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Received 26 September 2013; Accepted 12 October 2013; Published 17 April 2014

Academic Editor: Maria Gandarias
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This work focuses on the combinatorial properties of glued semigroups and provides its combinatorial characterization. Some
classical results for affine glued semigroups are generalized and some methods to obtain glued semigroups are developed.

1. Introduction

Let 𝑆 = ⟨𝑛
1
, . . . , 𝑛

𝑙
⟩ be a finitely generated commutative semi-

groupwith zero element which is reduced (i.e., 𝑆∩(−𝑆) = {0})
and cancellative (if 𝑚, 𝑛, 𝑛󸀠 ∈ 𝑆 and 𝑚 + 𝑛 = 𝑚 + 𝑛

󸀠 then
𝑛 = 𝑛
󸀠). Under these settings if 𝑆 is torsion-free, then it is iso-

morphic to a subsemigroup of N𝑝 which means it is an affine
semigroup (see [1]). From now on assume that all the semi-
groups appearing in this work are finitely generated, commu-
tative, reduced, and cancellative, but not necessarily torsion-
free.

Let K be a field and K[𝑋
1
, . . . , 𝑋

𝑙
] the polynomial ring

in 𝑙 indeterminates. This polynomial ring is obviously an 𝑆-
graded ring (by assigning the 𝑆-degree 𝑛

𝑖
to the indeterminate

𝑋
𝑖
, the 𝑆-degree of𝑋𝛼 = 𝑋𝛼1

1
⋅ ⋅ ⋅ 𝑋
𝛼
𝑙

𝑙
is∑𝑙
𝑖=1

𝛼
𝑖
𝑛
𝑖
∈ 𝑆). It is well

known that the ideal 𝐼
𝑆
generated by

{𝑋
𝛼
− 𝑋
𝛽
|

𝑙

∑

𝑖=1

𝛼
𝑖
𝑛
𝑖
=

𝑙

∑

𝑖=1

𝛽
𝑖
𝑛
𝑖
} ⊂ K [𝑋

1
, . . . , 𝑋

𝑙
] (1)

is an 𝑆-homogeneous binomial ideal called semigroup ideal
(see [2] for details). If 𝑆 is torsion-free, the ideal obtained
defines a toric variety (see [3] and the references therein). By
Nakayama’s lemma, all the minimal generating sets of 𝐼

𝑆
have

the same cardinality and the 𝑆-degrees of its elements can be
determinated.

The main goal of this work is to study the semigroups
which result from the gluing of other two. This concept was

introduced by Rosales in [4] and it is closely related to com-
plete intersection ideals (see [5] and the references therein).
A semigroup 𝑆 minimally generated by 𝐴

1
⊔ 𝐴
2
(with 𝐴

1
=

{𝑛
1
, . . . , 𝑛

𝑟
} and𝐴

2
= {𝑛
𝑟+1
, . . . , 𝑛

𝑙
}) is the gluing of 𝑆

1
= ⟨𝐴
1
⟩

and 𝑆
2
= ⟨𝐴
2
⟩ if there exists a set of generators 𝜌 of 𝐼

𝑆
of the

form 𝜌 = 𝜌
1
∪𝜌
2
∪{𝑋
𝛾
−𝑋
𝛾
󸀠

}, where 𝜌
1
, 𝜌
2
are generating sets

of 𝐼
𝑆
1

and 𝐼
𝑆
2

, respectively,𝑋𝛾−𝑋𝛾
󸀠

∈ 𝐼
𝑆
, and the supports of 𝛾

and 𝛾󸀠 verify supp(𝛾) ⊂ {1, . . . , 𝑟} and supp(𝛾󸀠) ⊂ {𝑟+1, . . . , 𝑙}.
Equivalently, 𝑆 is the gluing of 𝑆

1
and 𝑆
2
if 𝐼
𝑆
= 𝐼
𝑆
1

+𝐼
𝑆
2

+⟨𝑋
𝛾
−

𝑋
𝛾
󸀠

⟩. A semigroup is a glued semigroup when it is the gluing
of other two.

As seen, glued semigroups can be determinated by the
minimal generating sets of 𝐼

𝑆
which can be studied by using

combinatorial methods from certain simplicial complexes
(see [6–8]). In this work the simplicial complexes used are
defined as follows: for any𝑚 ∈ 𝑆, set

𝐶
𝑚
= {𝑋

𝛼
= 𝑋
𝛼
1

1
⋅ ⋅ ⋅ 𝑋
𝛼
𝑙

𝑙
|

𝑙

∑

𝑖=1

𝛼
𝑖
𝑛
𝑖
= 𝑚} , (2)

and the simplicial complex

∇
𝑚
= {𝐹 ⊆ 𝐶

𝑚
| gcd (𝐹) ̸= 1} , (3)

with gcd(𝐹) as the greatest common divisor of the monomials
in 𝐹.
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Furthermore, somemethods which require linear algebra
and integer programming are given to obtain examples of
glued semigroups.

The content of this work is organized as follows. Section 2
presents the tools to generalize to nontorsion-free semi-
groups a classical characterization of affine gluing semigroups
(Proposition 2). In Section 3, the nonconnected simplicial
complexes ∇

𝑚
associated with glued semigroups are studied.

By using the vertices of the connected components of these
complexes we give a combinatorial characterization of glued
semigroups as well as their glued degrees (Theorem 6).
Besides, in Corollary 7 we deduce the conditions for the ideal
of a glued semigroup to have a unique minimal system of
generators. Finally, Section 4 is devoted to the construction of
glued semigroups (Corollary 10) and affine glued semigroups
(Section 4.1).

2. Preliminaries and Generalizations about
Glued Semigroups

A binomial of 𝐼
𝑆
is called indispensable if it is an element

of all systems of generators of 𝐼
𝑆
(up to a scalar multiple).

