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We establish common fixed points theorems for two self-mappings satisfying a nonlinear contractive condition of Ćirić type with
a Q-function. Furthermore, using the scalarization method, we deduce some results of common fixed point in tvs-cone metric
spaces with a c-distance. As application, we give a positive answer to the question of Ćirić et al. posed in 2012. Our results extend
and generalize many recent results.

1. Introduction and Preliminaries

In 1996, Kada et al. [1] for the first time introduced and stud-
ied the concept of 𝑤-distances on a metric space. They gave
examples of 𝑤-distance and improved Caristi’s fixed point
theorem, Ekeland’s variational principle, and Takahashi’s
nonconvex minimization theorem. Later, Al-Homidan et al.
[2] introduced the concept of𝑄-functions which generalized
the concept of𝑤-distances, and they established a generalized
Ekeland-type variational principle with a 𝑄-function.

Definition 1. Let 𝑋 be a metric space with metric 𝑑. Then a
function 𝑞 : 𝑋 × 𝑋 → [0,∞) is called a 𝑄-function on𝑋 if
the following are satisfied:

(q1) 𝑞(𝑥, 𝑧) ≤ 𝑞(𝑥, 𝑦) + 𝑞(𝑦, 𝑧), for any 𝑥, 𝑦, 𝑧 ∈ 𝑋;

(q2) if 𝑥 ∈ 𝑋 and {𝑦
𝑛
}
𝑛∈N is a sequence in 𝑋 such that it

converges to a point 𝑦 and 𝑞(𝑥, 𝑦
𝑛
) ≤ 𝑀 for some

𝑀 = 𝑀(𝑥) > 0, then 𝑞(𝑥, 𝑦) ≤ 𝑀;

(q3) for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑞(𝑧, 𝑥) ≤ 𝛿
and 𝑞(𝑧, 𝑦) ≤ 𝛿 imply 𝑑(𝑥, 𝑦) ≤ 𝜀.

If condition (q2) is replaced by the following stronger
condition:

(q2) for any 𝑥 ∈ 𝑋, 𝑞(𝑥, ⋅) : 𝑋 → [0,∞) is lower semi-
continuous, then 𝑞 is called a 𝑤-distance on𝑋.

For some examples of 𝑄-functions and 𝑤-distances, the
reader can see [1, 2].The following lemma has been presented
in [1, 2].

Lemma 2. Let (𝑋, 𝑑) be a metric space and let 𝑞 be a Q-
function on 𝑋. Let {𝑥

𝑛
} and {𝑦

𝑛
} be sequences in 𝑋, let {𝛼

𝑛
}

and {𝛽
𝑛
} be sequences in [0, +∞) converging to 0, and let

𝑥, 𝑦, 𝑧 ∈ 𝑋. Then the following hold.

(i) If 𝑞(𝑥
𝑛
, 𝑦) ≤ 𝛼

𝑛
and 𝑞(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

𝑦 = 𝑧. In particular, if 𝑞(𝑥, 𝑦) = 0 and 𝑞(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧.

(ii) If 𝑞(𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝛼
𝑛
and 𝑞(𝑥

𝑛
, 𝑧) ≤ 𝛽

𝑛
for any 𝑛 ∈ N, then

{𝑦
𝑛
} converges to 𝑧.

(iii) If 𝑞(𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝛼

𝑛
for any 𝑛,𝑚 ∈ N with 𝑚 > 𝑛, then

{𝑥
𝑛
} is a Cauchy sequence.

(iv) If 𝑞(𝑦, 𝑥
𝑛
) ≤ 𝛼
𝑛
for any 𝑛 ∈ N, then {𝑥

𝑛
} is a Cauchy

sequence.

Ume [3] proved some fixed point theorems in a complete
metric space using the concept of a 𝑤-distance and more
general contractive mapping than quasi-contractive map-
ping. Ilic and Rakocevic [4] established some common fixed
points results for maps on metric spaces with 𝑤-distance
and generalized the results of Ume [3]. Recently, di Bari and
Vetro [5] obtained common fixed points for maps satisfying
a nonlinear contractive condition. As application, using the
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scalarization method of Du [6], they deduce a result of
common fixed point in cone metric space. For more early
results in cone metric spaces (or in𝐾-metric spaces) one can
consider Zabrejko [7] and the references therein.

In 2007, Huang and Zhang [8] reintroduced and studied
the concept of cone metric spaces over a real Banach space
which is a generalization of metric spaces, and they proved
several fixed point theorems in cone metric spaces. Then,
many authors have studied fixed point problems in cone
metric spaces; see [9] for a survey of fixed point results in
these spaces. Recently, Du [6] used the scalarization function
and showed that many of the fixed point theorems in metric
spaces and in a generalized conemetric space (i.e., a so-called
tvs-cone metric space) are equivalent. For more scalarization
methods on fixed point problems, see also [10–12].

In the following we suppose that 𝐸 is a real Hausdorff
topological vector space (tvs for short) with the zero vector 𝜃.
A nonempty subset𝐾 of𝐸 is called a convex cone if𝐾+𝐾 ⊆ 𝐾
and 𝜆𝐾 ⊆ 𝐾 for 𝜆 ≥ 0. A convex cone𝐾 is said to be pointed
if 𝐾 ∩ (−𝐾) = {𝜃}. For a given cone 𝐾 ⊆ 𝐸, we can define a
partial ordering ⪯

𝐾
with respect to𝐾 by 𝑥⪯

𝐾
𝑦 if and only if

𝑦−𝑥 ∈ 𝐾. 𝑥≺
𝐾
𝑦will stand for 𝑥⪯

𝐾
𝑦 and 𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦

stand for 𝑦−𝑥 ∈ int𝐾, where int𝐾 denotes the interior of𝐾.
Throughout this paper, unless otherwise specified, we

always assume that 𝐸 is a tvs, 𝐾 a proper, closed, and convex
pointed cone in 𝐸 with int𝐾 ̸= 0, and 𝑒 ∈ int𝐾. Following
[6, 8], we give the following notion.

Definition 3. Let 𝑋 be a nonempty set. A function 𝑝 : 𝑋 ×

𝑋 → 𝐸 is called a tvs-cone metric space if the following
conditions hold:

(p1) 𝜃 ⪯
𝐾
𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑝(𝑥, 𝑦) = 𝜃 if and

only if 𝑥 = 𝑦;

(p2) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;

(p3) 𝑝(𝑥, 𝑧) ⪯
𝐾
𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Let 𝑥 ∈ 𝑋 and {𝑥
𝑛
} be a sequence in 𝑋. Then, it is said

that

(i) {𝑥
𝑛
} converges to 𝑥 if for every 𝑐 ∈ 𝐸with 𝜃 ≪ 𝑐 there

exists a natural number 𝑛
0
such that 𝑝(𝑥

𝑛
, 𝑥) ≪ 𝑐 for

all 𝑛 > 𝑛
0
; we denote it by 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞;

(ii) {𝑥
𝑛
} is a Cauchy sequence if for every 𝑐 ∈ 𝐸with 𝜃 ≪ 𝑐

there exists a 𝑛
0
such that 𝑝(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝑐 for all𝑚, 𝑛 >

𝑛
0
;

(iii) (𝑋, 𝑝) is complete if every Cauchy sequence is conver-
gent in𝑋.

Recently, some generalized distance on cone metric
spaces is introduced. Cho et al. [13] introduced the concept
of a 𝑐-distance in cone metric spaces and proved some fixed
point theorems in ordered cone metric spaces. Ćirić et al.
[14] introduce the concept of a 𝑤-cone distance on tvs-cone
metric spaces and proved various fixed point theorems for
𝑤-cone distance contraction mappings in tvs-cone metric
spaces. Let us recall these concepts.

Definition 4. Let (𝑋, 𝑝) be a tvs-cone metric space. Then a
function ℎ : 𝑋 × 𝑋 → 𝐸 is called a 𝑐-distance on 𝑋 if the
following conditions hold:

(c1) 𝜃 ⪯
𝐾
ℎ(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋;

(c2) ℎ(𝑥, 𝑧) ⪯
𝐾
ℎ(𝑥, 𝑦) + ℎ(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;

(c3) for each𝑥 ∈ 𝑋 and 𝑛 ≥ 1, if ℎ(𝑥, 𝑦
𝑛
) ⪯
𝐾
𝑢 for some 𝑢 =

𝑢
𝑥
∈ 𝐾, then ℎ(𝑥, 𝑦) ⪯

𝐾
𝑢whenever {𝑦

𝑛
} is a sequence

in𝑋 converging to a point 𝑦 ∈ 𝑋;
(c4) for all 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐, there exists 𝜂 ∈ 𝐸 with

𝜃 ≪ 𝜂 such that ℎ(𝑧, 𝑥) ≪ 𝜂 and ℎ(𝑧, 𝑦) ≪ 𝜂 imply
𝑝(𝑥, 𝑦) ≪ 𝑐.

