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With the development of wind power technology, the security of the power system, power quality, and stable operation will meet
new challenges. So, in this paper, we propose a recently developed machine learning technique, relevance vector machine (RVM),
for day-ahead wind speed forecasting. We combine Gaussian kernel function and polynomial kernel function to get mixed kernel
for RVM.Then, RVM is compared with back propagation neural network (BP) and support vector machine (SVM) for wind speed
forecasting in four seasons in precision and velocity; the forecast results demonstrate that the proposed method is reasonable and
effective.

1. Introduction

Over the past decade, people in many countries worldwide
have paid significant attention to wind power generation
because of it being pollution-free, clean, and renewable. At
the end of 2012, worldwide installed capacity of wind power
reached 282.2GW, increased almost 20% compared to the
previous year 2011 which of 240GW. By the end of 2020, total
global installed capacity will reach 1150GW, and wind power
will be over 2800 TWh, accounting for about 12% of global
electricity demand; by the end of 2030, installed capacity
will exceed 2500GW, and wind power generating capacity
will reach 6600 TWh, accounting for about 23% of global
electricity demand [1]. The introduction of such a large-scale
wind power has attractedmany domestic and foreign scholars
for further wind power technology. The wind forecast as a
basic link of the wind power research is one of the effective
ways to solve the problem and has an important role in the
safe and economic operation of the power grid, so a growing
number of researchers pay attention to it recently.

We can cluster the wind forecasting techniques into two
main groups; the first group are physical methods, taking
physical considerations into account, such as temperature
and local terrain. In [2, 3], numerical weather prediction

(NWP)model could be used directly forwind speed andwind
energy predictions.

Another group are statistical methods. Conventional
ones are identical to the direct random time-series model,
such as autoregressive model (AR), moving average model
(MA), autoregressive moving average model (ARMA), and
autoregressive integrated moving average model (ARIMA).
Kamal and Jafri [4] established an ARMA model and found
for long-term or short-term predictions, the values of vari-
ances and wind speed with a confidence interval of 95%
were acceptable. A fractional-ARIMA (f-ARIMA) model was
used by Kavasseri and Seetharaman [5] for day-ahead and
two-day-ahead wind speed forecasting. Results showed that
forecast accuracy was significantly improved with f-ARIMA
model compared to the previous method.

Apart from the mentioned forecasting techniques,
machine learning algorithms such as artificial neural
network (ANN), Bayesian network (BN), and support vector
machine (SVM) are usually adopted for time series-based
wind prediction. Bilgili et al. [6] investigated the use of a
model based on the ANN method and spatial correlation
for monthly wind speed prediction without any topographic
details or other meteorological data. The prediction
results showed that the maximum MAE was 14.13%, while
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the minimum was 4.49% in the developed model. Welch
[7] compared three types of neural networks (multilayer
perceptron neural network, simultaneous recurrent neural
network, and Elman recurrent neural network) for short-
term prediction of wind speed, and all training data used
particle swarm optimization (PSO). Mohandes et al. [8]
established a SVM model to predict wind speed, compared
with amultilayer perceptronANNmodel.The results showed
that SVMmodel gave lower root mean square error than the
MLP ANN model. Larson and Westrick [9] used a support
vector classifier to estimate the forecasting error, obtaining
lower mean square error and mean absolute percentage error
than traditional SVM.

However, the SVM had a number of significant and prac-
tical limitations. For example, we could not get probabilistic
predictions and the kernel function must satisfy Mercer’s
condition. In order to overcome these, Tipping [10] and
Tipping and Faul [11] proposed an advanced function esti-
mation technique, relevance vector machine (RVM). RVM
utilizes a more flexible and sparser function without extra
regularization parameters; it is an inherent machine learning
technique [12].

This paper establishes RVMmodel to forecast day-ahead
wind speed in JiangSu, compared with BP and SVM models.
It can show that the proposed method is more effective and
robust and gets rid of the overfitting problem of traditional
nonparametric regression models. The rest of the paper is
organized as follows. A brief review of the theory of RVM
learning for classification is provided in Section 2. Then, in
Section 3, several forecasting examples are given to contrast
RVM model with other different models. Finally Section 4
will give the conclusions.

2. Classical Relevance Vector Machine

Relevance vector machine (RVM), based on the overall
Bayesian framework, is a sparse probability model and now is
one of the hot research fields [13]. The principle is as follows.
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where𝐾(𝑥, 𝑥
𝑛
) is a kernel function.