This kind of binomials was introduced in [9] and they have
an important role in Algebraic Statistics. In [10] the authors
characterize indispensable binomials by using simplicial
complexes ∇

𝑚
. Note that if 𝐼

𝑆
is generated by its indispens-

able binomials then it is minimally generated, up to scalar
multiples, in an unique way.

With the above notation, the semigroup 𝑆 is associ-
ated with the lattice ker 𝑆 formed by the elements 𝛼 =

(𝛼
1
, . . . , 𝛼

𝑙
) ∈ Z𝑙 such that ∑𝑙

𝑖=1
𝛼
𝑖
𝑛
𝑖
= 0. Given 𝐺 a system of

generators of 𝐼
𝑆
, the lattice ker 𝑆 is generated by the elements

𝛼−𝛽with𝑋𝛼−𝑋𝛽 ∈ 𝐺 and ker 𝑆 also verifies that ker 𝑆∩N𝑙 =
{0} if and only if 𝑆 is reduced. IfM(𝐼

𝑆
) is aminimal generating

set of 𝐼
𝑆
, denote by M(𝐼

𝑆
)
𝑚

⊂ M(𝐼
𝑆
) the set of elements

whose 𝑆-degree is equal to 𝑚 ∈ 𝑆 and by Betti(𝑆) the set of
the 𝑆-degrees of the elements ofM(𝐼

𝑆
). When 𝐼

𝑆
is minimally

generated by rank(ker 𝑆) elements, the semigroup 𝑆 is called
a complete intersection semigroup.

Let C(∇
𝑚
) be the number of connected components of

∇
𝑚
. The cardinality of M(𝐼

𝑆
)
𝑚
is equal to C(∇

𝑚
) − 1 (see

Remark 2.6 in [6] andTheorem 3 and Corollary 4 in [8]) and
the complexes associated with the elements in Betti(𝑆) are
nonconnected.

Construction 1 (see [7, Proposition 1]). For each𝑚 ∈ Betti(𝑆)
the set M(𝐼

𝑆
)
𝑚
is obtained by taking C(∇

𝑚
) − 1 binomials

with monomials in different connected components of ∇
𝑚

satisfying that two different binomials do not have their cor-
respondingmonomials in the same components and fulfilling
that there is at least a monomial of every connected compo-
nent of ∇

𝑚
. This let us construct a minimal generating set

of 𝐼
𝑆
in a combinatorial way.

Let 𝑆 be minimally (we consider a minimal generator
set of 𝑆 and in the other case 𝑆 is trivially the gluing of the
semigroup generated by one of its nonminimal generators
and the semigroup generated by the others) generated by

𝐴
1
⊔ 𝐴
2
with 𝐴

1
= {𝑎
1
, . . . , 𝑎

𝑟
} and 𝐴

2
= {𝑏
1
, . . . , 𝑏

𝑡
}.

From now on, identify the sets 𝐴
1
and 𝐴

2
with the matrices

(𝑎
1
| ⋅ ⋅ ⋅ |𝑎

𝑟
) and (𝑏

1
| ⋅ ⋅ ⋅ |𝑏

𝑡
). Denote by K[𝐴

1
] and K[𝐴

2
] the

polynomial rings K[𝑋
1
, . . . , 𝑋

𝑟
] and K[𝑌

1
, . . . , 𝑌

𝑡
], respec-

tively. Amonomial is a puremonomial if it has indeterminates
only in𝑋

1
, . . . , 𝑋

𝑟
or only in𝑌

1
, . . . , 𝑌

𝑡
; otherwise it is amixed

monomial. If 𝑆 is the gluing of 𝑆
1
= ⟨𝐴

1
⟩ and 𝑆

2
= ⟨𝐴

2
⟩,

then the binomial 𝑋𝛾𝑋 − 𝑌
𝛾
𝑌 ∈ 𝐼

𝑆
is a glued binomial if

M(𝐼
𝑆
1

) ∪M(𝐼
𝑆
2

) ∪ {𝑋
𝛾
𝑋 −𝑌
𝛾
𝑌} is a generating set of 𝐼

𝑆
and in

this case the element 𝑑 = 𝑆-degree(𝑋𝛾𝑋) ∈ 𝑆 is called a glued
degree.

It is clear that if 𝑆 is a glued semigroup, the lattice ker 𝑆
has a basis of the form

{𝐿
1
, 𝐿
2
, (𝛾
𝑋
, −𝛾
𝑌
)} ⊂ Z

𝑟+𝑡
, (4)

where the supports of the elements in 𝐿
1
are in {1, . . . , 𝑟}, the

supports of the elements in 𝐿
2
are in {𝑟+1, . . . , 𝑟 + 𝑡}, ker 𝑆

𝑖
=

⟨𝐿
𝑖
⟩ (𝑖 = 1, 2) by considering only the coordinates in {1, . . . ,

𝑟} or {𝑟+1, . . . , 𝑟+𝑡} of𝐿
𝑖
, and (𝛾

𝑋
, 𝛾
𝑌
) ∈ N𝑟+𝑡.Moreover, since

𝑆 is reduced, one has that ⟨𝐿
1
⟩ ∩ N𝑟+𝑡 = ⟨𝐿

2
⟩ ∩ N𝑟+𝑡 = {0}.

Denote by {𝜌
1𝑖
}
𝑖
the elements in 𝐿

1
and by {𝜌

2𝑖
}
𝑖
the elements

in 𝐿
2
.

The following proposition generalizes [4,Theorem 1.4] to
nontorsion-free semigroups.

