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Under new assumptions, which do not contain any information about the solution set, the upper and lower semicontinuity of the
solution mapping to a class of parametric generalized weak Ky Fan inequality are established by using a nonlinear scalarization
technique. These results extend and improve the recent ones in the literature. Some examples are given to illustrate our results.

1. Introduction

It is well known that the Ky Fan inequality is a very general
mathematical model, which embraces the formats of sev-
eral disciples, as equilibrium problems of economics, game
theory, (vector) optimization problems, (vector) variational
inequality problems, and so on (see [1, 2]). In the literature,
existence results for various types of Ky Fan inequalities have
been investigated intensively; for example, see [3–5] and the
references therein.The stability analysis of solutionmappings
for parametric Ky Fan inequalities is another important
topic in the vector optimization theories and applications.
Recently, there have been many results on the continuity,
especially the lower semicontinuity, of the solution mappings
for parametric (generalized) Ky Fan inequalities in the lit-
erature; for example, see [6–22], where the (generalized) Ky
Fan inequalities are called vector equilibrium problems or
generalized systems.

Among many methods for dealing with the lower semi-
continuity and continuity of the solution mappings for
(generalized) Ky Fan inequalities, the linear scalarization
technique is a kind of efficient approach. Recently, Cheng
and Zhu [8] investigated the upper semicontinuity and lower
semicontinuity of the solution mappings to parametric weak
vector variational inequalities in finite-dimension Euclidean
spaces by the linear scalarization method. By following the
ideas in [8] and based on a theorem of Berge [23] saying
that the union of a family of lower semicontinuous set-valued

mappings is lower semicontinuous, Gong [9], Chen et al. [13],
and Li et al. [15] have extended the lower semicontinuity
results of Cheng and Zhu [8] to parametric generalized weak
Ky Fan inequalities under a suitable strict cone-monotonicity
assumption. Li and Fang [16], Peng et al. [18], Chen and
Huang [19], andWang and Li [17] have used the linear scalar-
ization approach to improve the lower semicontinuity results
in [9, 13, 15] by weakening the strict cone-monotonicity
assumption. However, the key assumption in [16, 18, 19]
involves the information on the solution set.

It is worth noting that the linear scalarization approach
to the semicontinuity of solution mappings in [8, 9, 13, 15–
19] requires (generalized) cone-convexity of the objective
mappings or strict cone-monotonicity. To avoid using these
assumptions, nonlinear scalarization approaches have been
applied for discussing the stability analysis in parametric
generalized Ky Fan inequalities. Namely, Sach [20] has used
some nonlinear scalarization functions (generalized versions
of Gerstewizt’s function) to discuss the lower semicontinuity
of the solution mappings of parametric generalized weak Ky
Fan inequalities. Sach and Tuan [21] also applied the func-
tions to discuss some more generalized cases and obtained
the upper and lower semicontinuity of the solutionmappings
to the problems.

However, the results in [20, 21] require that the objec-
tive mappings of the discussed problems have compact or
cone-closed values, since the definition and propositions of
the nonlinear functions defined in [20, 21] require these
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assumptions. It may restrict its application scope. Further-
more, the assumptions in [20, 21] involve information about
the solution set. Obviously, it is not reasonable from the
practical point of view. In this paper, we are interested in
the study of the semicontinuity of the solution mapping to
a class of parametric generalized weak Ky Fan inequality with
moving cones. To avoid using the assumptions involving the
information about the solution set, we establish some new
assumptions and obtain the upper and lower semicontinuity
of the solution mapping to the parametric generalized weak
Ky Fan inequality by using a nonlinear scalarization function
defined in [24], which is different from the nonlinear scalar-
ization functions defined in [20, 21].

The rest of the paper is organized as follows. In Section 2,
we recall some basic concepts and preliminary results. In
Section 3, under some new assumptions, which do not
involve any information about the solution set, we give some
sufficient conditions for the upper and lower semicontinuity
of the solution mapping to the parametric generalized weak
Ky Fan inequality. Meanwhile, some examples are provided
to illustrate our main results.