If condition (c3) is replaced by the following stronger
condition:

(c3) for any 𝑥 ∈ 𝑋, ℎ(𝑥, ⋅) : 𝑋 → 𝐾 is lower semicon-
tinuous, then ℎ is called a 𝑤-cone distance on𝑋.

Remark 5 (see [13]). (1) ℎ(𝑥, 𝑦) = ℎ(𝑦, 𝑥) does not necessarily
hold for all 𝑥, 𝑦 ∈ 𝑋.

(2) ℎ(𝑥, 𝑦) = 𝜃 is not necessarily equivalent to 𝑥 = 𝑦.

Ćirić et al. [14] posed a question as follows.

Question 1. Let (𝑋, 𝑝) be a complete tvs-cone metric space
with 𝑤-cone distance ℎ on 𝑋. Suppose 𝑇 : 𝑋 → 𝑋 such
that, for some constant 𝑘 ∈ (0, 1) and for every 𝑥, 𝑦 ∈ 𝑋, there
exists 𝑢 ∈ {ℎ(𝑥, 𝑦), ℎ(𝑥, 𝑇𝑥), ℎ(𝑦, 𝑇𝑦), ℎ(𝑥, 𝑇𝑦), ℎ(𝑦, 𝑇𝑥)},
such that ℎ(𝑇𝑥, 𝑇𝑦) ⪯

𝐾
𝑘𝑢. Does there exist a unique fixed

point 𝑢 ∈ 𝑋 of 𝑇, and ℎ(𝑢, 𝑢) = 𝜃?

In this paper, we establish common fixed points theorems
for two self-mappings satisfying a nonlinear contractive
condition of Ćirić type with a 𝑄-function, which generalize
the result of di Bari and Vetro [5]. Furthermore, using the
scalarization method, we deduce some results of common
fixed points in tvs-cone metric spaces with a 𝑐-distance.
As application, we give a positive answer to Question 1 and
extend some recent results presented in [15, 16]. In particular,
we will see that the assumption that 𝑇 satisfies, for all 𝑥, 𝑦 ∈
𝑋,

ℎ (𝑇𝑦, 𝑇𝑥) ⪯
𝐾
𝐴ℎ (𝑦, 𝑥) + 𝐵ℎ (𝑇𝑥, 𝑥) + 𝐶ℎ (𝑇𝑦, 𝑥)

+ 𝐷ℎ (𝑇𝑦, 𝑦) + 𝐸ℎ (𝑇𝑥, 𝑦)

(1)

can be completely removed in [15].

2. The Scalarization Method

First, we recall the concept of the nonlinear scalarization
function, which is one of the most useful tools to solve
problems in vector optimization, control theory, and so forth;
see, for example, [17–20].

The function 𝜉
𝑒
: 𝐸 → R is defined as follows:

𝜉
𝑒
(𝑦) = inf {𝑟 ∈ R : 𝑦 ∈ 𝑟𝑒 − 𝐾} , ∀𝑦 ∈ 𝐸. (2)

Lemma 6 (see [17]). For each 𝑟 ∈ R and 𝑦 ∈ 𝐸, the following
statements are satisfied:
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(i) 𝜉
𝑒
(𝑦) ≤ 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒 − 𝐾 ⇔ 𝑦⪯

𝐾
𝑟𝑒;

(ii) 𝜉
𝑒
(𝑦) < 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒 − int𝐾 ⇔ 𝑦 ≪ 𝑟𝑒;

(iii) 𝜉
𝑒
(𝑦) ≥ 𝑟 ⇔ 𝑦 ∉ 𝑟𝑒 − int𝐾;

(iv) 𝜉
𝑒
(𝑦) > 𝑟 ⇔ 𝑦 ∉ 𝑟𝑒 − 𝐾;

(v) 𝜉
𝑒
(𝑦) = 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒−(𝐾\int𝐾), in particular, 𝜉

𝑒
(𝛼𝑒) =

𝛼, for all 𝛼 ∈ R;

(vi) 𝜉
𝑒
is positively homogeneous and continuous on 𝐸;

(vii) if 𝑦
1
∈ 𝑦
2
+ 𝐾, that is, 𝑦

2
⪯
𝐾
𝑦
1
, then 𝜉

𝑒
(𝑦
2
) ≤ 𝜉
𝑒
(𝑦
1
);

(viii) if𝑦
1
∈ 𝑦
2
+int𝐾, that is,𝑦

2
≪ 𝑦
1
, then 𝜉

𝑒
(𝑦
2
) < 𝜉
𝑒
(𝑦
1
);

(ix) 𝜉
𝑒
(𝑦
1
+ 𝑦
2
) ⪯
𝐾
𝜉
𝑒
(𝑦
1
) + 𝜉
𝑒
(𝑦
2
) for all 𝑦

1
, 𝑦
2
∈ 𝐸.

Du [6] used the above scalarization function andobtained
the following results.

Theorem 7 (see [6, Theorem 2.1]). Let (𝑋, 𝑝) be tvs-cone
metric spaces. Then 𝑑

𝑝
: 𝑋 × 𝑋 → [0,∞) defined by

𝑑
𝑝
:= 𝜉
𝑒
∘ 𝑝 is a metric.

Theorem 8 (see [6, Theorem 2.2]). Let (𝑋, 𝑝) be a tvs-cone
metric space, 𝑥 ∈ 𝑋, and {𝑥

𝑛
} a sequence in 𝑋. Let 𝑑

𝑝
be the

same as in Theorem 7. Then the following statements hold:

(i) {𝑥
𝑛
} converges to 𝑥 in (𝑋, 𝑝) if and only if {𝑥

𝑛
}

converges to 𝑥 in (𝑋, 𝑑
𝑝
);

(ii) {𝑥
𝑛
} is a Cauchy sequence in (𝑋, 𝑝) if and only if {𝑥

𝑛
}

is a Cauchy sequence in (𝑋, 𝑑
𝑝
);

(iii) (𝑋, 𝑝) is complete if and only if (𝑋, 𝑑
𝑝
) is complete.

Proof. Du has proven the necessity of (i) and (ii); see [6,
Theorem 2.2]. As the proof of (ii) is similar to that of (i)
and (iii) follows from (i) and (ii), it is enough to prove the
sufficiency of (i).

Assume now that 𝑥
𝑛

𝑑𝑝

→ 𝑥 and 𝑐 ∈ 𝐸 with 𝜃 ≪ 𝑐. Then
𝑐 ∈ int K and consequently 𝑐 − intK is a neighborhood of
𝜃. For 𝑒 ∈ 𝐸, there is 𝛿 > 0 such that 𝛿𝑒 ∈ 𝑐 − int𝐾; that
is, 𝛿𝑒 ≪ 𝑐. Since 𝑑

𝑝
(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞, there exists a

positive integer 𝑛
0
such that

𝜉
𝑒
∘ 𝑝 (𝑥

𝑛
, 𝑥) = 𝑑

𝑝
(𝑥
𝑛
, 𝑥) < 𝛿 ∀𝑛 > 𝑛

0
. (3)

By (ii) of Lemma 6, we have 𝑝(𝑥
𝑛
, 𝑥) ≪ 𝛿𝑒 for all 𝑛 > 𝑛

0
.

From this and 𝛿𝑒 ≪ 𝑐, we obtain

𝑝 (𝑥
𝑛
, 𝑥) ≪ 𝑐 ∀𝑛 > 𝑛

0
. (4)

Thus {𝑥
𝑛
} converges to 𝑥 in (𝑋, 𝑝).

Now, inspired by the scalarization method of Du [6], we
give the following result.

Theorem 9. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be
a c-distance on 𝑋. Then 𝑞

ℎ
: 𝑋 × 𝑋 → [0,∞) defined by

𝑞
ℎ
:= 𝜉
𝑒
∘ ℎ is a Q-function on (𝑋, 𝑑

𝑝
), where 𝑑

𝑝
:= 𝜉
𝑒
∘ 𝑝.

Proof. By ℎ(𝑥, 𝑦) ∈ 𝐾,𝐾∩(− int𝐾) = 0, and (iii) of Lemma 6,
we have 𝜉

𝑒
∘ ℎ(𝑥, 𝑦) ≥ 0; that is, 𝑞

ℎ
(𝑥, 𝑦) ≥ 0, for all 𝑥, 𝑦 ∈ 𝑋.