Proposition 2. The semigroup 𝑆 is the gluing of 𝑆
1
and 𝑆

2
if

and only if there exists 𝑑 ∈ (𝑆
1
∩ 𝑆
2
) \ {0} such that 𝐺(𝑆

1
) ∩

𝐺(𝑆
2
) = 𝑑Z, where 𝐺(𝑆

1
), 𝐺(𝑆

2
), and 𝑑Z are the associated

commutative groups of 𝑆
1
, 𝑆
2
, and {𝑑}, respectively.

Proof. Assume that 𝑆 is the gluing of 𝑆
1
and 𝑆
2
. In this case,

ker 𝑆 is generated by the set (4). Since (𝛾
𝑋
, −𝛾
𝑌
) ∈ ker 𝑆, the

element 𝑑 is equal to 𝐴
1
𝛾
𝑋
= 𝐴
2
𝛾
𝑌
∈ 𝑆 and 𝑑 ∈ 𝑆

1
∩ 𝑆
2
⊂

𝐺(𝑆
1
) ∩ 𝐺(𝑆

2
). Let 𝑑󸀠 be in 𝐺(𝑆

1
) ∩ 𝐺(𝑆

2
); then there exists

(𝛿
1
, 𝛿
2
) ∈ Z𝑟 × Z𝑡 such that 𝑑󸀠 = 𝐴

1
𝛿
1
= 𝐴
2
𝛿
2
. Therefore

(𝛿
1
, −𝛿
2
) ∈ ker 𝑆 because (𝐴

1
| 𝐴
2
)(𝛿
1
, −𝛿
2
) = 0 and so there

exist 𝜆, 𝜆𝜌1
𝑖
, 𝜆𝜌2
𝑖
∈ Z satisfying

(𝛿
1
, 0) = ∑

𝑖

𝜆
𝜌
1

𝑖
𝜌
1𝑖
+ 𝜆 (𝛾

𝑋
, 0) ,

(0, 𝛿
2
) = −∑

𝑖

𝜆
𝜌
2

𝑖
𝜌
2𝑖
+ 𝜆 (0, 𝛾

𝑌
) ,

(5)

and 𝑑
󸀠
= 𝐴
1
𝛿
1
= ∑
𝑖
𝜆
𝜌
1

𝑖
(𝐴
1
| 0)𝜌
1𝑖
+ 𝜆𝐴

1
𝛾
𝑋
= 𝜆𝑑. We

conclude that 𝐺(𝑆
1
) ∩ 𝐺(𝑆

2
) = 𝑑Z with 𝑑 ∈ 𝑆

1
∩ 𝑆
2
.

Conversely, suppose that there exists 𝑑 ∈ (𝑆
1
∩ 𝑆
2
) \ {0}

such that𝐺(𝑆
1
)∩𝐺(𝑆

2
) = 𝑑Z.We see that 𝐼

𝑆
= 𝐼
𝑆
1

+𝐼
𝑆
2

+⟨𝑋
𝛾
𝑋−

𝑌
𝛾
𝑌⟩. Trivially, 𝐼

𝑆
1

+𝐼
𝑆
2

+⟨𝑋
𝛾
𝑋−𝑌
𝛾
𝑌⟩ ⊂ 𝐼

𝑆
. Let𝑋𝛼𝑌𝛽−𝑋𝛾𝑌𝛿 be

a binomial in 𝐼
𝑆
. Its 𝑆-degree is𝐴

1
𝛼+𝐴
2
𝛽 = 𝐴

1
𝛾+𝐴
2
𝛿. Using

𝐴
1
(𝛼 − 𝛾) = 𝐴

2
(𝛽 − 𝛿) ∈ 𝐺(𝑆

1
) ∩ 𝐺(𝑆

2
) = 𝑑Z, there exists

𝜆 ∈ Z such that 𝐴
1
𝛼 = 𝐴

1
𝛾 + 𝜆𝑑 and 𝐴

2
𝛿 = 𝐴

2
𝛽 + 𝜆𝑑. We

have the following cases.
(i) If 𝜆 = 0,

𝑋
𝛼
𝑌
𝛽
− 𝑋
𝛾
𝑌
𝛿
= 𝑋
𝛼
𝑌
𝛽
− 𝑋
𝛾
𝑌
𝛽
+ 𝑋
𝛾
𝑌
𝛽
−𝑋
𝛾
𝑌
𝛿

= 𝑌
𝛽
(𝑋
𝛼
− 𝑋
𝛾
) + 𝑋
𝛾
(𝑌
𝛽
− 𝑌
𝛿
) ∈ 𝐼
𝑆
1

+ 𝐼
𝑆
2

.

(6)
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(ii) If 𝜆 > 0,

𝑋
𝛼
𝑌
𝛽
− 𝑋
𝛾
𝑌
𝛿
= 𝑋
𝛼
𝑌
𝛽
− 𝑋
𝛾
𝑋
𝜆𝛾
𝑋𝑌
𝛽

+ 𝑋
𝛾
𝑋
𝜆𝛾
𝑋𝑌
𝛽
− 𝑋
𝛾
𝑋
𝜆𝛾
𝑌𝑌
𝛽
+ 𝑋
𝛾
𝑋
𝜆𝛾
𝑌𝑌
𝛽

− 𝑋
𝛾
𝑌
𝛿
= 𝑌
𝛽
(𝑋
𝛼
− 𝑋
𝛾
𝑋
𝜆𝛾
𝑋)

+ 𝑋
𝛾
𝑌
𝛽
(𝑋
𝜆𝛾
𝑋 − 𝑌
𝜆𝛾
𝑌)

+ 𝑋
𝛾
(𝑌
𝜆𝛾
𝑌𝑌
𝛽
− 𝑌
𝛿
) .