2. Preliminaries

Throughout this paper, let 𝑇 and𝑋 be Hausdorff topological
spaces, and let 𝐴

𝑖
: 𝑇 × 𝐾  𝐾, 𝑖 = 0, 1, be set-valued

mappings with nonempty values. Let 𝑌 be a locally convex
topological vector space, let𝐶 : 𝑇×𝑋×𝑋  𝑌 be a set-valued
mapping such that each value of 𝐶 is a proper, closed, and
convex cone with nonempty interior, and let 𝐹 : 𝑇×𝑋×𝑋 

𝑌 be a set-valued mapping with nonempty values. For each
𝑡 ∈ 𝑇, we consider the following parametric generalized weak
Ky Fan inequality with moving cones:

problem (PGWKFI): find a point 𝑥 ∈ 𝑋 such that 𝑥 ∈

𝐴
0
(𝑡, 𝑥) and, for all 𝜂 ∈ 𝐴

1
(𝑡, 𝑥),

𝐹 (𝑡, 𝑥, 𝜂) ⊂ 𝑌 \ − int𝐶 (𝑡, 𝑥, 𝜂) . (1)

For each 𝑡 ∈ 𝑇, we denote by 𝑆(𝑡) the solution set of problem
(PGWKFI). Throughout this paper, we assume that 𝑆(𝑡) ̸= 0

for all 𝑡 ∈ 𝑇. In this paper, we will discuss the upper and lower
semicontinuity of the solution mapping 𝑆(⋅) as a set-valued
mapping from the set 𝑇 to𝑋.

Suppose that 𝐺 : 𝑇  𝑋 is a set-valued mapping, and
𝑡 ∈ 𝑇 is given.

Definition 1 (see [25]). (i) 𝐺 is called lower semicontinuous
(l.s.c) at 𝑡 if and only if, for any open set𝑉 ⊆ 𝑋with𝑉∩𝐺(𝜆) ̸=

0, there exists a neighborhood𝑁(𝑡) of 𝑡 such that𝐺(𝑡)∩𝑉 ̸= 0,
for all 𝑡 ∈ 𝑁(𝑡).

(ii) 𝐺 is called upper semicontinuous (u.s.c) at 𝑡 if and
only if, for any open set 𝑉 ⊆ 𝑋 with 𝐺(𝑡) ⊆ 𝑉, there exists a
neighborhood𝑁(𝑡) of 𝑡 such that 𝐺(𝑡) ⊆ 𝑉, for all 𝑡 ∈ 𝑁(𝑡).

We say𝐺(⋅) is l.s.c (resp., u.s.c) on 𝑇 if and only if it is l.s.c
(resp., u.s.c) at each 𝑡 ∈ 𝑇. 𝐺(⋅) is said to be continuous on 𝑇

if and only if it is both l.s.c and u.s.c on 𝑇.

Proposition 2 (see [25, 26]). (i) 𝐺 is l.s.c at 𝑡 if and only if, for
any net {𝑡

𝛼
} ⊆ 𝑇 with 𝑡

𝛼
→ 𝑡 and any 𝑥 ∈ 𝐺(𝑡), there exists a

net {𝑥
𝛼
} ⊆ 𝐺(𝑡

𝛼
) such that 𝑥

𝛼
→ 𝑥.

(ii) If 𝐺 has compact values (i.e., 𝐺(𝑡) is a compact set for
each 𝑡 ∈ 𝑇), then𝐺 is u.s.c at 𝑡 if and only if, for any net {𝑡

𝛼
} ⊆ 𝑇

with 𝑡
𝛼
→ 𝑡 and any 𝑥

𝛼
∈ 𝐺(𝑡

𝛼
), there exist 𝑥 ∈ 𝐺(𝑡) and a

subnet {𝑥
𝛽
} of {𝑥

𝛼
}, such that 𝑥

𝛽
→ 𝑥.

Definition 3 (see [24]). Let 𝑒 : 𝑇 × 𝑋 × 𝑋 → 𝑌 be a vector-
valued mapping and, for any (𝑡, 𝑥, 𝜂) ∈ 𝑇 ×𝑋×𝑋, 𝑒(𝑡, 𝑥, 𝜂) ∈
int𝐶(𝑡, 𝑥, 𝜂). The nonlinear scalarization function 𝜉 : 𝑇×𝑋×

𝑋 × 𝑌 → R is defined by

𝜉 (𝑡, 𝑥, 𝜂; 𝑧) = min {𝜆 ∈ R : 𝑧 ∈ 𝜆𝑒 (𝑡, 𝑥, 𝜂) − 𝐶 (𝑡, 𝑥, 𝜂)} .