Using (vii) and (ix) of Lemma 6 and (c2), we obtain
𝜉
𝑒
∘ ℎ (𝑥, 𝑧) ≤ 𝜉

𝑒
∘ ℎ (𝑥, 𝑦) + 𝜉

𝑒
∘ ℎ (𝑦, 𝑧) ,

∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

(5)

That is, 𝑞
ℎ
satisfies (q1).

Next we prove that 𝑞
ℎ
satisfies (q2). For this, let 𝑥 ∈ 𝑋,

{𝑦
𝑛
} ⊂ 𝑋 such that 𝑦

𝑛
→ 𝑦 in (𝑋, 𝑑

𝑝
); that is, 𝑑

𝑝
(𝑦
𝑛
, 𝑦) → 0

as 𝑛 → ∞, and 𝑞
ℎ
(𝑥, 𝑦
𝑛
) ≤ 𝑀 for some𝑀 = 𝑀(𝑥) > 0.

According to (i) ofTheorem 8, it follows that 𝑦
𝑛
→ 𝑦 as 𝑛 →

∞ in (𝑋, 𝑝). By 𝑞
ℎ
(𝑥, 𝑦
𝑛
) ≤ 𝑀 and (i) of Lemma 6, we have

ℎ(𝑥, 𝑦
𝑛
) ⪯
𝐾
𝑀𝑒. It follows from (c3) that ℎ(𝑥, 𝑦) ⪯

𝐾
𝑀𝑒. Again

using (i) of Lemma 6, we obtain
𝑞
ℎ
(𝑥, 𝑦) = 𝜉

𝑒
∘ ℎ (𝑥, 𝑦) ≤ 𝑀. (6)

That is, 𝑞
ℎ
satisfies (q2).

Finally, we show that 𝑞
ℎ
satisfies (q3). Let 𝜀 > 0 be given.

Then 𝑒 ∈ int𝐾 implies 𝜃 ≪ 𝜀𝑒. As ℎ satisfies the condition
(c4), there is 𝜂 ∈ 𝐸 with 𝜃 ≪ 𝜂 such that ℎ(𝑧, 𝑥) ≪ 𝜂

and ℎ(𝑧, 𝑦) ≪ 𝜂 imply 𝑝(𝑥, 𝑦) ≪ 𝜀𝑒. Since 𝜂 − int𝐾 is a
neighborhood of 𝜃, there exists 𝛿 > 0 such that 𝛿𝑒 ∈ 𝜂− int𝐾;
that is, 𝛿𝑒 ≪ 𝜂. Using (ii) of Lemma 6, when 𝑞

ℎ
(𝑧, 𝑥) < 𝛿 and

𝑞
ℎ
(𝑧, 𝑦) < 𝛿, we have ℎ(𝑧, 𝑥) ≪ 𝛿𝑒 ≪ 𝜂 and ℎ(𝑧, 𝑦) ≪ 𝛿𝑒 ≪

𝜂, which imply 𝑝(𝑥, 𝑦) ≪ 𝜀𝑒. Again using (ii) of Lemma 6, we
obtain 𝑑

𝑝
(𝑥, 𝑦) = 𝜉

𝑒
∘ 𝑝(𝑥, 𝑦) < 𝜀. Thus we have shown that

𝑞
ℎ
satisfies (q3) and 𝑞

ℎ
is a 𝑄-function on (𝑋, 𝑑

𝑝
).

Similarly, we can deduce the following.

Theorem 10. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be
a w-cone distance on 𝑋. Then 𝑞

ℎ
: 𝑋 × 𝑋 → [0,∞) defined

by 𝑞
ℎ
:= 𝜉
𝑒
∘ ℎ is a w-distance on (𝑋, 𝑑

𝑝
), where 𝑑

𝑝
:= 𝜉
𝑒
∘ 𝑝.

3. The Results for Maps on Metric Space

Let Ψ be the family of functions 𝜓 : [0, +∞) → [0, +∞)

satisfying the following conditions:
(i) 𝜓 is nondecreasing;
(ii) 𝜓(0) = 0;
(iii) lim

𝑥→+∞
(𝑥 − 𝜓(𝑥)) = +∞;

(iv) lim
𝑡→ 𝑟
+𝜓(𝑡) < 𝑟 for all 𝑟 > 0.

It is obvious that if 𝜓 : [0, +∞) → [0, +∞) is defined by
𝜓(𝑡) = 𝜆𝑡 for some 𝜆 ∈ [0, 1), or 𝜓(𝑡) = ln(𝑡 + 1), then 𝜓 ∈ Ψ.

Remark 11 (see [5, Remark 2.1]). If 𝜓 ∈ Ψ, then we have that
𝜓(𝑟) < 𝑟 and lim

𝑛→+∞
𝜓
𝑛

(𝑟) = 0 for all 𝑟 > 0.
Let (𝑋, 𝑑) be a metric space and 𝑞 be a 𝑄-function on 𝑋.

For 𝐸 ⊂ 𝑋, we define 𝛿
𝑞
(𝐸) = sup{𝑞(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐸}.

Letting 𝑓, 𝑔 : 𝑋 → 𝑋 be self-mappings, 𝑓 and 𝑔 are
a (𝜓, 𝑞)-quasi-contraction if there exists 𝜓 : [0, +∞) →

[0, +∞) such that
𝑞 (𝑓𝑥, 𝑓𝑦) ≤ max {𝜓 (𝑞 (𝑔𝑥, 𝑔𝑦)) , 𝜓 (𝑞 (𝑔𝑥, 𝑓𝑥)) ,

𝜓 (𝑞 (𝑔𝑦, 𝑓𝑦)) , 𝜓 (𝑞 (𝑔𝑥, 𝑓𝑦)) ,

𝜓 (𝑞 (𝑔𝑦, 𝑓𝑥)) }

(7)

for all 𝑥, 𝑦 ∈ 𝑋.
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Let us recall that the self-mappings 𝑓 and 𝑔 on𝑋 are said
to be weakly compatible if they commute at their coincidence
point (i.e., 𝑓𝑔𝑥 = 𝑔𝑓𝑥 whenever 𝑓𝑥 = 𝑔𝑥). 𝑓 and 𝑔 are said
to be compatible if

lim
𝑛→+∞

𝑑 (𝑔𝑓𝑥
𝑛
, 𝑓𝑔𝑥
𝑛
) = 0, (8)

whenever {𝑥
𝑛
} is a sequence in 𝑥 such that

lim
𝑛→+∞

𝑔𝑥
𝑛
= lim
𝑛→+∞

𝑓𝑥
𝑛
= 𝑥. (9)

If 𝑓 and 𝑔 satisfy 𝑓(𝑋) ⊂ 𝑔(𝑋) and 𝑥
0
∈ 𝑋, let us define

𝑥
1
∈ 𝑋 such that 𝑓𝑥

0
= 𝑔𝑥
1
. Having defined 𝑥

𝑛
∈ 𝑋, let

𝑥
𝑛+1
∈ 𝑋 be such that 𝑓𝑥

𝑛
= 𝑔𝑥
𝑛+1

. We say that {𝑓𝑥
𝑛
} is a

𝑓-𝑔-sequence of initial point 𝑥
0
. Define

O (𝑥
0
, 𝑛) = {𝑔𝑥

0
, 𝑓𝑥
0
, 𝑓𝑥
1
, . . . , 𝑓𝑥

𝑛
} ,

O (𝑥
0
,∞) = {𝑔𝑥

0
, 𝑓𝑥
0
, 𝑓𝑥
1
, . . .} .

(10)

The following lemma is crucial in this paper.

Lemma 12. Let (𝑋, 𝑑) be a metric space and let 𝑞 be a Q-
function on 𝑋. Suppose that the self-mappings 𝑓, 𝑔 : 𝑋 → 𝑋

are a (𝜓, 𝑞)-quasi-contraction with 𝜓 ∈ Ψ. Let 𝑓(𝑋) ⊂ 𝑔(𝑋).
For 𝑥
0
∈ 𝑋, let {𝑓𝑥

𝑛
} be a 𝑓-𝑔-sequence of initial point 𝑥

0
.