(7)

Using that

𝑋
𝜆𝛾
𝑋 − 𝑌
𝜆𝛾
𝑌 = (𝑋

𝛾
𝑋 − 𝑌
𝛾
𝑌)(

𝜆−1

∑

𝑖=0

𝑋
(𝜆−1−𝑖)𝛾

𝑋𝑌
𝑖𝛾
𝑌) , (8)

the binomial𝑋𝛼𝑌𝛽−𝑋𝛾𝑌𝛿 belongs to 𝐼
𝑆
1

+𝐼
𝑆
2

+⟨𝑋
𝛾
𝑋−

𝑌
𝛾
𝑌⟩.

(iii) The case 𝜆 < 0 is solved similarly.

We conclude that 𝐼
𝑆
= 𝐼
𝑆
1

+ 𝐼
𝑆
2

+ ⟨𝑋
𝛾
𝑋 − 𝑌
𝛾
𝑌⟩.

From the above proof it is deduced that given the partition
of the system of generators of 𝑆 the glued degree is unique.

3. Glued Semigroups and Combinatorics

Glued semigroups by means of nonconnected simplicial
complexes are characterized. For any𝑚 ∈ 𝑆, redefine𝐶

𝑚
from

(2) as

𝐶
𝑚
={𝑋
𝛼
𝑌
𝛽
=𝑋
𝛼
1

1
⋅ ⋅ ⋅ 𝑋
𝛼
𝑟

𝑟
𝑌
𝛽
1

1
⋅ ⋅ ⋅ 𝑌
𝛽
𝑡

𝑡
|

𝑟

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖
+

𝑡

∑

𝑖=1

𝛽
𝑖
𝑏
𝑖
= 𝑚},

(9)

and consider the sets of vertices and the simplicial complexes

𝐶
𝐴
1

𝑚
= {𝑋

𝛼
1

1
⋅ ⋅ ⋅ 𝑋
𝛼
𝑟

𝑟
|

𝑟

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖
= 𝑚} ,

∇
𝐴
1

𝑚
= {𝐹 ⊆ 𝐶

𝐴
1

𝑚
| gcd (𝐹) ̸= 1} ,

𝐶
𝐴
2

𝑚
= {𝑌
𝛽
1

1
⋅ ⋅ ⋅ 𝑌
𝛽
𝑡

𝑡
|

𝑡

∑

𝑖=1

𝛽
𝑖
𝑏
𝑖
= 𝑚} ,

∇
𝐴
2

𝑚
= {𝐹 ⊆ 𝐶

𝐴
2

𝑚
| gcd (𝐹) ̸= 1} ,

(10)

where 𝐴
1
= {𝑎
1
, . . . , 𝑎

𝑟
} and 𝐴

2
= {𝑏
1
, . . . , 𝑏

𝑡
} as in Section 2.

Trivially, the relations between ∇𝐴1
𝑚
, ∇𝐴2
𝑚
, and ∇

𝑚
are

∇
𝐴
1

𝑚
= {𝐹 ∈ ∇

𝑚
| 𝐹 ⊂ 𝐶

𝐴
1

𝑚
} , ∇

𝐴
2

𝑚
= {𝐹 ∈ ∇

𝑚
| 𝐹 ⊂ 𝐶

𝐴
2

𝑚
} .

(11)

The following result shows an important property of the
simplicial complexes associated with glued semigroups.

Lemma 3. Let 𝑆 be the gluing of 𝑆
1
and 𝑆
2
and 𝑚 ∈ Betti(𝑆).

Then all the connected components of ∇
𝑚
have at least a pure

monomial. In addition, all mixed monomials of ∇
𝑚
are in the

same connected component.

Proof. Suppose that there exists 𝐶, a connected component
of ∇
𝑚
only with mixed monomials. By Construction 1 in all

generating sets of 𝐼
𝑆
there is at least a binomial with a mixed

monomial, but this does not occur inM(𝐼
𝑆
1

)∪M(𝐼
𝑆
2

)∪{𝑋
𝛾
𝑋−

𝑌
𝛾
𝑌} with𝑋𝛾𝑋 − 𝑌𝛾𝑌 as a glued binomial.
Since 𝑆 is a glued semigroup, ker 𝑆 has a system of

generators as (4). Let 𝑋𝛼𝑌𝛽, 𝑋𝛾𝑌𝛿 ∈ 𝐶
𝑚
be two monomials

such that gcd(𝑋𝛼𝑌𝛽, 𝑋𝛾𝑌𝛿) = 1. In this case, (𝛼, 𝛽) − (𝛾, 𝛿) ∈
ker 𝑆 and there exist 𝜆, 𝜆𝜌1

𝑖
, 𝜆
𝜌
2

𝑖
∈ Z satisfying

(𝛼 − 𝛾, 0) = ∑

𝑖

𝜆
𝜌
1

𝑖
𝜌
1𝑖
+ 𝜆 (𝛾

𝑋
, 0) ,

(0, 𝛽 − 𝛿) = ∑

𝑖

𝜆
𝜌
2

𝑖
𝜌
2𝑖
− 𝜆 (0, 𝛾

𝑌
) .

(12)

(i) If 𝜆 = 0, 𝛼 − 𝛾 ∈ ker 𝑆
1
, and 𝛽 − 𝛿 ∈ ker 𝑆

2
, then

𝐴
1
𝛼 = 𝐴

1
𝛾, 𝐴
2
𝛽 = 𝐴

2
𝛿, and𝑋𝛼𝑌𝛿 ∈ 𝐶

𝑚
.

(ii) If 𝜆 > 0, (𝛼, 0) = ∑
𝑖
𝜆
𝜌
1

𝑖
𝜌
1𝑖
+ 𝜆(𝛾
𝑋
, 0) + (𝛾, 0), and

𝐴
1
𝛼 = ∑

𝑖

𝜆
𝜌
1

𝑖
(𝐴
1
| 0) 𝜌
1𝑖
+ 𝜆𝐴
1
𝛾
𝑋
+ 𝐴
1
𝛾 = 𝜆𝑑 + 𝐴

1
𝛾,

(13)

then𝑋𝜆𝛾𝑋𝑋𝛾𝑌𝛽 ∈ 𝐶
𝑚
.

