 1

√𝜆

+ 6𝜆) 𝑐
1

+ (−√𝜆 cos 1

√𝜆

+ 6𝜆 sin 1

√𝜆

+ 12𝜆√𝜆 cos 1

√𝜆

− 12𝜆√𝜆 + √𝜆) 𝑐
2

= 0,

(−2√𝜆 sin 1

√𝜆

− 14𝜆 cos 1

√𝜆

+ 30𝜆√𝜆 sin 1

√𝜆

− 16𝜆) 𝑐
1

+ (2√𝜆 cos 1

√𝜆

− 14𝜆 sin 1

√𝜆

− 30𝜆√𝜆 cos 1

√𝜆

+ 30𝜆√𝜆 − 3√𝜆) 𝑐
2

= 0.

(31)

In order that there are nonzero choices for 𝑐
1
, 𝑐
2
, the

determinant of the above two equations has to be zero, which
can be written as

𝐷
11
𝐷
22
− 𝐷
12
𝐷
21
= 0, (32)

where

𝐷
11
= √𝜆 sin 1

√𝜆

+ 6𝜆 cos 1

√𝜆

− 12𝜆√𝜆 sin 1

√𝜆

+ 6𝜆,

𝐷
12
= − √𝜆 cos 1

√𝜆

+ 6𝜆 sin 1

√𝜆

+ 12𝜆√𝜆 cos 1

√𝜆

− 12𝜆√𝜆 + √𝜆,

𝐷
21
= − 2√𝜆 sin 1

√𝜆

− 14𝜆 cos 1

√𝜆

+ 30𝜆√𝜆 sin 1

√𝜆

− 16𝜆,

𝐷
22
= 2√𝜆 cos 1

√𝜆

− 14𝜆 sin 1

√𝜆

− 30𝜆√𝜆 cos 1

√𝜆

+ 30𝜆√𝜆 − 3√𝜆.

(33)

We obtain, after some simplification,

24𝜆
2√𝜆 + 4𝜆√𝜆

= (24𝜆
2
− 𝜆) sin 1

√𝜆

+ (24𝜆
2√𝜆 − 8𝜆√𝜆) cos 1

√𝜆

.

(34)

Then 𝜆 ̸= 0 is an eigenvalue if and only if (34) holds. We
therefore obtain

𝐷 (𝜆) = − 720 ((24𝜆
−7/2

− 𝜆
−5/2

) sin 𝜆1/2

+ (24𝜆
−4

− 8𝜆
−3
) cos 𝜆1/2 − 24𝜆

−4
− 4𝜆
−3
) ,

(35)

with𝐷(0) = 1.
According to the trigonometric function formula

sin 1

√𝜆

= 2 sin 1

2√𝜆

cos 1

2√𝜆

,

cos 1

√𝜆

= 2 cos2 1

2√𝜆

− 1 = 1 − 2sin2 1

2√𝜆

,

(36)

we can observe that

𝐷
11
𝐷
22
− 𝐷
12
𝐷
21
= −12𝜋√𝜆𝐽

3/2
(

1

2√𝜆

) 𝐽
5/2

(
1

2√𝜆

) = 0,

(37)

where 𝐽
3/2

(𝑧), 𝐽
5/2

(𝑧) are Bessel functions as follows:

𝐽
3/2

(𝑧) =
√2𝜋 ⋅ 𝑧

𝜋
(
sin 𝑧
𝑧2

−
cos 𝑧
𝑧

) ,

𝐽
5/2

(𝑧) =
√2𝜋 ⋅ 𝑧

𝜋
((−

1

𝑧
+

3

𝑧3
) sin 𝑧 − 3

𝑧2
cos 𝑧) ,

(38)

which gives two sequences of eigenvalues of (37), namely,
(2𝑧
3/2,𝑘

)
−2 and (2𝑧

5/2,𝑘
)
−2.
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Similarly, we can obtain the two eigenvalues (2𝑧
3/2,𝑘

)
−2,

(2𝑧
5/2,𝑘

)
−2 corresponding to those of integral operator of a

generalized Brownian bridge 𝐵
2
(𝑡). Note that the integral

operator is

∫

1

0

𝐾
2
(𝑠, 𝑡) 𝑓 (𝑠) 𝑑𝑠. (39)

Actually, in Lemma 2, we have the distribution identities

∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡

law
= ∫

1

0

𝐵
2
(𝑡)
2
𝑑𝑡

law
= ∑

𝑘≥1

𝜂
2

𝑘

4𝑧
2

3/2,𝑘

+ ∑

𝑘≥1

𝜂
∗2

𝑘

4𝑧
2

5/2,𝑘

.