Then one has the following:

(i) for each 𝑥
0
∈ 𝑋 and 𝑛 ∈ N, there exist 𝑘, 𝑙 ∈ N with

𝑘, 𝑙 ≤ 𝑛 such that

𝛿
𝑞
(O (𝑥
0
, 𝑛))

= max {𝑞 (𝑔𝑥
0
, 𝑔𝑥
0
) , 𝑞 (𝑔𝑥

0
, 𝑓𝑥
𝑘
) , 𝑞 (𝑓𝑥

𝑙
, 𝑔𝑥
0
)} ;

(11)

(ii) for each 𝑥
0
∈ 𝑋, there exists 𝑐 > 0 such that

𝛿
𝑞
(O (𝑥
0
,∞)) ≤ 𝑐; (12)

(iii) for each 𝑥
0
∈ 𝑋, {𝑓𝑥

𝑛
} is a Cauchy sequence. If {𝑓𝑥

𝑛
}

converges to some 𝑦 ∈ 𝑋, then

𝑞 (𝑓𝑥
𝑛
, 𝑦) ≤ 𝜓

𝑛

(𝑐) , (13)

for all 𝑛 ≥ 0, where 𝜓0(𝑐) = 𝑐.

Proof. (i) Let 𝑥
0
∈ 𝑋 and 𝑛 ∈ N. Since 𝑓 and 𝑔 are a (𝜓, 𝑞)-

quasi-contraction with 𝜓 ∈ Ψ, for every 0 ≤ 𝑖, 𝑗 ≤ 𝑛, we have

𝑞 (𝑓𝑥
𝑖
, 𝑓𝑥
𝑗
)

≤ max {𝜓 (𝑞 (𝑔𝑥
𝑖
, 𝑔𝑥
𝑗
)) , 𝜓 (𝑞 (𝑔𝑥

𝑖
, 𝑓𝑥
𝑖
)) ,

𝜓 (𝑞 (𝑔𝑥
𝑗
, 𝑓𝑥
𝑗
)) , 𝜓 (𝑞 (𝑔𝑥

𝑖
, 𝑓𝑥
𝑗
)) ,

𝜓 (𝑞 (𝑔𝑥
𝑗
, 𝑓𝑥
𝑖
))}

≤ 𝜓 (𝛿
𝑞
(O (𝑥
0
, 𝑛)))

< 𝛿
𝑞
(O (𝑥
0
, 𝑛)) .

(14)

This implies that

𝛿
𝑞
(O (𝑥
0
, 𝑛))

= max {𝑞 (𝑔𝑥
0
, 𝑔𝑥
0
) , 𝑞 (𝑔𝑥

0
, 𝑓𝑥
𝑘
) , 𝑞 (𝑓𝑥

𝑙
, 𝑔𝑥
0
)} ,

(15)

for some 0 ≤ 𝑘, 𝑙 ≤ 𝑛.
(ii) By property (iii) of the function 𝜓, for ℎ =

max{𝑞(𝑔𝑥
0
, 𝑔𝑥
0
), 𝑞(𝑔𝑥

0
, 𝑓𝑥
0
), 𝑞(𝑓𝑥

0
, 𝑔𝑥
0
)}, there is a 𝑐 > ℎ

such that 𝑡 − 𝜓(𝑡) > ℎ, for all 𝑡 > 𝑐. Therefore, for each 𝑛 ≥ 1,

𝛿
𝑞
(O (𝑥
0
, 𝑛))

= max {𝑞 (𝑔𝑥
0
, 𝑔𝑥
0
) , 𝑞 (𝑔𝑥

0
, 𝑓𝑥
𝑘
) , 𝑞 (𝑓𝑥

𝑙
, 𝑔𝑥
0
)}

≤ max {𝑞 (𝑔𝑥
0
, 𝑔𝑥
0
) , 𝑞 (𝑔𝑥

0
, 𝑓𝑥
0
)

+𝑞 (𝑓𝑥
0
, 𝑓𝑥
𝑘
) , 𝑞 (𝑓𝑥

𝑙
, 𝑓𝑥
0
) + 𝑞 (𝑓𝑥

0
, 𝑔𝑥
0
)}

≤ ℎ +max {𝑞 (𝑓𝑥
0
, 𝑓𝑥
𝑘
) , 𝑞 (𝑓𝑥

𝑙
, 𝑓𝑥
0
)}

≤ ℎ + 𝜓 (𝛿
𝑞
(O (𝑥
0
, 𝑛))) .

(16)

Thus,

𝛿
𝑞
(O (𝑥
0
, 𝑛)) − 𝜓 (𝛿

𝑞
(O (𝑥
0
, 𝑛))) ≤ ℎ (17)

for all 𝑛 ∈ N. It follows that

𝛿
𝑞
(O (𝑥
0
, 𝑛)) ≤ 𝑐, 𝛿

𝑞
(O (𝑥
0
,∞)) ≤ 𝑐. (18)

(iii) Define O(𝑓𝑥
𝑘
) = {𝑓𝑥

𝑘
, 𝑓𝑥
𝑘+1
, . . .} for every 𝑘 ≥ 0.

Obviously 𝛿
𝑞
(O(𝑓𝑥

𝑘
)) ≤ 𝜓(𝛿

𝑞
(O(𝑓𝑥

𝑘−1
))) for all 𝑘 ≥ 1.

Consequently, for all𝑚, 𝑛 ∈ N with𝑚 > 𝑛,

𝑞 (𝑓𝑥
𝑛
, 𝑓𝑥
𝑚
) ≤ 𝛿
𝑞
(O (𝑓𝑥

𝑛
)) ≤ 𝜓 (𝛿

𝑞
(O (𝑓𝑥

𝑛−1
)))

≤ ⋅ ⋅ ⋅ ≤ 𝜓
𝑛

(𝛿
𝑞
(O (𝑓𝑥

0
)))

≤ 𝜓
𝑛

(𝛿
𝑞
(O (𝑥
0
,∞)))

≤ 𝜓
𝑛

(𝑐) .

(19)

From Lemma 2(iii) and Remark 11, it follows that {𝑓𝑥
𝑛
} is a

Cauchy sequence. If it converges to 𝑦 ∈ 𝑋, then (19) implies
that 𝑞(𝑓𝑥

𝑛−1
, 𝑦) ≤ 𝜓

𝑛−1

(𝑐).

Theorem 13. Let (𝑋, 𝑑) be a complete metric space and let 𝑞
be a Q-function on 𝑋. Suppose that the self-mappings 𝑓, 𝑔 :

𝑋 → 𝑋 are a (𝜓, 𝑞)-quasi-contraction with 𝜓 ∈ Ψ. Let
𝑓(𝑋) ⊂ 𝑔(𝑋), and let

(D1) for every 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑔𝑦

inf {𝑞 (𝑔𝑥, 𝑦) + 𝑞 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0. (20)

If 𝑓 and 𝑔 are weakly compatible, then the mappings 𝑓 and 𝑔
have a unique common fixed point 𝑢 in𝑋 and 𝑞(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋 be fixed. As 𝑓(𝑋) ⊂ 𝑔(𝑋), we construct a

𝑓-𝑔-sequence {𝑓𝑥
𝑛
} of initial point 𝑥

0
. Using Lemma 12(iii),



Abstract and Applied Analysis 5

we see that {𝑓𝑥
𝑛
} is a Cauchy sequence. Since 𝑋 is complete,

there exists 𝑦 ∈ 𝑋 such that 𝑓𝑥
𝑛
→ 𝑦 and also 𝑔𝑥

𝑛
→ 𝑦.

Let us prove that 𝑓𝑦 = 𝑔𝑦. If 𝑓𝑦 ̸= 𝑔𝑦, then (D1), (13), and
(19) imply

0 < inf {𝑞 (𝑔𝑥, 𝑦) + 𝑞 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋}

≤ inf {𝑞 (𝑔𝑥
𝑛
, 𝑦) + 𝑞 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) : 𝑛 ∈ N}

= inf {𝑞 (𝑓𝑥
𝑛−1
, 𝑦) + 𝑞 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) : 𝑛 ∈ N}

≤ inf {𝜓𝑛−1 (𝑐) + 𝜓𝑛−1 (𝑐) : 𝑛 ∈ N}

= 0.