(iii) The case 𝜆 < 0 is solved likewise.

In any case, 𝑋𝛼𝑌𝛽 and 𝑋
𝛾
𝑌
𝛿 are in the same connected

component of ∇
𝑚
.

We now describe the simplicial complexes that corre-
spond to the 𝑆-degrees which are multiples of the glued
degree.

Lemma 4. Let 𝑆 be the gluing of 𝑆
1
and 𝑆

2
, 𝑑 ∈ 𝑆 the glued

degree, and 𝑑󸀠 ∈ 𝑆 \ {𝑑}. Then 𝐶
𝐴
1

𝑑
󸀠

̸= 0 ̸= 𝐶
𝐴
2

𝑑
󸀠
if and only if

𝑑
󸀠
∈ (𝑑N) \ {0}. Furthermore, the simplicial complex ∇

𝑑
󸀠 has at

least one connected component with elements in 𝐶𝐴1
𝑑
󸀠
and 𝐶𝐴2

𝑑
󸀠
.

Proof. If there exist 𝑋𝛼, 𝑌𝛽 ∈ 𝐶
𝑑
󸀠 , then 𝑑

󸀠
= ∑
𝑟

𝑖=1
𝛼
𝑖
𝑎
𝑖
=

∑
𝑡

𝑖=1
𝛽
𝑖
𝑏
𝑖
∈ 𝑆
1
∩ 𝑆
2
⊂ 𝐺(𝑆

1
) ∩ 𝐺(𝑆

2
) = 𝑑Z. Hence, 𝑑󸀠 ∈ 𝑑N.

Conversely, let 𝑑󸀠 = 𝑗𝑑 with 𝑗 ∈ N and 𝑗 > 1

and let 𝑋𝛾𝑋 − 𝑌
𝛾
𝑌 ∈ 𝐼

𝑆
be a glued binomial. It is easy to

see that 𝑋𝑗𝛾𝑋 , 𝑌𝑗𝛾𝑌 ∈ 𝐶
𝑑
󸀠 and thus {𝑋𝑗𝛾𝑋 , 𝑋(𝑗−1)𝛾𝑋𝑌𝛾𝑌} and

{𝑋
(𝑗−1)𝛾

𝑋𝑌
𝛾
𝑌 , 𝑌
𝑗𝛾
𝑌} belong to ∇

𝑑
󸀠 .

The following lemma is a combinatorial version of [11,
Lemma 9] and it is a necessary condition of Theorem 6.

Lemma 5. Let 𝑆 be the gluing of 𝑆
1
and 𝑆
2
and 𝑑 ∈ 𝑆 the glued

degree. Then the elements of 𝐶
𝑑
are pure monomials and 𝑑 ∈

Betti(𝑆).
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Proof. Theorder⪯
𝑆
defined by𝑚󸀠⪯

𝑆
𝑚 if𝑚−𝑚󸀠 ∈ 𝑆 is a partial

order on 𝑆.
Assume that there exists a mixed monomial 𝑇 ∈ 𝐶

𝑑
. By

Lemma 3, there exists a pure monomial 𝑌𝑏 in 𝐶
𝑑
such that

{𝑇, 𝑌
𝑏
} ∈ ∇

𝑑
(the proof is analogous if we consider 𝑋𝑎 with

{𝑇,𝑋
𝑎
} ∈ ∇

𝑑
). Now take 𝑇

1
= gcd(𝑇, 𝑌𝑏)−1𝑇 and 𝑌

𝑏
1 =

gcd(𝑇, 𝑌𝑏)−1𝑌𝑏. Both monomials are in𝐶
𝑑
󸀠 , where 𝑑󸀠 is equal

to𝑑minus the 𝑆-degree of gcd(𝑇, 𝑌𝑏). By Lemma 4, if𝐶𝐴1
𝑑
󸀠

̸= 0,
then 𝑑󸀠 ∈ 𝑑N, but since 𝑑󸀠≺

𝑆
𝑑 this is not possible. So, if 𝑇

1
is

a mixed monomial and 𝐶𝐴1
𝑑
󸀠
= 0, then 𝐶𝐴2

𝑑
󸀠

̸= 0. If there exists
a pure monomial in 𝐶

𝐴
2

𝑑
󸀠
connected to a mixed monomial

in 𝐶
𝑑
󸀠 , we perform the same process obtaining 𝑇

2
, 𝑌
𝑏
2 ∈

𝐶
𝑑
󸀠󸀠 with 𝑇

2
as a mixed monomial and 𝑑󸀠󸀠≺

𝑆
𝑑
󸀠. This process

can be repeated if there existed a pure monomial and amixed
monomial in the same connected component. By degree
reasons this cannot be performed indefinitely and an element
𝑑
(𝑖)

∈ Betti(𝑆) verifying that ∇
𝑑
(𝑖) is not connected having a

connected component with only mixed monomials is found.
This contradicts Lemma 3.

After examining the structure of the simplicial complexes
associatedwith glued semigroups, we enunciate a combinato-
rial characterization bymeans of the nonconnected simplicial
complexes ∇

𝑚
.

Theorem 6. The semigroup 𝑆 is the gluing of 𝑆
1
and 𝑆
2
if and

only if the following conditions are fulfilled.

(1) For all 𝑑󸀠 ∈ Betti(𝑆), any connected component of ∇
𝑑
󸀠

has at least a pure monomial.

(2) There exists a unique 𝑑 ∈ Betti(𝑆) such that 𝐶𝐴1
𝑑

̸=

0 ̸= 𝐶
𝐴
2

𝑑
and the elements in 𝐶

𝑑
are pure monomials.