(2)

Proposition 4 (see [24]). The function 𝜉 defined in
Definition 3 satisfies the following propositions:

(i) 𝜉(𝑡, 𝑥, 𝜂; 𝑧) < 𝑟 ⇔ 𝑧 ∈ re (𝑡, 𝑥, 𝜂) − int𝐶(𝑡, 𝑥, 𝜂);
(ii) 𝜉(𝑡, 𝑥, 𝜂; 𝑧) ≥ 𝑟 ⇔ 𝑧 ∉ re (𝑡, 𝑥, 𝜂) − int𝐶(𝑡, 𝑥, 𝜂).

3. Semicontinuity of Solution Mapping

In this section,we discuss the upper and lower semicontinuity
of the solutionmapping 𝑆(⋅) as a set-valuedmapping from the
set 𝑇 to𝑋.

Lemma 5. Let �̂� : 𝑇  𝑋 be a set-valued mapping with
nonempty values and let 𝑓 : 𝑇 × 𝑋 → R be a function. Let
𝑆 : 𝑇  𝑋 be defined by

𝑆 (𝑡) := {𝑥 ∈ �̂� (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} (3)

and let 𝑡
0
∈ dom 𝑆. Assume that

(i) �̂� is u.s.c and compact valued at 𝑡
0
;

(ii) for any 𝑥
0
∈ �̂�(𝑡

0
) any nets {𝑡

𝛼
} with 𝑡

𝛼
→ 𝑡
0
and

{𝑥
𝛼
} with 𝑥

𝛼
→ 𝑥

0
, if 𝑓(𝑡

0
, 𝑥
0
) < 0 ⇒ ∃𝛼

0
, s.t.

𝑓(𝑡
𝛼0
, 𝑥
𝛼0
) < 0.

Then 𝑆(⋅) is u.s.c at 𝑡
0
.

Proof. Suppose that 𝑆(⋅) is not u.s.c at 𝑡
0
. Then there exist an

open set 𝑉 ⊆ 𝑋 satisfying 𝑆(𝑡
0
) ⊆ 𝑉, nets {𝑡

𝛼
} with 𝑡

𝛼
→ 𝑡
0

and 𝑥
𝛼
∈ 𝑆(𝑡
𝛼
), such that 𝑥

𝛼
∉ 𝑉, ∀𝛼.

Since 𝑥
𝛼
∈ �̂�(𝑡

𝛼
) and �̂�(⋅) is u.s.c with compact values

at 𝑡
0
, by Proposition 2(ii), there exist 𝑥

0
∈ �̂�(𝑡

0
) and a

subnet {𝑥
𝛽
} of {𝑥

𝛼
} such that 𝑥

𝛽
→ 𝑥

0
. Since 𝑥

𝛼
∉ 𝑉,

𝑥
𝛽

∉ 𝑉 and 𝑥
0

∉ 𝑉. In particular, 𝑥
0

∉ 𝑆(𝑡
0
); that is,

𝑓(𝑡
0
, 𝑥
0
) < 0. By assumption (ii), there exists an index𝛽

0
such

that 𝑓(𝑡
𝛽0
, 𝑥
𝛽0
) < 0. This contradicts the above condition that

𝑥
𝛼
∈ 𝑆(𝑡
𝛼
) for all 𝛼.

The example is given to illustrate that assumption (ii) of
Lemma 5 is essential.
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Example 6. Let 𝑇 = [0, 1] and 𝑋 = R. For each 𝑡 ∈ 𝑇, let
�̂�(𝑡) = [−1, 2]. Let 𝑡

0
= 0. For each (𝑡, 𝑥) ∈ 𝑇 × 𝑋, we define

𝑓 (𝑡, 𝑥) = {
−𝑥 (𝑥 − 1) , if 𝑡 = 𝑡

0
,

− (𝑡 + 𝑥) ⋅ (𝑥 − 2) , if 𝑡 ∈ 𝑇 \ 𝑡
0
.

(4)

It is easy to check that assumption (i) is satisfied. One has
𝑆(𝑡
0
) = [0, 1], 𝑆(𝑡) = [−𝑡, 2], 𝑡 ∈ (0, 1]. Hence 𝑆(⋅) is not

u.s.c at 𝑡
0
. It is equally clear that assumption (ii) is violated.