(21)

This is a contradiction. Hence 𝑓𝑦 = 𝑔𝑦.
Thus

𝑞 (𝑔𝑦, 𝑔𝑦) = 𝑞 (𝑓𝑦, 𝑓𝑦) ≤ 𝜓 (𝑞 (𝑔𝑦, 𝑔𝑦)) , (22)

and so 𝑞(𝑔𝑦, 𝑔𝑦) = 0. Similarly, 𝑞(𝑔2𝑦, 𝑔2𝑦) = 0.
Now, we show that 𝑢 = 𝑔𝑦 is a common fixed point for 𝑓

and 𝑔. Since 𝑓 and 𝑔 are weakly compatible, we deduce that

𝑓𝑢 = 𝑓𝑔𝑦 = 𝑔𝑓𝑦 = 𝑔
2

𝑦 = 𝑔𝑢. (23)

From this, we obtain that

𝑞 (𝑓𝑢, 𝑓𝑦) ≤ max {𝜓 (𝑞 (𝑓𝑢, 𝑓𝑦)) , 𝜓 (𝑞 (𝑓𝑦, 𝑓𝑢))}

= 𝜓max {𝑞 (𝑓𝑢, 𝑓𝑦) , 𝑞 (𝑓𝑦, 𝑓𝑢)} ,
(24)

𝑞 (𝑓𝑦, 𝑓𝑢) ≤ 𝜓 (max {𝑞 (𝑓𝑢, 𝑓𝑦) , 𝑞 (𝑓𝑦, 𝑓𝑢)}) . (25)

From (24) and (25), it follows that 𝑞(𝑓𝑢, 𝑓𝑦) = 0 and
𝑞(𝑓𝑦, 𝑓𝑢) = 0. Using 𝑞(𝑓𝑢, 𝑢) = 𝑞(𝑓𝑢, 𝑓𝑦) = 0, 𝑞(𝑓𝑢, 𝑓𝑢) =
𝑞(𝑔
2

𝑦, 𝑔
2

𝑦) = 0, and Lemma 2(i), we obtain that 𝑓𝑢 = 𝑢.
From (23), it follows that 𝑓𝑢 = 𝑔𝑢 = 𝑢.

To prove the uniqueness of the common fixed point of 𝑓
and 𝑔, let us suppose that there exists V ∈ 𝑋 and 𝑓V = 𝑔V = V.
From the definition of (𝜓, 𝑞)-quasi-contraction, it follows that

𝑞 (𝑢, 𝑢) = 𝑞 (𝑓𝑢, 𝑓𝑢) ≤ 𝜓 (𝑞 (𝑢, 𝑢)) ,

𝑞 (𝑢, V) = 𝑞 (𝑓𝑢, 𝑓V) ≤ 𝜓 (max {𝑞 (𝑢, V) , 𝑞 (V, 𝑢)}) ,

𝑞 (V, 𝑢) = 𝑞 (𝑓V, 𝑓𝑢) ≤ 𝜓 (max {𝑞 (𝑢, V) , 𝑞 (V, 𝑢)}) .

(26)

Thus 𝑞(𝑢, 𝑢) = 𝑞(𝑢, V) = 𝑞(V, 𝑢) = 0. By Lemma 2(i), we
conclude that 𝑢 = V and 𝑞(𝑢, 𝑢) = 0.

Theorem 14. Let (𝑋, 𝑑) be a metric space and let 𝑞 be a Q-
function on 𝑋. Suppose that the self-mappings 𝑓, 𝑔 : 𝑋 → 𝑋

are a (𝜓, 𝑞)-quasi-contraction with 𝜓 ∈ Ψ. Let 𝑓(𝑋) ⊂ 𝑔(𝑋),
and let

(D2) for every 𝑧 ∈ 𝑋 with 𝑓𝑧 ̸= 𝑔𝑧

inf {𝑞 (𝑓𝑥, 𝑔𝑧) + 𝑞 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0. (27)

If 𝑓(𝑋) or 𝑔(𝑋) is a complete subspace of 𝑋 and 𝑓 and 𝑔 are
weakly compatible, then the mappings 𝑓 and 𝑔 have a unique
common fixed point 𝑢 in𝑋 and 𝑞(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋 be fixed. As 𝑓(𝑋) ⊂ 𝑔(𝑋), we construct a

𝑓-𝑔-sequence {𝑓𝑥
𝑛
} of initial point 𝑥

0
. Using Lemma 12 (iii),

we see that {𝑓𝑥
𝑛
} is a Cauchy sequence. Since 𝑓(𝑋) or 𝑔(𝑋)

is a complete subspace of 𝑋, there exists 𝑦 ∈ 𝑔(𝑋) such that
𝑓𝑥
𝑛
→ 𝑦 and also 𝑔𝑥

𝑛
→ 𝑦. Let 𝑧 ∈ 𝑋 be such that 𝑔𝑧 = 𝑦.

Let us prove that 𝑓𝑧 = 𝑔𝑧. If 𝑓𝑧 ̸= 𝑔𝑧, then (D2), (13), and
(19) imply

0 < inf {𝑞 (𝑓𝑥, 𝑔𝑧) + 𝑞 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋}

≤ inf {𝑞 (𝑓𝑥
𝑛
, 𝑔𝑧) + 𝑞 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) : 𝑛 ∈ N}

= inf {𝑞 (𝑓𝑥
𝑛
, 𝑦) + 𝑞 (𝑓𝑥

𝑛−1
, 𝑓𝑥
𝑛
) : 𝑛 ∈ N}

≤ inf {𝜓𝑛 (𝑐) + 𝜓𝑛−1 (𝑐) : 𝑛 ∈ N}

= 0.

(28)

This is a contradiction. Hence 𝑓𝑧 = 𝑔𝑧.
Similar to the proof of Theorem 13, we can conclude that

𝑢 = 𝑓𝑧 is a unique common fixed point and 𝑞(𝑢, 𝑢) = 0.

Theorem 15. Let (𝑋, 𝑑) be a complete metric space and let 𝑞
be a Q-function on 𝑋. Suppose that the self-mappings 𝑓, 𝑔 :

𝑋 → 𝑋 are a (𝜓, 𝑞)-quasi-contraction with 𝜓 ∈ Ψ. Let
𝑓(𝑋) ⊂ 𝑔(𝑋) and let 𝑓 and 𝑔 be continuous mappings. If 𝑓
and𝑔 are compatible, then themappings𝑓 and𝑔 have a unique
common fixed point 𝑢 in 𝑋 and 𝑞(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋 be fixed. As 𝑓(𝑋) ⊂ 𝑔(𝑋), we construct a

𝑓-𝑔-sequence {𝑓𝑥
𝑛
} of initial point 𝑥

0
. Using Lemma 12 (iii),

we see that {𝑓𝑥
𝑛
} is a Cauchy sequence. Since 𝑋 is complete,

there exists 𝑦 ∈ 𝑋 such that 𝑓𝑥
𝑛
→ 𝑦 and also 𝑔𝑥

𝑛
→ 𝑦.

Since 𝑓 and 𝑔 are compatible, we have

lim
𝑛→∞

𝑑 (𝑔𝑓𝑥
𝑛
, 𝑓𝑔𝑥
𝑛
) = 0. (29)

Using the continuousness of 𝑓 and 𝑔, we deduce that 𝑔𝑓𝑥
𝑛
=

𝑔𝑦 and 𝑓𝑔𝑥
𝑛
= 𝑓𝑦. From (29), it follows that 𝑔𝑦 = 𝑓𝑦.

Similar to the proof of Theorem 13, we can conclude that
𝑢 = 𝑓𝑦 is a unique common fixed point and 𝑞(𝑢, 𝑢) = 0.

Remark 16. From the proof of Theorems 13 and 15, we see
that the completeness of the space 𝑋 can be replaced by the
completeness of the subspace 𝑓(𝑋) or 𝑔(𝑋).

If we take𝜓(𝑡) = 𝑘𝑡 for some 𝑘 ∈ [0, 1) inTheorems 13–15,
then we have the following results.

Corollary 17. Let 𝑋 be a complete metric space with metric 𝑑
and let 𝑞 be a Q-function on 𝑋. Let 𝑓 and 𝑔 be the mappings
of𝑋 into itself satisfying 𝑓(𝑋) ⊂ 𝑔(𝑋) and

𝑞 (𝑓𝑥, 𝑓𝑦) ≤ 𝑘max {𝑞 (𝑔𝑥, 𝑔𝑦) , 𝑞 (𝑔𝑥, 𝑓𝑥) ,

𝑞 (𝑔𝑦, 𝑓𝑦) ,

𝑞 (𝑔𝑥, 𝑓𝑦) , 𝑞 (𝑔𝑦, 𝑓𝑥)}

(30)

for all 𝑥, 𝑦 ∈ 𝑋 and some 𝑘 ∈ [0, 1).
Assume that either of the following holds:
(i) 𝑓 and𝑔 areweakly compatible and satisfy the condition

(D1);
(ii) 𝑓 and 𝑔 are compatible and continuous.
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Then the mappings 𝑓 and 𝑔 have a unique common fixed point
𝑢 in𝑋 and 𝑞(𝑢, 𝑢) = 0.