(3) For all 𝑑󸀠 ∈ Betti(𝑆) \ {𝑑}with𝐶𝐴1
𝑑
󸀠

̸= 0 ̸= 𝐶
𝐴
2

𝑑
󸀠
, 𝑑󸀠 ∈ 𝑑N.

Besides, the above 𝑑 ∈ Betti(𝑆) is the glued degree.

Proof. If 𝑆 is the gluing of 𝑆
1
and 𝑆

2
, the result is obtained

from Lemmas 3, 4, and 5.
Conversely, by hypotheses 1 and 3, given that 𝑑󸀠 ∈

Betti(𝑆) \ {𝑑}, the set M(𝐼
𝑆
1

)
𝑑
󸀠 is constructed from 𝐶

𝐴
1

𝑑
󸀠
and

M(𝐼
𝑆
2

)
𝑑
󸀠 from 𝐶

𝐴
2

𝑑
󸀠
as in Construction 1. Analogously, if

𝑑 ∈ Betti(𝑆), the set M(𝐼
𝑆
)
𝑑
is obtained from the union of

M(𝐼
𝑆
1

)
𝑑
,M(𝐼
𝑆
2

)
𝑑
and the binomial𝑋𝛾𝑋−𝑌𝛾𝑌 with𝑋𝛾𝑋 ∈ 𝐶𝐴1

𝑑

and 𝑌𝛾𝑌 ∈ 𝐶𝐴2
𝑑
. Finally

∐

𝑚∈Betti(𝑆)
(M(𝐼

𝑆
1

)
𝑚
⊔M(𝐼

𝑆
2

)
𝑚
) ⊔ {𝑋

𝛾
𝑋 − 𝑌
𝛾
𝑌} (14)

is a generating set of 𝐼
𝑆
and 𝑆 is the gluing of 𝑆

1
and 𝑆
2
.

From Theorem 6 we obtain an equivalent property to
Theorem 12 in [11] by using the language of monomials and
binomials.

Corollary 7. Let 𝑆 be the gluing of 𝑆
1
and 𝑆
2
and𝑋𝛾𝑋−𝑌𝛾𝑌 ∈ 𝐼

𝑆

a glued binomial with 𝑆-degree 𝑑. The ideal 𝐼
𝑆
is minimally

generated by its indispensable binomials if and only if the
following conditions are fulfilled.

(i) The ideals 𝐼
𝑆
1

and 𝐼
𝑆
2

are minimally generated by their
indispensable binomials.

(ii) The element𝑋𝛾𝑋 − 𝑌𝛾𝑌 is an indispensable binomial of
𝐼
𝑆
.

(iii) For all 𝑑󸀠 ∈ Betti(𝑆), the elements of 𝐶
𝑑
󸀠 are pure

monomials.

Proof. Suppose that 𝐼
𝑆
is generated by its indispensable

binomials. By [10, Corollary 6], for all 𝑚 ∈ Betti(𝑆) the
simplicial complex∇

𝑚
has only two vertices. By Construction

1 ∇
𝑑
= {{𝑋

𝛾
𝑋}, {𝑌
𝛾
𝑌}} and byTheorem 6 for all 𝑑󸀠 ∈ Betti(𝑆) \

{𝑑} the simplicial ∇
𝑑
󸀠 is equal to ∇

𝐴
1

𝑑
󸀠
or ∇𝐴2
𝑑
󸀠
. In any case,

𝑋
𝛾
𝑋 − 𝑌

𝛾
𝑌 ∈ 𝐼
𝑆
is an indispensable binomial, and 𝐼

𝑆
1

, 𝐼
𝑆
2

are
generated by their indispensable binomials.

Conversely, suppose that 𝐼
𝑆
is not generated by its indis-

pensable binomials.Then, there exists 𝑑󸀠 ∈ Betti(𝑆) \ {𝑑} such
that ∇

𝑑
󸀠 has more than two vertices in at least two different

connected components. By hypothesis, there are not mixed
monomials in ∇

𝑑
󸀠 and thus

(i) if ∇
𝑑
󸀠 is equal to ∇𝐴1

𝑑
󸀠
(or ∇𝐴2
𝑑
󸀠
), then 𝐼

𝑆
1

(or 𝐼
𝑆
2

) is not
generated by its indispensable binomials;

(ii) otherwise, 𝐶𝐴1
𝑑
󸀠

̸= 0 ̸= 𝐶
𝐴
2

𝑑
󸀠
and by Lemma 4, 𝑑󸀠 = 𝑗𝑑

with 𝑗 ∈ N, therefore 𝑋
(𝑗−1)𝛾

𝑋𝑌
𝛾
𝑌 ∈ 𝐶

𝑑
󸀠 which

contradicts the hypothesis.

We conclude that 𝐼
𝑆
is generated by its indispensable

binomials.

The following example taken from [5] illustrates the above
results.

Example 8. Let 𝑆 ⊂ N2 be the semigroup generated by the set

{(13, 0) , (5, 8) , (2, 11) , (0, 13) , (4, 4) , (6, 6) , (7, 7) , (9, 9)} .

(15)

In this case, Betti(𝑆) is

{(15, 15) , (14, 14) , (12, 12) , (18, 18) ,

(10, 55) , (15, 24) , (13, 52) , (13, 13)} .