Indeed, there exist 𝑥
0
= 3/2 and nets {𝑡

𝛼
} ⊂ (0, 1/2) with

𝑡
𝛼
→ 𝑡
0
and {𝑥

𝛼
} ⊂ (1, 2) with 𝑥

𝛼
→ 𝑥
0
; one has 𝑓(𝑡

0
, 𝑥
0
) =

−𝑥
0
(𝑥
0
− 1) = −(3/4) < 0. However, for all 𝛼, one has

𝑓(𝑡
𝛼
, 𝑥
𝛼
) = −(𝑡

𝛼
+ 𝑥
𝛼
)(𝑥
𝛼
− 2) > 0. Hence, assumption (ii) of

Lemma 5 is essential.

Remark 7. Obviously, for each 𝑥
0
∈ �̂�(𝑡
0
), assumption (ii) can

be ensured by the upper semicontinuity of the real function
𝑓(⋅, ⋅) at (𝑡

0
, 𝑥
0
). Therefore, we can get Corollary 8. It is worth

noting that Corollary 8 is just Lemma 4.1 of [21]. Therefor,
Lemma 5 improves Lemma 4.1 of [21].

Corollary 8. Let �̂� : 𝑇  𝑋 be a mapping with nonempty
values and let 𝑓 : 𝑇 × 𝑋 → R be a function. Let 𝑆 : 𝑇  𝑋

be defined by

𝑆 (𝑡) := {𝑥 ∈ �̂� (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} (5)

and let 𝑡
0
∈ dom 𝑆. Assume that

(i) �̂� is u.s.c and compact valued at 𝑡
0
;

(ii) for each 𝑥
0
∈ �̂�(𝑡
0
)𝑓 is u.s.c at (𝑡

0
, 𝑥
0
).

Then 𝑆(⋅) is u.s.c at 𝑡
0
.

Lemma9. Let �̂� : 𝑇  𝑋 be amappingwith nonempty values
and let𝑓 : 𝑇×𝑋 → R be a function. Let 𝑆 : 𝑇  𝑋 be defined
by

𝑆 (𝑡) := {𝑥 ∈ �̂� (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} (6)

and let 𝑡
0
∈ dom 𝑆. Assume that

(i) �̂� is l.s.c at 𝑡
0
;

(ii) for any 𝑥
0
∈ �̂�(𝑡

0
) any nets {𝑡

𝛼
} with 𝑡

𝛼
→ 𝑡
0
and

{𝑥
𝛼
} with 𝑥

𝛼
→ 𝑥

0
, if 𝑓(𝑡

0
, 𝑥
0
) ≥ 0 ⇒ ∃𝛼

0
, s.t.

𝑓(𝑡
𝛼0
, 𝑥
𝛼0
) ≥ 0.

Then 𝑆(⋅) is l.s.c at 𝑡
0
.

Proof. Suppose that 𝑆(⋅) is not l.s.c at 𝑡
0
. Then, by

Proposition 2(i), there exist a net {𝑡
𝛼
} with 𝑡

𝛼
→ 𝑡

0

and 𝑥
0

∈ 𝑆(𝑡
0
) such that, for any 𝑥

𝛼
∈ 𝑆(𝑡

𝛼
), we have

𝑥
𝛼
 𝑥
0
.

From 𝑥
0
∈ 𝑆(𝑡
0
), we have 𝑥

0
∈ �̂�(𝑡
0
). As �̂�(⋅) is l.s.c at 𝑡

0
,

there exists 𝑥
𝛼
∈ �̂�(𝑡

𝛼
) such that 𝑥

𝛼
→ 𝑥
0
. By the above

contradiction assumption, there must exist subnet {𝑥
𝛽
} ⊂

{𝑥
𝛼
} such that ∀𝛽 with 𝑥

𝛽
∉ 𝑆(𝑡
𝛽
); that is,

𝑓 (𝑡
𝛽
, 𝑥
𝛽
) < 0. (7)

Since 𝑥
0
∈ 𝑆(𝑡
0
), we have 𝑓(𝑡

0
, 𝑥
0
) ≥ 0. By assumption (ii),

there exists an index 𝛽
0
such that 𝑓(𝑡

𝛽0
, 𝑥
𝛽0
) ≥ 0, which

contradicts (7). Thus 𝑆(⋅) is l.s.c at 𝑡
0
.

The following example is given to illustrate that assump-
tion (ii) of Lemma 9 is essential.