Corollary 18. Let 𝑋 be a metric space with metric 𝑑 and let 𝑞
be a Q-function on 𝑋. Let 𝑓 and 𝑔 be the mappings of 𝑋 into
itself satisfying 𝑓(𝑋) ⊂ 𝑔(𝑋) and

𝑞 (𝑓𝑥, 𝑓𝑦)

≤ 𝑘max {𝑞 (𝑔𝑥, 𝑔𝑦) , 𝑞 (𝑔𝑥, 𝑓𝑥) , 𝑞 (𝑔𝑦, 𝑓𝑦) ,

𝑞 (𝑔𝑥, 𝑓𝑦) , 𝑞 (𝑔𝑦, 𝑓𝑥)}

(31)

for all 𝑥, 𝑦 ∈ 𝑋 and some 𝑘 ∈ [0, 1).
Assume that either of the following holds:

(i) 𝑓 and𝑔 areweakly compatible and satisfy the condition
(D1);

(ii) 𝑓 and𝑔 areweakly compatible and satisfy the condition
(D2);

(iii) 𝑓 and 𝑔 are compatible and continuous.

If 𝑓(𝑋) or 𝑔(𝑋) is complete, then the mappings 𝑓 and 𝑔 have
a unique common fixed point 𝑢 in𝑋 and 𝑞(𝑢, 𝑢) = 0.

In the results presented by di Bari and Vetro [5], the
condition (D1) or (D2) is not required. In fact, the conditions
(D1) and (D2) always hold when 𝑞 = 𝑑.

Proposition 19. Let (𝑋, 𝑑) be a metric space and let the self-
mappings 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓(𝑋) ⊂ 𝑔(𝑋). If 𝑓 and
𝑔 are a (𝜓, 𝑑)-quasi-contraction with 𝜓 ∈ Ψ, then for every
𝑧 ∈ 𝑋 with 𝑓𝑧 ̸= 𝑔𝑧

inf {𝑑 (𝑓𝑥, 𝑔𝑧) + 𝑑 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0. (32)

Proof. Suppose that there exists 𝑧 ∈ 𝑋 with 𝑓𝑧 ̸= 𝑔𝑧 and

inf {𝑑 (𝑓𝑥, 𝑔𝑧) + 𝑑 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} = 0. (33)

Then there exists a sequence {𝑥
𝑛
} in𝑋 such that

lim
𝑛→∞

[𝑑 (𝑓𝑥
𝑛
, 𝑔𝑧) + 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
)] = 0. (34)

It follows that 𝑓𝑥
𝑛
→ 𝑔𝑧 and 𝑑(𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) → 0, and so

𝑔𝑥
𝑛
→ 𝑔𝑧. Define 𝑑 = 𝑑(𝑓𝑧, 𝑔𝑧) > 0.
Thus, for 𝑛 sufficiently large, we have

max {𝑑 (𝑔𝑥
𝑛
, 𝑔𝑧) , 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) , 𝑑 (𝑔𝑧, 𝑓𝑥

𝑛
)} < 𝑑. (35)

From

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑧)

≤ max {𝜓 (𝑑 (𝑔𝑥
𝑛
, 𝑔𝑧)) , 𝜓 (𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
)) ,

𝜓 (𝑑 (𝑔𝑧, 𝑓𝑧)) , 𝜓 (𝑑 (𝑔𝑥
𝑛
, 𝑓𝑧)) ,

𝜓 (𝑑 (𝑔𝑧, 𝑓𝑥
𝑛
)) } ,

(36)

we deduce that

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑧) ≤ 𝜓 (max {𝑑, 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑧)}) . (37)

Since 𝑑(𝑔𝑥
𝑛
, 𝑓𝑧) → 𝑑(𝑔𝑧, 𝑓𝑧) = 𝑑, we get max{𝑑,

𝑑(𝑔𝑥
𝑛
, 𝑓𝑧)} → 𝑑

+. Using the property (iv) of the function𝜓,
we see that

𝑑 = 𝑑 (𝑔𝑧, 𝑓𝑧) = lim
𝑛→∞

𝑑 (𝑓𝑥
𝑛
, 𝑓𝑧)

≤ lim
𝑛→∞

𝜓 (max {𝑑, 𝑑 (𝑔𝑥
𝑛
, 𝑓𝑧)}) < 𝑑,

(38)

which is a contradiction.

Proposition 20. Let (𝑋, 𝑑) be a metric space and let the self-
mappings 𝑓, 𝑔 : 𝑋 → 𝑋 be such that 𝑓(𝑋) ⊂ 𝑔(𝑋). Suppose
that 𝑓 and 𝑔 are a weakly compatible pair and a (𝜓, 𝑑)-quasi-
contraction with 𝜓 ∈ Ψ. If 𝑓(𝑋) or 𝑔(𝑋) is closed subspace of
𝑋, then for every 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑔𝑦

inf {𝑑 (𝑔𝑥, 𝑦) + 𝑑 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0. (39)

Proof. Suppose that there exists 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑔𝑦 and

inf {𝑑 (𝑔𝑥, 𝑦) + 𝑑 (𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} = 0. (40)

Then there exists a sequence {𝑥
𝑛
} in𝑋 such that

lim
𝑛→∞

[𝑑 (𝑔𝑥
𝑛
, 𝑦) + 𝑑 (𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
)] = 0. (41)

It follows that 𝑔𝑥
𝑛
→ 𝑦 and 𝑑(𝑔𝑥

𝑛
, 𝑓𝑥
𝑛
) → 0, and so

𝑓𝑥
𝑛
→ 𝑦. Since 𝑓(𝑋) ⊂ 𝑔(𝑋), and 𝑓(𝑋) or 𝑔(𝑋) is closed,

we have 𝑦 ∈ 𝑔(𝑋). Thus there exists 𝑧 ∈ 𝑋 such that 𝑦 = 𝑔𝑧.
Let us prove that 𝑓𝑧 = 𝑔𝑧. If 𝑓𝑧 ̸= 𝑔𝑧, then 𝑑 =

𝑑(𝑔𝑧, 𝑓𝑧) > 0. Similar to the proof of Proposition 19, we can
get a contradiction. Thus 𝑓𝑧 = 𝑔𝑧 = 𝑦.

Since 𝑓 and 𝑔 are weakly compatible, we obtain

𝑔𝑦 = 𝑔𝑓𝑧 = 𝑓𝑔𝑧 = 𝑓𝑦, (42)

which is a contradiction with 𝑔𝑦 ̸= 𝑓𝑦.

Remark 21. Using Theorem 13 and Proposition 20, or
Theorem 14 and Proposition 19, we get Theorem 2.2 of di
Bari and Vetro [5].

Remark 22. In Corollary 17 we use the assumption that 𝑓
and 𝑔 are weakly compatible, which is weaker than the
assumption that 𝑓 and 𝑔 commutes in Theorem 3.1 of Ilic
and Rakocevic [4].

4. The Results for Maps on
Tvs-Cone Metric Space

We denote with Ψ
𝐾
the set of all functions 𝜙 : 𝐾 → 𝐾 which

have the following properties:

(i) 𝜙 is nondecreasing, that is, 𝜙(𝑥) ⪯
𝐾
𝜙(𝑦) whenever

𝑥, 𝑦 ∈ 𝐾 with 𝑥⪯
𝐾
𝑦;

(ii) 𝜙(𝜃) = 𝜃;
(iii) lim

𝑡→+∞
(𝑡 − 𝜉
𝑒
(𝜙(𝑡𝑒))) = +∞;

(iv) lim
𝑡→ 𝑟
+𝜙(𝑡𝑒) ≪ 𝑟𝑒 for all 𝑟 > 0.

We denote with Φ
𝐾
the set of all functions 𝜑 : 𝐾 → 𝐾

which have the following properties (see [5]):
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(i) 𝜑(𝜃) = 𝜃;
(ii) 𝜑(𝑡) ≪ 𝑡 for all 𝑡 ∈ int𝐾;
(iii) lim

𝑡→+∞
(𝑡 − 𝜉
𝑒
(𝜑(𝑡𝑒))) = +∞ for some 𝑒 ∈ int𝐾;

(iv) if 𝑥
𝑛
→ 𝑥, 𝑥

𝑛
, 𝑥 ∈ int𝐾, then there exists 𝜆(𝑥) ∈

(0, 1) and 𝑛
0
∈ N such that 𝜑(𝑥

𝑛
) ⪯
𝐾
𝜆(𝑥) for all 𝑛 ≥

𝑛
0
.