(16)

Using the appropriated notation for the indeterminates in
the polynomial ring K[𝑥

1
, . . . , 𝑥

4
, 𝑦
1
, . . . , 𝑦

4
] (𝑥
1
, 𝑥
2
, 𝑥
3
, and

𝑥
4
for the first four generators of 𝑆 and 𝑦

1
, 𝑦
2
, 𝑦
3
, 𝑦
4
for the

others), the simplicial complexes associatedwith the elements
in Betti(𝑆) are those that appear in Figure 1. From Figure 1
and by using Theorem 6, the semigroup 𝑆 is the gluing of
⟨(13, 0), (5, 8), (2, 11), (0, 13)⟩ and ⟨(4, 4), (6, 6), (7, 7), (9, 9)⟩

and the glued degree is (13, 13). From Corollary 7, the ideal
𝐼
𝑆
is not generated by its indispensable binomials (𝐼

𝑆
has only

four indispensable binomials).
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= {y

2

1

y

3

, y
2

y
4

}

∇
(15,15)

= {y

2

1

y

2

, y

3

2

, y
1

y

2

3

, y

2

4

}

∇
(18,18)

= {y

2

1

y

2

, y

3

2

}

∇
(14,14)

∇
(15,24)

= {y

3

1

, y

2

2

}

∇
(12,12)

∇
(13,52)

= {x
1

x
4

, y
1

y
4

, y
2

y
3

}

∇
(13,13)

= {x

2

1

x

4

, x

5

3

}

∇
(10,55)

C
(13,52)

= {x
2

x

4

3

, x
1

x

4

4

,

x

3

4

y
1

y
4

, x

3

4

y
2

y
3

}

= {x
1

x
2

x
3

, x

3

2

,

x
3

y
1

y
4

, x
3

y
2

y
3

}

Y
s

Y
s

Y
s

Y
s

Y
s

Y
s

Y
s

X
s

X
s

X
s

X
s

C
(15,15)

C
(14,14)

C
(12,12)

C
(10,55)

C
(18,18)

C
(15,24) C

(13,13)

Figure 1: Nonconnected simplicial complexes associated with Betti(𝑆).

4. Generating Glued Semigroups

In this section, an algorithm to obtain examples of glued
semigroups is given. Consider 𝐴

1
= {𝑎
1
, . . . , 𝑎

𝑟
} and 𝐴

2
=

{𝑏
1
, . . . , 𝑏

𝑡
} as two minimal generator sets of the semigroups

𝑇
1
and 𝑇

2
and let 𝐿

𝑗
= {𝜌
𝑗𝑖
}
𝑖
be a basis of ker𝑇

𝑗
with 𝑗 = 1, 2.

Assume that 𝐼
𝑇
1

and 𝐼
𝑇
2

are nontrivial proper ideals of their
corresponding polynomial rings. Consider 𝛾

𝑋
and 𝛾
𝑌
be two

nonzero elements in N𝑟 and N𝑡, respectively, (note that 𝛾
𝑋
∉

ker𝑇
1
and 𝛾
𝑌
∉ ker𝑇

2
because these semigroups are reduced)

and the integer matrix

𝐴 = (

𝐿
1

0

0 𝐿
2

𝛾
𝑋

−𝛾
𝑌

) . (17)

Let 𝑆 be a semigroup such that ker 𝑆 is the lattice generated
by the rows of matrix𝐴. This semigroup can be computed by
using the Smith Normal Form (see [1, Chapter 3]). Denote by
𝐵
1
, 𝐵
2
two sets of cardinality 𝑟 and 𝑡, respectively, satisfying

𝑆 = ⟨𝐵
1
, 𝐵
2
⟩ and ker(⟨𝐵

1
, 𝐵
2
⟩) is generated by the rows of 𝐴.

The following proposition shows that the semigroup 𝑆

satisfies one of the necessary conditions to be a glued
semigroup.

Proposition 9. The semigroup 𝑆 verifies 𝐺(⟨𝐵
1
⟩) ∩ 𝐺(⟨𝐵

2
⟩) =

(𝐵
1
𝛾
𝑋
)Z = (𝐵

2
𝛾
𝑌
)Z with 𝑑 = 𝐵

1
𝛾
𝑋
∈ ⟨𝐵
1
⟩ ∩ ⟨𝐵

2
⟩.

Proof. Use that ker 𝑆 has a basis as (4) and proceed as in the
proof of the necessary condition of Proposition 2.

Because 𝐵
1
∪ 𝐵
2
may not be a minimal generating set,

this condition does not assure that 𝑆 is a glued semigroup.
For instance, taking the numerical semigroups 𝑇

1
= ⟨3, 5⟩,

𝑇
2
= ⟨2, 7⟩, and (𝛾

𝑋
, 𝛾
𝑌
) = (1, 0, 2, 0), the matrix obtained

from formula (17) is

(

5 −3 0 0

0 0 7 −2

1 0 −2 0

) , (18)

and 𝐵
1
∪ 𝐵
2
= {12, 20, 6, 21} is not a minimal generating set.

The following result solves this issue.

Corollary 10. The semigroup 𝑆 is a glued semigroup if
𝑟

∑

𝑖=1

𝛾
𝑋𝑖
> 1,

𝑡

∑

𝑖=1

𝛾
𝑌𝑖
> 1. (19)

Proof. Suppose that the set of generators 𝐵
1
∪ 𝐵
2
of 𝑆

is nonminimal and thus one of its elements is a natural
combination of the others. Assume that this element is the
first of 𝐵

1
∪ 𝐵
2
and then there exist 𝜆

2
, . . . , 𝜆

𝑟+𝑡
∈ N such

that 𝐵
1
(1, −𝜆

2
, . . . , −𝜆

𝑟
) = 𝐵

2
(𝜆
𝑟+1
, . . . , 𝜆

𝑟+𝑡
) ∈ 𝐺(⟨𝐵

1
⟩) ∩

𝐺(⟨𝐵
2
⟩). By Proposition 9, there exists 𝜆 ∈ Z satisfying

𝐵
1
(1, −𝜆

2
, . . . , −𝜆

𝑟
) = 𝐵

2
(𝜆
𝑟+1
, . . . , 𝜆

𝑟+𝑡
) = 𝐵

1
(𝜆𝛾
𝑋
). Since

𝐵
2
(𝜆
𝑟+1
, . . . , 𝜆

𝑟+𝑡
) ∈ 𝑆, 𝜆 ≥ 0 and thus

] = (1 − 𝜆𝛾
𝑋1
, −𝜆
2
− 𝜆𝛾
𝑋2
, . . . , −𝜆

𝑟
− 𝜆𝛾
𝑋𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤0

)

∈ ker (⟨𝐵
1
⟩) = ker𝑇

1
,

(20)

with the following cases.