(40)

Remark 4. From (11) and (22), we derive that

∫

1

0

𝐾
𝑋
(𝑡, 𝑡) 𝑑𝑡 = ∫

1

0

𝐸 (�̂�
2
(𝑡)
2
) 𝑑𝑡 = 𝐸∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡

= ∑

𝑘≥1

1

4𝑧
2

3/2,𝑘

+ ∑

𝑘≥1

1

4𝑧
2

5/2,𝑘

=
1

40
+

1

56
=

3

140

(41)

by using the Rayleigh’s formula, for V = 3/2 and V = 5/2 (see,
e.g., [3, (1.91), page 77] and [6, page 502]).

To check (41), from (11), we infer that

∫

1

0

𝐾
𝑋
(𝑡, 𝑡) 𝑑𝑡

= ∫

1

0

[𝑡 −

3

∑

𝑝,𝑞=1

𝑎
𝑝𝑞
(
𝑡
𝑞

𝑝
−

𝑡
𝑝+𝑞

𝑝 (𝑝 + 1)
)

−

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
(
𝑡
𝑗

𝑖
−

𝑡
𝑖+𝑗

𝑖 (𝑖 + 1)
)

+

3

∑

𝑝,𝑞=1

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝑎
𝑝𝑞

×
𝑝 + 𝑖 + 2

(𝑝 + 1) (𝑝 + 𝑖 + 1) (𝑖 + 1)
𝑡
𝑗+𝑞

]𝑑𝑡

=
3

140

(42)

which is in agreement with (41).

3. Applications

In this section, the relevant applications of Karhunen-Loève
expansion are given.

Proposition 5. For each 𝜃 ∈ 𝑅, one has

𝐸 exp(−𝜃
2

2
∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡)

= { −720 ((24𝜃
−7

− 𝜃
−5
) sin 𝜃 + (−24𝜃

−8
+ 8𝜃
−6
) cos 𝜃

+ 24𝜃
−8

+ 4𝜃
−6
)}
−1/2

.

(43)

Proof.

𝐸 exp(−𝜃
2

2
∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡)

= 𝐸 exp(−𝜃
2

2

∞

∑

𝑘=1

𝜆
𝑘
𝜉
2

𝑘
)

=

∞

∏

𝑘=1

(1 + 𝜆
𝑘
𝜃
2
)
−1/2

= (𝐷 (−𝜃
2
))
−1/2

= {−720 ((24𝜃
−7

− 𝜃
−5
) sin 𝜃 + (−24𝜃

−8
+ 8𝜃
−6
) cos 𝜃

+ 24𝜃
−8

+ 4𝜃
−6
)}
−1/2

,

(44)

where 𝜆
1
> 𝜆
2
> ⋅ ⋅ ⋅ > 0 and ∑∞

𝑘=1
𝜆
𝑘
< ∞.

Proposition 6. If 𝑥 > 0, then

𝑃(∫

1

0

�̂�
2

2
(𝑡) 𝑑𝑡 > 𝑥)

=
1

𝜋

∞

∑

𝑘=1

(−1)
𝑘+1

× ∫

𝛾
2𝑘

𝛾
2𝑘−1

(𝑒
−𝑢𝑥/2

× (𝑢(

−720 ((24𝑢

−7/2
− 𝑢
−5/2

) sin 𝑢1/2

+ (24𝑢
−4

− 8𝑢
−3
) cos 𝑢1/2

− 24𝑢
−4

− 4𝑢
−3
)

)
1/2

)

−1

)𝑑𝑢,

(45)

where 𝛾
𝑘
= 𝜆
−1

𝑘
, 𝑘 = 1, 2, . . ..

Proof. It can be proved by the Smirnov formula [8, 9], for-
mula (23), and the definition of the Fredholm determinant.
Similar proof method can be found from Proposition 3.3 in
[10].

Next, we give the large deviation and small deviation
probabilities of the second order detrended Brownianmotion
with respect to the norm in the Hilbert Space 𝐿2[0, 1].
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Proposition 7. Consider 𝑥 → ∞,

𝑃(∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡 > 𝑥)

= (1 + 𝑜 (1)) (
2

𝜋
)

1/2

(2𝑧
3/2,1

)
−2

𝑥
−1/2 exp (−2𝑧2

3/2,1
𝑥)

⋅ {720 ((−
3

24
𝑧
−9

3/2,1
+
13

28
𝑧
−7

3/2,1
) sin 2𝑧

3/2,1

+ (−
3

25
𝑧
−10

3/2,1
+

9

26
𝑧
−8

3/2,1
−

1

27
𝑧
−6

3/2,1
)

× cos 2𝑧
3/2,1

+
3

25
𝑧
−10

3/2,1
+

3

26
𝑧
−8

3/2,1
)}

−1/2

.