Example 10. Let 𝑇 = [0, 1], 𝑋 = R. For each 𝑡 ∈ 𝑇, let �̂�(𝑡) =
[−1, 1]. Let 𝑡

0
= 0. For each (𝑡, 𝑥) ∈ 𝑇 × 𝑋, we define

𝑓 (𝑡, 𝑥) =
{

{

{

𝑥(𝑥 +
1

2
) , if 𝑡 = 𝑡

0
,

𝑡𝑥, if 𝑡 ∈ 𝑇 \ 𝑡
0
.

(8)

It is easy to check that assumption (i) is satisfied. It follows
from a direct computation that 𝑆(𝑡

0
) = [−1, −(1/2)] ∪ [0, 1]

and 𝑆(𝑡) = [0, 1], 𝑡 ∈ (0, 1]. Hence 𝑆(⋅) is not l.s.c at 𝑡
0
. It

is equally clear that assumption (ii) is violated. Indeed, there
exist 𝑥

0
= −(1/2) and nets {𝑡

𝛼
} ⊂ (0, 1/2) with 𝑡

𝛼
→ 𝑡
0
and

{𝑥
𝛼
} ⊂ (−1, 0) with 𝑥

𝛼
→ 𝑥
0
; one has 𝑓(𝑡

0
, 𝑥
0
) = 𝑥

0
(𝑥
0
+

(1/2)) = 0. However, for all 𝛼, one has 𝑓(𝑡
𝛼
, 𝑥
𝛼
) = 𝑡
𝛼
𝑥
𝛼
< 0.

Thus, assumption (ii) of Lemma 5 is essential.

Remark 11. (i) In [21], Sach and Tuan used a key assumption
�̂�
1
or �̂�
2
, which includes the information on the solution set,

to obtain the continuity of set-valuedmapping 𝑆(⋅). Themain
advantage of assumption (ii) in Lemma 9 is that it does not
require any information on solution set 𝑆(𝑡) for each 𝑡 ∈ 𝑇.

(ii) Obviously, for each 𝑥
0
∈ �̂�(𝑡

0
), assumption (ii) can

be ensured by the lower semicontinuity of the real function
𝑓(⋅, ⋅) at (𝑡

0
, 𝑥
0
).

Now we give an example for illustrating Lemma 9.

Example 12. Let 𝑇 = [0, 1] and 𝑋 = R. For each 𝑡 ∈ 𝑇, let
�̂�(𝑡) = [−1, 2]. Let 𝑡

0
= 1. For each (𝑡, 𝑥) ∈ 𝑇 × 𝑋, we define

𝑓 (𝑡, 𝑥) =

{{

{{

{

2, if 𝑡 = 𝑡
0
, 𝑥 = 1,

𝑥 − 1, if 𝑡 = 𝑡
0
, 𝑥 ̸= 1,

− (𝑥 − 𝑡) (𝑥 − 2) , if 𝑡 ∈ 𝑇 \ 𝑡
0
.

(9)

It is easy to check that assumptions (i) and (ii) are satisfied.
From a direct computation, we have 𝑆(𝑡

0
) = [1, 2] and 𝑆(𝑡) =

[𝑡, 2], 𝑡 ∈ (0, 1]. Hence 𝑆(⋅) is l.s.c at 𝑡
0
. However, the real

function 𝑓(⋅, ⋅) is not lower semicontinuity at (𝑡
0
, 𝑥
0
), where

𝑥
0
= 1 ∈ �̂�(𝑡

0
).

By Remark 11(ii), we can get the following corollary.

Corollary 13. Let �̂� : 𝑇  𝑋 be a mapping with nonempty
values and let 𝑓 : 𝑇 × 𝑋 → R be a function. Let 𝑆 : 𝑇  𝑋

be defined by

𝑆 (𝑡) := {𝑥 ∈ �̂� (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} (10)

and let 𝑡
0
∈ dom 𝑆. Assume that

(i) �̂� is l.s.c at 𝑡
0
;

(ii) for each 𝑥
0
∈ �̂�(𝑡
0
)𝑓 is l.s.c at (𝑡

0
, 𝑥
0
).
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Then 𝑆(⋅) is l.s.c at 𝑡
0
.

For each (𝑡, 𝑥) ∈ 𝑇 × 𝑋, we set

𝑓 (𝑡, 𝑥) = inf
𝜂∈𝐴1(𝑡,𝑥)

inf
𝑧∈𝐹(𝑡,𝑥,𝜂)

𝜉 (𝑡, 𝑥, 𝜂; 𝑧) . (11)

Denote by 𝜓(𝑡) the fixed points of 𝐴
0
(𝑡, ⋅):

𝜓 (𝑡) = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴
0 (𝑡, 𝑥)} . (12)

In the sequel, we always assume that 𝑡
0
∈ dom 𝑆.