Remark 23 (see [5, Remark 2.3 andTheorem 3.5]). If 𝜑 ∈ Φ
𝐾
,

then the function 𝜙 : 𝐾 → 𝐾 is defined by

𝜙 (𝑥) = 𝜙 (𝜉
𝑒
(𝑥) 𝑒) = sup

𝑡∈[0,𝜉𝑒(𝑥)]

𝜑 (𝑡𝑒) ∈ Ψ
𝐾
. (43)

Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be a 𝑐-
distance on 𝑋. Let 𝑓, 𝑔 : 𝑋 → 𝑋 be self-mappings. Then
𝑓 and 𝑔 are called a (𝜙, ℎ)-quasi-contraction if there exists
𝜙 ∈ Ψ

𝐾
such that for all 𝑥, 𝑦 ∈ 𝑋

ℎ (𝑓𝑥, 𝑓𝑦) ⪯
𝐾
𝑢, (44)

where

𝑢 ∈ {𝜙 (ℎ (𝑔𝑥, 𝑔𝑦)) , 𝜙 (ℎ (𝑔𝑥, 𝑓𝑥)) ,

𝜙 (ℎ (𝑔𝑦, 𝑓𝑦)) ,

𝜙 (ℎ (𝑔𝑥, 𝑓𝑦)) , 𝜙 (ℎ (𝑔𝑦, 𝑓𝑥)) } .

(45)

Now we give several Lemmas as follows.

Lemma 24. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be
a c-distance on 𝑋. Suppose that the mappings 𝑓, 𝑔 : 𝑋 → 𝑋

satisfy the following condition:

(C1) if 𝑓𝑦 ̸= 𝑔𝑦, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑔𝑥, 𝑦) + ℎ (𝑔𝑥, 𝑓𝑥) ∀𝑥 ∈ 𝑋. (46)

Then for every 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑔𝑦

inf {𝑞
ℎ
(𝑔𝑥, 𝑦) + 𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0, (47)

where 𝑞
ℎ
:= 𝜉
𝑒
∘ ℎ.

Proof. Take 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑔𝑦. Using (vii) and (ix) of
Lemma 6 and the assumption (C1), we have

𝜉
𝑒
(𝑐) ≤ 𝜉

𝑒
∘ (ℎ (𝑔𝑥, 𝑦) + ℎ (𝑔𝑥, 𝑓𝑥))

≤ 𝜉
𝑒
∘ ℎ (𝑔𝑥, 𝑦) + 𝜉

𝑒
∘ ℎ (𝑔𝑥, 𝑓𝑥)

= 𝑞
ℎ
(𝑔𝑥, 𝑦) + 𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) ,

(48)

for all 𝑥 ∈ 𝑋. Using (iv) of Lemma 6, 𝑐 ∈ int𝐾 and int𝐾 ∩
(−𝐾) = 0 imply that

inf {𝑞
ℎ
(𝑔𝑥, 𝑦) + 𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋}

≥ 𝜉
𝑒
(𝑐) > 0.

(49)

Similarly, we can deduce the following.

Lemma 25. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be
a c-distance on 𝑋. Suppose that the mappings 𝑓, 𝑔 : 𝑋 → 𝑋

satisfy the following condition:

(C2) if 𝑓𝑧 ̸= 𝑔𝑧, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑓𝑥, 𝑔𝑧) + ℎ (𝑔𝑥, 𝑓𝑥) ∀𝑥 ∈ 𝑋. (50)

Then for every 𝑧 ∈ 𝑋 with 𝑓𝑧 ̸= 𝑔𝑧

inf {𝑞
ℎ
(𝑓𝑥, 𝑔𝑧) + 𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) : 𝑥 ∈ 𝑋} > 0, (51)

where 𝑞
ℎ
:= 𝜉
𝑒
∘ ℎ.

Lemma26. Let (𝑋, 𝑝) be a tvs-conemetric space and let𝑓, 𝑔 :
𝑋 → 𝑋 be self-mappings. Then

(i) 𝑓 is continuous in (𝑋, 𝑝) if and only if so is in (𝑋, 𝑑
𝑝
);

(ii) 𝑓 and 𝑔 are compatible in (𝑋, 𝑝) if and only if so is in
(𝑋, 𝑑
𝑝
).

Proof. From (i) of Theorem 8, the conclusions are obvious.

Lemma 27. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ be
a c-distance on 𝑋. Suppose the self-mappings 𝑓, 𝑔 : 𝑋 → 𝑋

are a (𝜙, ℎ)-quasi-contraction with 𝜙 ∈ Ψ
𝐾
. Then there exists

𝜓 ∈ Ψ such that 𝑓 and 𝑔 are (𝜓, 𝑞
ℎ
)-quasi-contraction, where

𝑞
ℎ
:= 𝜉
𝑒
∘ ℎ.

Proof. We choose 𝑒 ∈ int𝐾 such that lim
𝑡→+∞

[𝑡 − 𝜉
𝑒

(𝜙(𝑡𝑒))] = +∞. Define 𝜓 : [0, +∞) → [0, +∞) as 𝜓(𝑡) =
𝜉
𝑒
(𝜙(𝑡𝑒)). From Lemma 6 and the properties of the function
𝜙, the function 𝜓 has the following properties:

(i) 𝜓 is nondecreasing;
(ii) 𝜓(0) = 𝜉

𝑒
(𝜙(𝜃)) = 𝜉

𝑒
(𝜃) = 0;

(iii) lim
𝑡→+∞

(𝑡 − 𝜓(𝑡)) = lim
𝑡→+∞

(𝑡 − 𝜉
𝑒
(𝜙(𝑡𝑒))) = +∞;

(iv) lim
𝑡→ 𝑟
+𝜓(𝑡) = lim

𝑡→ 𝑟
+𝜉
𝑒
(𝜙(𝑡𝑒)) = 𝜉

𝑒
(lim
𝑡→ 𝑟
+

𝜙(𝑡𝑒)) < 𝜉
𝑒
(𝑟𝑒) = 𝑟 for all 𝑟 > 0.

Then 𝜓 ∈ Ψ. Notice that ℎ(𝑥, 𝑦) ⪯
𝐾
𝜉
𝑒
(ℎ(𝑥, 𝑦))𝑒 = 𝑞

ℎ

(𝑥, 𝑦)𝑒, so

𝜉
𝑒
(𝜙 (ℎ (𝑥, 𝑦))) ≤ 𝜉

𝑒
(𝜙 (𝑞
ℎ
(𝑥, 𝑦) 𝑒)) = 𝜓 (𝑞

ℎ
(𝑥, 𝑦)) ,

(52)

for all 𝑥, 𝑦 ∈ 𝑋. Thus, from ℎ(𝑓𝑥, 𝑓𝑦) ⪯
𝐾
𝑢 where 𝑢 satisfies

(45), we deduce that

𝑞
ℎ
(𝑓𝑥, 𝑓𝑦) = 𝜉

𝑒
(ℎ (𝑓𝑥, 𝑓𝑦)) ≤ 𝜉

𝑒
(𝑢)

≤ max {𝜓 (𝑞
ℎ
(𝑔𝑥, 𝑔𝑦)) , 𝜓 (𝑞

ℎ
(𝑔𝑥, 𝑓𝑥)) ,

𝜓 (𝑞
ℎ
(𝑔𝑦, 𝑓𝑦)) , 𝜓 (𝑞

ℎ
(𝑔𝑥, 𝑓𝑦)) ,

𝜓 (𝑞
ℎ
(𝑔𝑦, 𝑓𝑥)) } .

(53)

That is, 𝑓 and 𝑔 are a (𝜓, 𝑞
ℎ
)-quasi-contraction.
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Using Lemmas 24, 26, and 27 andTheorems 13 and 15, we
obtain the following.

Theorem 28. Let (𝑋, 𝑝) be a complete tvs-cone metric space
and let ℎ be a c-distance on 𝑋. Let 𝑓 and 𝑔 be the mappings
of 𝑋 into itself satisfying 𝑓(𝑋) ⊂ 𝑔(𝑋) and a (𝜙, ℎ)-quasi-
contraction with 𝜙 ∈ Ψ

𝐾
.

Assume that either of the following holds:

(i) 𝑓 and𝑔 areweakly compatible and satisfy the condition
(C1);

(ii) 𝑓 and 𝑔 are compatible and continuous.