Therefore, the probability formula for relevance vector
machine model is
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) , (4)
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) is the normal distribution with mean
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) and variance 𝜎2.
Because we assume the targets are independent, thus the

likelihood of the complete dataset can be defined as
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Because there are so many parameters in the model as
training examples, maximum likelihood estimation of w and
𝜎
2 would easily lead to overfitting. To avoid this, the sparse

Bayesian principles are utilized to givew zero-meanGaussian
prior distribution:

𝑝 (w | 𝛼) =

𝑁

∏
𝑖=0

N (𝜔i | 0, 𝛼
−1

i ) , (6)

where 𝛼 are the 𝑁 + 1 dimensional vectors and each weight
separately corresponds to a hyperparameter which controls
how far from zero each weight is allowed to deviate [13].
Having defined the prior, using Bayes’ rule, noninformative
prior distribution can be given by

𝑝 (𝜔,𝛼, 𝜎
2
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However, we cannot easily gain the full analytical solu-
tion to (7); thus, we decompose the posterior according to
𝑝(𝜔,𝛼, 𝜎

2
|t) = 𝑝(𝜔|t,𝛼, 𝜎2)𝑝(𝛼, 𝜎2|t) and get the solution

to this integral (7). Then, the posterior distribution over the
weights can be written by

𝑝 (𝜔 | t,𝛼, 𝜎2) =
𝑝 (t | 𝜔, 𝜎2) 𝑝 (𝜔 | 𝛼)

𝑝 (t | 𝛼, 𝜎2)
. (8)

After defining the prior distribution and the likelihood
distribution, according to Bayes’ theorem, we can obtain the
posterior distribution of all unknown parameters:

𝑝 (𝜔 | t,𝛼, 𝜎2) = N (𝜇, Σ) . (9)
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Then the mean and the covariance of N(𝜇, Σ) are
expressed as
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In related Bayesian models, this quality is referred to
as “the marginal likelihood” [14, 15] or the “evidence for
hyperparameter” [16]; its maximization is known as the “type
II maximum likelihood method” or “evidence procedure.”

Because we cannot obtain values of 𝛼 and 𝜎2 which max-
imize (12) in closed form, so here an iterative reestimation
method is needed. We partially differentiated (12) and made
𝛼 equal to 0; then, the following approach gives [17]
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Meanwhile, for the noise variance 𝜎2, differentiation of
(12), equating to 0, then the following approach gives [16]
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where𝑁 is the number of data examples.
In practice, because many of 𝛼

𝑖
are found to tend to

infinity during reestimation, the posterior distribution from
formula (9) of the corresponding weights 𝑤

𝑖
will highly peak

at zero. In this optimization process, those 𝑤
𝑖
become zero,

and the vectors from the training set that associate with the
remaining nonzero weights 𝑤

𝑖
are called relevance vectors.

At convergence of the hyperparameter estimation proce-
dure, we use the posterior distribution over the weights for
predictions, conditioned on the maximizing values 𝛼
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Because both terms in the integrand obey Gaussian dis-
tribution, we can easily compute the predictive distribution:
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Eventually, we get the regression model of RVM in
function (18) and the variance function in function (19).

In summary, the forecast process can be summarized as
in the following steps:

(1) initialize variances 𝜎2 and hyperparameters 𝛼
𝑖
;

(2) compute posteriori statistics of weights 𝜇 and Σ;

(3) compute 𝑦
𝑖
and update the 𝛼

𝑖
and 𝜎2;

(4) if it is not convergent, then go back step (2); otherwise,
go to step (5);

(5) if 𝛼
𝑖
tend to infinity, the weights 𝜔

𝑖
can be deleted;

(6) get the predictive mean intuitively from 𝑦(x
∗
,𝜇).

3. Illustrative Examples

3.1. Data and Pretreatment. In this study, wind speed values
throughout 2008 on a wind farm in Jiangsu are taken as
the training samples, and all the data have an interval
period of 15min. To evaluate the performance of proposed
model, we establish RVM model for 96 points wind speed
prediction, compared with SVM and BP in terms of forecast
accuracy, model running time, and model complexity. Based
on historical data in each quarter, we establish forecasting
models to predict day-ahead wind speed on March 25, June
26, September 29, and December 28.

Because the input vectors contain different kinds of
physical quantities, in order to ensure the variables are
comparable, but also solve problems such as the increasing
of training time, first of all, we take normalization process on
all input data. The normalized respective variables will be in
[0, 1]

𝑥
∗

𝑖
=

𝑥
𝑖
− 𝑥min

𝑥max − 𝑥min
, (20)

where 𝑥max and 𝑥min are, respectively, the maximum value
and the minimum value for each variable.
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Figure 1: Forecasting results with different models on March 25 (a), June 26 (b), September 29 (c), and December 28 (d).