As a direct consequence of Lemma 5 and Proposition 4,
we can get the following results on the semicontinuity of 𝑆(⋅).

Theorem 14. Suppose the following conditions are satisfied:

(i) 𝜓 is u.s.c and compact valued at 𝑡
0
;

(ii) for any 𝑥
0
∈ 𝜓(𝑡

0
) any nets {𝑡

𝛼
} with 𝑡

𝛼
→ 𝑡
0
and

{𝑥
𝛼
} with 𝑥

𝛼
→ 𝑥

0
, if 𝑓(𝑡

0
, 𝑥
0
) < 0 ⇒ ∃𝛼

0
, s.t.

𝑓(𝑡
𝛼0
, 𝑥
𝛼0
) < 0.

Then 𝑆(⋅) is u.s.c at 𝑡
0
.

Proof. For each 𝑡 ∈ 𝑇, we prove the following equation:

𝑆 (𝑡) = {𝑥 ∈ 𝜓 (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} . (13)

First, we prove

𝑆 (𝑡) ⊆ {𝑥 ∈ 𝜓 (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} . (14)

Indeed, for each 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑆(𝑡), 𝑥 ∈ 𝐴
0
(𝑡, 𝑥) and for all

𝜂 ∈ 𝐴
1
(𝑡, 𝑥), we have

𝐹 (𝑡, 𝑥, 𝜂) ⊂ 𝑌 \ − int𝐶 (𝑡, 𝑥, 𝜂) . (15)

It implies that inf
𝑧∈𝐹(𝑡,𝑥,𝜂)

𝜉(𝑡, 𝑥, 𝜂; 𝑧) ≥ 0 for all 𝜂 ∈ 𝐴
1
(𝑡, 𝑥)

by Proposition 4(ii); that is, 𝑓(𝑡, 𝑥) ≥ 0. Since 𝜓(𝑡) = {𝑥 ∈ 𝑋 :

𝑥 ∈ 𝐴
0
(𝑡, 𝑥)}, 𝑥 ∈ 𝜓(𝑡). By the arbitrariness of 𝑥 ∈ 𝑆(𝑡), we

have 𝑆(𝑡) ⊆ {𝑥 ∈ 𝜓(𝑡) : 𝑓(𝑡, 𝑥) ≥ 0}.
Let 𝐴 = {𝑥 ∈ 𝜓(𝑡) : 𝑓(𝑡, 𝑥) ≥ 0}. For each 𝑡 ∈ 𝑇, we need

to prove 𝐴 ⊆ 𝑆(𝑡). Indeed, for each 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝐴, we have
𝑥 ∈ 𝜓(𝑡) = {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐴

0
(𝑡, 𝑥)} and

inf
𝜂∈𝐴1(𝑡,𝑥)

inf
𝑧∈𝐹(𝑡,𝑥,𝜂)

𝜉 (𝑡, 𝑥, 𝜂; 𝑧) ≥ 0. (16)

Thus 𝑥 ∈ 𝐴
0
(𝑡, 𝑥) and for all 𝜂 ∈ 𝐴

1
(𝑡, 𝑥), for any 𝑧 ∈

𝐹(𝑡, 𝑥, 𝜂) such that 𝑧 ∉ − int𝐶(𝑡, 𝑥, 𝜂) by Proposition 4(ii),
that is, 𝐹(𝑡, 𝑥, 𝜂) ⊂ 𝑌 \ − int𝐶(𝑡, 𝑥, 𝜂), ∀𝜂 ∈ 𝐴

1
(𝑡, 𝑥). Thus,

𝑥 ∈ 𝑆(𝑡) and (13) holds. By virtue of Lemma 5 and (13), we get
that 𝑆(⋅) is u.s.c at 𝑡

0
.

The following is given to illustrate thatTheorem 14 holds,
but Theorem 3.1 of [19] is not applicable.