Then the mappings 𝑓 and 𝑔 have a unique common fixed
point 𝑢 in𝑋 and ℎ(𝑢, 𝑢) = 𝜃.

Using Lemmas 24–27, Theorems 13–15, and Remark 16,
we have the following.

Theorem 29. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ
be a c-distance on 𝑋. Let 𝑓 and 𝑔 be the mappings of 𝑋 into
itself satisfying 𝑓(𝑋) ⊂ 𝑔(𝑋) and a (𝜙, ℎ)-quasi-contraction
with 𝜙 ∈ Ψ

𝐾
.

Assume that either of the following holds:

(i) 𝑓 and𝑔 areweakly compatible and satisfy the condition
(C1);

(ii) 𝑓 and𝑔 areweakly compatible and satisfy the condition
(C2);

(iii) 𝑓 and 𝑔 are compatible and continuous.

If 𝑓(𝑋) or 𝑔(𝑋) is complete, then the mappings 𝑓 and 𝑔
have a unique common fixed point 𝑢 in𝑋 and ℎ(𝑢, 𝑢) = 𝜃.

Theorem 30. Let (𝑋, 𝑝) be a complete tvs-cone metric space
and let ℎ be a c-distance on𝑋. Let𝑓 and𝑔 be themappings of𝑋
into itself satisfying 𝑓(𝑋) ⊂ 𝑔(𝑋) and the following condition:

(a) ℎ(𝑓𝑥, 𝑓𝑦) ⪯
𝐾
𝐴ℎ(𝑔𝑥, 𝑔𝑦)+𝐵ℎ(𝑔𝑥, 𝑓𝑥)+𝐶ℎ(𝑔𝑦, 𝑓𝑦)+

𝐷ℎ(𝑔𝑥, 𝑓𝑦) + 𝐸ℎ(𝑔𝑦, 𝑓𝑥)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, 𝐸 are nonnegative constants
such that 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 < 1.

Assume that either of the following holds:

(i) if 𝑦 ̸= 𝑓𝑦, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑔𝑥, 𝑦) + ℎ (𝑔𝑥, 𝑓𝑥) ∀𝑥 ∈ 𝑋; (54)

(ii) 𝑓 and 𝑔 are compatible and continuous.

Then the mappings 𝑓 and 𝑔 have a unique common fixed
point 𝑢 in𝑋 and ℎ(𝑢, 𝑢) = 𝜃.

Proof. Put 𝑑
𝑝
:= 𝜉
𝑒
∘ 𝑝 and 𝑞

ℎ
:= 𝜉
𝑒
∘ ℎ. Using Lemma 6 and

the assumption (a), we obtain

𝑞
ℎ
(𝑓𝑥, 𝑓𝑦)

≤ 𝐴𝑞
ℎ
(𝑔𝑥, 𝑔𝑦) + 𝐵𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) + 𝐶𝑞

ℎ
(𝑔𝑦, 𝑓𝑦)

+ 𝐷𝑞
ℎ
(𝑔𝑥, 𝑓𝑦) + 𝐸𝑞

ℎ
(𝑔𝑦, 𝑓𝑥)

≤ 𝑘max {𝑞
ℎ
(𝑔𝑥, 𝑔𝑦) , 𝑞

ℎ
(𝑔𝑥, 𝑓𝑥) , 𝑞

ℎ
(𝑔𝑦, 𝑓𝑦) ,

𝑞
ℎ
(𝑔𝑥, 𝑓𝑦) , 𝑞

ℎ
(𝑔𝑦, 𝑓𝑥)}

(55)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑘 = 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 ∈ [0, 1). By
Theorem 7, Theorem 8, and Theorem 9, we see that (𝑋, 𝑑

𝑝
)

is a complete metric space and 𝑞
ℎ
is a 𝑄-function on (𝑋, 𝑑

𝑝
).

ApplyingCorollary 17 in (𝑋, 𝑑
𝑝
), we deduce that𝑓 and𝑔 have

a unique common fixed point 𝑢 in 𝑋. It is easy to see that
ℎ(𝑢, 𝑢) = 𝜃 from the condition (a).

If we take 𝑔 = 𝐼
𝑋
, the identity mapping on𝑋, and 𝑓 = 𝑇,

then we get the following corollaries.

Corollary 31. Let (𝑋, 𝑝) be a complete tvs-cone metric space
and let ℎ be a c-distance on 𝑋. Suppose that the mapping 𝑇 :

𝑋 → 𝑋 satisfies that, for some constant 𝑘 ∈ [0, 1) and for
every 𝑥, 𝑦 ∈ 𝑋, there exists

𝑢 ∈ {ℎ (𝑥, 𝑧) , ℎ (𝑥, 𝑇𝑥) , ℎ (𝑦, 𝑇𝑦) , ℎ (𝑥, 𝑇𝑦) , ℎ (𝑦, 𝑇𝑥)}

(56)

such that

ℎ (𝑇𝑥, 𝑇𝑦) ⪯
𝐾
𝑘𝑢. (57)

Assume that either of the following holds:

(i) if 𝑦 ̸= 𝑇𝑦, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑥, 𝑦) + ℎ (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝑋; (58)

(ii) T is continuous.

Then 𝑇 has a unique fixed point 𝑢 in 𝑋 and ℎ(𝑢, 𝑢) = 𝜃.

Corollary 32. Let (𝑋, 𝑝) be a tvs-cone metric space and let ℎ
be a c-distance on 𝑋. Suppose that the mapping 𝑇 : 𝑋 → 𝑋

satisfies that, for some constant 𝑘 ∈ [0, 1) and for every 𝑥, 𝑦 ∈
𝑋, there exists

𝑢 ∈ {ℎ (𝑥, 𝑧) , ℎ (𝑥, 𝑇𝑥) , ℎ (𝑦, 𝑇𝑦) , ℎ (𝑥, 𝑇𝑦) , ℎ (𝑦, 𝑇𝑥)}

(59)

such that

ℎ (𝑇𝑥, 𝑇𝑦) ⪯
𝐾
𝑘𝑢. (60)

Assume that either of the following holds:

(i) if 𝑦 ̸= 𝑇𝑦, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑥, 𝑦) + ℎ (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝑋; (61)
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(ii) if 𝑧 ̸= 𝑇𝑧, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑇𝑥, 𝑦) + ℎ (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝑋; (62)

(iii) 𝑇 is continuous.

If 𝑓(𝑋) or 𝑔(𝑋) is complete, then 𝑇 has a unique fixed point 𝑢
in𝑋 and ℎ(𝑢, 𝑢) = 𝜃.

Corollary 33. Let (𝑋, 𝑝) be a complete tvs-cone metric space
and let ℎ be a c-distance on 𝑋. Suppose that a mapping 𝑇 :

𝑋 → 𝑋 satisfies the following condition:

(a) ℎ(𝑥, 𝑦) ⪯
𝐾
𝐴ℎ(𝑥, 𝑦) + 𝐵ℎ(𝑥, 𝑇𝑥) + 𝐶ℎ(𝑦, 𝑇𝑦) +

𝐷ℎ(𝑥, 𝑇𝑦) + 𝐸ℎ(𝑦, 𝑇𝑥)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝐴, 𝐵, 𝐶,𝐷, 𝐸 are nonnegative constants
such that 𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 < 1.

Assume that either of the following holds:

(i) if 𝑦 ̸= 𝑇𝑦, there exists 𝑐 ∈ int𝐾 such that

𝑐 ⪯
𝐾
ℎ (𝑥, 𝑦) + ℎ (𝑥, 𝑇𝑥) ∀𝑥 ∈ 𝑋; (63)

(ii) T is continuous.

Then 𝑇 has a unique fixed point in𝑋. If 𝑇V = V, then ℎ(V, V) =
𝜃.

Remark 34. As can be seen, the results of Corollary 31 and
Corollary 32 provide an answer to Question 1.

Remark 35. Using Corollary 33, we can obtain [15, Theorem
2] and [16, Theorem 3.3]. Moreover, we see that the assump-
tion𝐴+𝐵+𝐶+2𝐷+2𝐸 < 1 is weakened to𝐴+𝐵+𝐶+𝐷+𝐸 <
1 and the assumption ℎ(𝑇𝑦, 𝑇𝑥) ⪯

𝐾
𝐴ℎ(𝑦, 𝑥) + 𝐵ℎ(𝑇𝑥, 𝑥) +

𝐶ℎ(𝑇𝑦, 𝑥)+𝐷ℎ(𝑇𝑦, 𝑦)+𝐸ℎ(𝑇𝑥, 𝑦) is removed in [15,Theorem
2].
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