For evaluating the forecasting performance,mean relative
error (MRE) and root mean square error (RMSE) are used;
they are defined in functions

𝑒MRE =
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where𝑌
𝑖
and 𝑌̂
𝑖
indicate actual and forecasting values of wind

speed at time of 𝑖.

3.2. Select Kernel Function of RVM. Because the kernel
function of RVM does not need to satisfy Mercer’s condition,
the selection of the kernel function has a certain degree of
freedom. The basic idea of the hybrid kernel function [17] is
that several kernel functions can be combined together for
different nature, and the new properties can be integrated and
reflected.

Table 1: Comparisons of forecast accuracy for three models.

Month BP SVM RVM
RMSE MRE RMSE MRE RMSE MRE

March 0.1123 0.0180 0.0925 0.0115 0.0782 0.0108
June 0.1856 0.0520 0.2033 0.0428 0.1607 0.0347
September 0.3521 0.0641 0.2297 0.0230 0.2451 0.0185
December 0.1106 0.0136 0.0930 0.0057 0.0790 0.0046
Avg. 0.1902 0.0369 0.1546 0.0208 0.1408 0.0172

In this paper, we combine Gaussian kernel function and
polynomial kernel function to get mixed kernel of global and
local nature:

𝐾(𝑥, 𝑥
𝑖
) = 𝜆𝐺 (𝑥, 𝑥

𝑖
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𝑖
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where 𝐺(𝑥, 𝑥
𝑖
) is RBF kernel function; 𝑃(𝑥, 𝑥

𝑖
) is binomial

kernel function; 𝜆 is the weight of the kernel function; and 𝜎
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Table 2: Comparisons of test time and vector number for three models.

Month BP SVM RVM

Test time (s) Number of vectors or
neurons involved Test time (s) Number of vectors or

neurons involved Test time (s) Number of vectors or
neurons involved

March 677.56 300 639.24 216 302.48 33
June 1237.43 380 857.25 306 288.87 40
September 1002.86 340 641.91 320 293.85 35
December 835.03 320 506.29 202 288.66 31
Avg. 938.21 335 661.17 261 293.47 34.75

is the kernelwidth.There, the grid searchmethod is employed
to get the optimal values of 𝜆 and 𝜎.

3.3. Different Forecasting Models. To evaluate the perfor-
mance of proposed model, RVM, BP, and SVM are estab-
lished for day-ahead wind speed predictions on March 25,
June 26, September 29, and December 28. Table 1 shows the
comparisons of forecast accuracy for three models in each
quarter, and Table 2 shows the comparisons of test time and
number of vectors or neurons for three models. The specific
forecasting results are presented in Figure 1.

It is found from the comparison results that the forecast
accuracy of the proposed method is higher than that used
by the other models. The average RMSE of RVM model is
only 0.1408m/s, lower than those of BP and SVM, which are
0.1902m/s and 0.1546m/s.The averageMREofRVMis 1.72%,
while those of BP and SVM are 3.69% and 2.08%. In different
seasons, forecast accuracy is different. In spring and winter,
wind speed changes are relatively small, so higher precision
can be got; in summer and autumn, wind speed at the coast
has large fluctuations, so the accuracy will decrease.

Table 2 shows clearly that RVMmodel can reduce model
complexity; the average number of vectors or neurons
involved is only 34.75, and comparatively those of BP and
SVM are 335 and 261. Although RVM typically utilizes
dramatically fewer kernel functions, its generalization perfor-
mance is comparable to SVM. From Table 2, we know that
RVM has a higher sparse network and can quickly converge;
its test time is 293.47 s, shorter than those of BP (938.21 s) and
SVM (661.17 s) models.

4. Conclusions

In this paper, RVM is proposed for day-ahead wind speed
forecasting. Firstly, we combineGaussian kernel function and
polynomial kernel function to get mixed kernel for RVM
model. Then, we compare RVM with BP and SVM for wind
speed forecasting in four seasons for precision and velocity.
Finally, the simulation results show that the proposedmethod
is more effective and robust and has better performance in
terms of forecast accuracy, model running time, and model
complexity than that used by BP neural network and SVM
model. So the theoretical feasibility of RVM for the wind
speed prediction has the some meaning.
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