(46)

Proof. ByDeheuvels [2] andMartynov [8], we have for all 𝑥 >

0

𝑃(∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡 > 𝑥)

= (1 + 𝑜 (1)) (
2

𝜋
)

1/2

𝛾
−1

1
(−𝐷

(𝛾
1
))
−1/2

× 𝑥
−1/2 exp(−

𝛾
1
𝑥

2
) ;

(47)

we take𝐷(𝜆) and 𝛾
1
= (2𝑧
3/2,1

)
2 into (47), and then the proof

is completed.

Proposition 8. There exists a constant 𝑐 > 0 such that

𝑃(∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡 ≤ 𝜀)

= (𝑐 + 𝑜 (1)) 𝜀
−2 exp(− 1

8𝜀
) , as 𝜀 → 0.

(48)

Proof. We start with proving (48) by recalling Li, 1992 [11, 12].
Given two sequences 𝑎

𝑘
> 0 and 𝑏

𝑘
> 0 with

∑

𝑘≥1

𝑎
𝑘
< ∞, ∑

𝑘≥1

𝑏
𝑘
< ∞, ∑

𝑘≥1



1 −
𝑎
𝑘

𝑏
𝑘



< ∞, (49)

we have, as 𝜀 → 0,

𝑃(∑

𝑘≥1

𝑎
𝑘
𝜉
2

𝑘
≤ 𝜀)

= (1 + 𝑜 (1)) (∏

𝑘≥1

𝑏
𝑘

𝑎
𝑘

)

1/2

𝑃(∑

𝑘≥1

𝑏
𝑘
𝜉
2

𝑘
≤ 𝜀) .

(50)

By the asymptotic formula for zeros of Bessel function

𝑧
3/2,𝑘

= (𝑘 +
1

2
)𝜋 + 𝑂 (𝑘

−1
) , 𝑘 → ∞,

𝑧
5/2,𝑘

= (𝑘 + 1) 𝜋 + 𝑂 (𝑘
−1
) , 𝑘 → ∞,

(51)

then 𝑎
𝑘
= 𝜆
𝑘
, 𝑏
2𝑘−1

= ((2𝑘 + 1)𝜋)
−2, and 𝑏

2𝑘
= ((2𝑘 + 2)𝜋)

−2,
𝑘 ∈ 𝑁, which satisfy (49) and by the distribution identity
∫
1

0
�̂�
2

2
(𝑡)𝑑𝑡 = ∑

𝑘≥1
𝜆
2𝑘−1

𝜂
2

𝑘
+ ∑
𝑘≥1

𝜆
2𝑘
𝜂
∗2

2𝑘
and (50), there

exists a constant 𝑐
1
, such that

𝑃(∫

1

0

�̂�
2
(𝑡)
2
𝑑𝑡 ≤ 𝜀)

= 𝑃(∑

𝑘≥1

𝜆
2𝑘−1

𝜂
2

𝑘
+ ∑

𝑘≥1

𝜆
2𝑘
𝜂
∗2

𝑘
≤ 𝜀)

= (1 + 𝑜 (1))∏

𝑘≥1

(
𝑏
𝑘

𝑎
𝑘

)

1/2

𝑃(∑

𝑘≥1

𝑏
𝑘
𝜉
2

𝑘
≤ 𝜀)

= (1 + 𝑜 (1)) 𝑐
1

× 𝑃(∑

𝑘≥1

𝜉
2

2𝑘−1

((2𝑘 + 1) 𝜋)
2
+ ∑

𝑘≥1

𝜉
2

2𝑘

((2𝑘 + 2) 𝜋)
2
≤ 𝜀)

= (1 + 𝑜 (1)) 𝑐
1
𝑃(∑

𝑘≥1

(𝑘 + 2)
−2
𝜉
2

𝑘
≤ 𝜀𝜋
2
) , as 𝜀 → 0.

(52)

Also, for all 𝑑 > −1, there exists a constant 𝑐
2
> 0, such

that, as 𝜀 → 0,

𝑃(∑

𝑘≥1

(𝑘 + 𝑑)
−2
𝜉
2

𝑘
≤ 𝜀𝜋
2
) = (1 + 𝑜 (1)) 𝑐

2
𝜀
−𝑑 exp (− 1

8𝜀
) .

(53)

Connecting (52) with (53), we can obtain the proposi-
tion.
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