Example 15. Let 𝑇 = [0, 1], 𝑋 = R, and 𝑌 = R2. For each
(𝑡, 𝑥, 𝜂) ∈ 𝑇×𝑋×𝑋, let𝐶(𝑡, 𝑥, 𝜂) = R2

+
. For each (𝑡, 𝑥) ∈ 𝑇×𝑋,

𝐴
1
(𝑡, 𝑥) = [0, 1]. For each 𝑡 ∈ 𝑇, let 𝜓(𝑡) = [−1, 1]. Let 𝑡

0
= 0.

For each (𝑡, 𝑥, 𝜂) ∈ 𝑇 × 𝑋 × 𝑋, we define

𝐹 (𝑡, 𝑥, 𝜂) = {
[−3, 1] × [0, 1] , if 𝑡 = 𝑡

0
,

[𝑥 − 𝑡, 𝑥] × [−1, 𝑦] , if 𝑡 ∈ 𝑇 \ 𝑡
0
.

(17)

It is easy to check that assumptions (i)-(ii) are satisfied. It
follows from a direct computation that 𝑆(𝑡

0
) = [−1, 1] and

𝑆(𝑡) = [𝑡, 1], for each 𝑡 ∈ 𝑇. Thus 𝑆(⋅) is u.s.c at 𝑡
0
. However,

for each (𝑥, 𝜂) ∈ 𝜓(𝑡) = [−1, 1] × [0, 1], the mapping 𝐹(⋅, 𝑥, 𝜂)
is not R2

+
-lower semicontinuity at 𝑡

0
. Indeed, (𝑥, 𝜂) ∈ 𝜓(𝑡) =

[−1, 1] × [0, 1]; there exists 𝑧
0
= (−3, 0) ∈ 𝐹(𝑡

0
, 𝑥, 𝜂) and a

neighborhood𝑈
0
= (0, 1/2)×(0, 1/2) of 0R2 such that for any

neighborhood, 𝑈(𝑡
0
) of 𝑡
0
,

𝐹 (𝑡, 𝑥, 𝜂) ∩ (𝑧
0
+ 𝑈
0
−R
2

+
) = 0, ∀𝑡 ∈ 𝑈 (𝑡

0
) ∩ 𝑇. (18)

Therefore, our result is applicable, but Theorem 3.1 of [19] is
not applicable, since assumption (iii) in Theorem 3.1 of [19]
does not hold.

Theorem 16. Suppose the following conditions are satisfied:

(i) 𝜓 is l.s.c at 𝑡
0
;

(ii) for any 𝑥
0
∈ 𝜓(𝑡

0
), any nets {𝑡

𝛼
} with 𝑡

𝛼
→ 𝑡
0
and

{𝑥
𝛼
} with 𝑥

𝛼
→ 𝑥

0
, if 𝑓(𝑡

0
, 𝑥
0
) ≥ 0 ⇒ ∃𝛼

0
, s.t.

𝑓(𝑡
𝛼0
, 𝑥
𝛼0
) ≥ 0.

Then 𝑆(⋅) is l.s.c at 𝑡
0
.

Proof. Similar to the proofs of Theorem 14, we have

𝑆 (𝑡) = {𝑥 ∈ 𝜓 (𝑡) : 𝑓 (𝑡, 𝑥) ≥ 0} . (19)

Therefore, by virtue of Lemma 9, we get that 𝑆(⋅) is l.s.c at 𝑡
0
.

Remark 17. (i) In [20, 21], the authors used some key assump-
tions (assumption (ii) ofTheorem 5.1 in [20] and assumption
(ii) of Theorem 4.2 in [21]), which include information on
the solution set, to obtain the lower semicontinuity of the
solution mapping 𝑆(⋅). In [16, 18, 19], the authors used some
assumptions, which also include information on the solution
set. The main advantage of assumption (ii) in Theorem 16 is
that it does not require any information on solution set 𝑆(𝑡)
for each 𝑡 ∈ 𝑇.

(ii) The lower semicontinuity results on the problem
(PGWKFI) in [9, 13] require the cone-strict monotonicity
of the mapping 𝐹. However, Theorem 16 does not use the
assumption.

(iii) The results of [21] must require that the mapping
𝐹 is bounded. However, Theorem 16 does not require the
assumption.

(iv) In [17], Wang and Li used a key assumption 𝐻 to
obtain the lower semicontinuity of the solution mapping 𝑆(⋅)
of the problem (PGWKFI). Assumption (ii) of Theorem 16 is
different from assumption𝐻 in Theorem 3.3 of [17].

(v) In [9, 13, 16–19], the authors used the assumption that
𝐹(⋅, ⋅, ⋅) is lower semicontinuity on 𝑡

0
× 𝑋 × 𝑋. However,

Theorem 16 does not use the assumption.

Now we give an example to show cases (ii)–(v) of
Remark 17.

Example 18. Let 𝑇 = [0, 1], 𝑋 = R, and 𝑌 = R2. For each
(𝑡, 𝑥, 𝜂) ∈ 𝑇×𝑋×𝑋, let𝐶(𝑡, 𝑥, 𝜂) = R2

+
. For each (𝑡, 𝑥) ∈ 𝑇×𝑋,
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𝐴
1
(𝑡, 𝑥) = [0, 2]. For each 𝑡 ∈ 𝑇, let 𝜓(𝑡) = [−1, 1]. Let 𝑡

0
= 0.

For each (𝑡, 𝑥, 𝜂) ∈ 𝑇 × 𝑋 × 𝑋, we define

𝐹 (𝑡, 𝑥, 𝜂) = {
{𝜂 − 𝑥} × [−1, 1] , if 𝑡 = 𝑡

0
,

[−1, 𝑥 + 1] × [1 + 𝜂, +∞) , if 𝑡 ∈ 𝑇 \ 𝑡
0
.

(20)

It is easy to check that assumptions (i)-(ii) are satisfied.
Obviously, 𝐹 is not l.s.c on 𝑡

0
×𝑋×𝑋 and is also not bounded

on (0, 1] × 𝑋 × 𝑋. It follows from a direct computation that
𝑆(𝑡
0
) = [−1, 0], 𝑆(𝑡) = [−1, 1], for each 𝑡 ∈ 𝑇 \ {𝑡

0
}. Thus 𝑆(⋅)

is l.s.c at 𝑡
0
.

However, for any 𝑥 ∈ 𝜓(𝑡
0
) = [−1, 1], 𝜂 ∈ 𝐴

1
(𝑡
0
, 𝑥) =

[0, 2] with 𝑥 ̸= 𝜂, we have

𝐹 (𝑡
0
, 𝑥, 𝜂) + 𝐹 (𝑡

0
, 𝜂, 𝑥)

= {0} × [−2, 2] ̸⊂ − int𝐶 (𝑡
0
, 𝑥, 𝜂) = − intR2

+
;

(21)

that is, 𝐹(𝑡
0
, ⋅, ⋅) is not cone-strictly monotone on 𝜓(𝑡

0
) ×

⋃
𝑥∈𝜓(𝑡0)

𝐴
1
(𝑡
0
, 𝑥). Therefore, Theorem 16 is applicable, but

Theorem 4.1 of [9] andTheorem 3.1 of [13] are not applicable.

Since there exists 𝑓
0

= (1, 1) ∈ R2
+
\ {0R2

+

} with
inf
𝑧∈𝐹(𝑡0 ,𝑥,𝜂)

= 𝜂 − 𝑥 − 1 = 0  𝜂 = 𝑥; that is, the assumption
𝐻 in Theorem 3.3 of [17] does not hold, Theorem 3.3 of [17]
is also not applicable.

4. Concluding Remarks

In this paper, we have obtained the upper and lower semi-
continuity of the solution mapping to a class of parametric
generalizedweakKyFan inequality.Thenovelty of the present
paper consists in the following aspects.

(i) In order not to use the convexity of generalized
convexity assumption, we adopt a nonlinear scalariza-
tion approach to obtain the solution mapping to problem
(PGWKFI). To avoid using the assumption that the objective
mapping 𝐹 is bounded or compact, we applied a nonlinear
scalarization function defined in [24], which is different from
ones in [20, 21].

(ii) In [16, 18–21], the authors used some key assumptions
(including the information on the solution set) to get the
upper and lower semicontinuity of the solution mapping of
problem (PGWKFI). However, we also obtained the upper
and lower semicontinuity of the solutionmapping of problem
(PGWKFI) under some new assumptions, which do not
include any information on the solution set.

(iii) The idea of the present paper is also suitable to
consider the semicontinuity of the solution mapping to the
following parametric generalized weak Ky Fan inequality:

find a point 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐴
0
(𝑡, 𝑥) and, for all

𝜂 ∈ 𝐴
1
(𝑡, 𝑥),

𝐹 (𝑡, 𝑥, 𝜂) ∩ 𝑌 \ − int𝐶 (𝑡, 𝑥, 𝜂) ̸= 0. (22)
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