(i) If 𝜆𝛾
𝑋1

= 0, then𝑇
1
is not minimally generated which

it is not possible by hypothesis.
(ii) If 𝜆𝛾

𝑋1
> 1, then 0 > ] ∈ ker𝑇

1
, but this is not

possible because 𝑇
1
is a reduced semigroup.

(iii) If 𝜆𝛾
𝑋1

= 1, then 𝜆 = 𝛾
𝑋1

= 1 and

] = (0, −𝜆
2
− 𝛾
𝑋2
, . . . , −𝜆

𝑟
− 𝛾
𝑋𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤0

) ∈ ker𝑇
1
. (21)

If 𝜆
𝑖
+ 𝛾
𝑋𝑖

̸= 0 for some 𝑖 = 2, . . . , 𝑟, then 𝑇
1
is not a

reduced semigroup.This implies that 𝜆
𝑖
= 𝛾
𝑋𝑖
= 0 for

all 𝑖 = 2, . . . , 𝑟.

We have just proved that 𝛾
𝑋
= (1, 0, . . . , 0). In the general

case, if 𝑆 is not minimally generated it is because either
𝛾
𝑋
or 𝛾
𝑌
are elements in the canonical bases of N𝑟 or N𝑡,

respectively. To avoid this situation, it is sufficient to take 𝛾
𝑋

and 𝛾
𝑌
satisfying∑𝑟

𝑖=1
𝛾
𝑋𝑖
> 1 and ∑𝑡

𝑖=1
𝛾
𝑌𝑖
> 1.
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From the above result we obtain a characterization of
glued semigroups: 𝑆 is a glued semigroup if and only if ker 𝑆
has a basis as (4) satisfies Condition (19).

Example 11. Let 𝑇
1
= ⟨(−7, 2), (11, 1), (5, 0), (0, 1)⟩ ⊂ Z2 and

𝑇
2
= ⟨3, 5, 7⟩ ⊂ N be two reduced affine semigroups. We

compute their associated lattices

ker𝑇
1
= ⟨(1, 2, −3, −4) , (2, −1, 5, −3)⟩ ,

ker𝑇
2
=⟨(−4, 1, 1) , (−7, 0, 3)⟩.

(22)

If we take 𝛾
𝑋
= (2, 0, 2, 0) and 𝛾

𝑌
= (1, 2, 1), the matrix 𝐴 is

(

1 2 −3 −4 0 0 0

2 −1 5 −3 0 0 0

0 0 0 0 −4 1 1

0 0 0 0 −7 0 3

2 0 2 0 −1 −2 −1

) (23)

and the semigroup 𝑆 ⊂ Z
4
× Z2 is generated by

{

{

{

(1, −5, 35), (3, 12, −55), (1, 5, −25), (0, 1, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
1

,

(2, 0, 3), (2, 0, 5), (2, 0, 7)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
2

}

}

}

.

(24)

The semigroup 𝑆 is the gluing of the semigroups ⟨𝐵
1
⟩ and

⟨𝐵
2
⟩ and ker 𝑆 is generated by the rows of the above matrix.

The ideal 𝐼
𝑆
⊂ C[𝑥

1
, . . . , 𝑥

4
, 𝑦
1
, . . . , 𝑦

3
] is generated (see [12]

to compute 𝐼
𝑆
when 𝑆 has torsion) by

{

{

{

𝑥
1
𝑥
8

3
𝑥
4
− 𝑥
3

2
, 𝑥
1
𝑥
2

2
− 𝑥
3

3
𝑥
4

4
, 𝑥
2

1
𝑥
5

3
− 𝑥
2
𝑥
3

4
, 𝑥
3

1
𝑥
2
𝑥
2

3
− 𝑥
7

7
,

𝑦
1
𝑦
3
− 𝑦
2

2
, 𝑦
3

1
𝑦
2
− 𝑦
2

3
, 𝑦
4

1
− 𝑦
2
𝑦
3
, 𝑥
2

1
𝑥
2

3
− 𝑦
5

1
𝑦
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

glued binomial

}

}

}

;

(25)

then 𝑆 is really a glued semigroup.

4.1. Generating Affine Glued Semigroups. From Example 11
it be can deduced that the semigroup 𝑆 is not necessarily
torsion-free. In general, a semigroup 𝑇 is affine (or equiva-
lently it is torsion-free) if and only if the invariant factors (the
invariant factors of a matrix are the diagonal elements of its
Smith Normal Form (see [13, Chapter 2] and [1, Chapter 2]))
of the matrix whose rows are a basis of ker𝑇 are equal to one.
Assume that zero-columns of the Smith Normal Form of a
matrix are located on its right side. We now show conditions
for 𝑆 being torsion-free.

Take 𝐿
1
and 𝐿

2
as the matrices whose rows form a basis

of ker𝑇
1
and ker𝑇

2
, respectively, and let 𝑃

1
, 𝑃
2
, 𝑄
1
, and

𝑄
2
be some matrices with determinant ±1 (i.e., unimodular

matrices) such that 𝐷
1
= 𝑃
1
𝐿
1
𝑄
1
and 𝐷

2
= 𝑃
2
𝐿
2
𝑄
2
are the

Smith Normal Form of 𝐿
1
and 𝐿

2
, respectively. If 𝑇

1
and 𝑇

2

are two affine semigroups, the invariant factors of 𝐿
1
and 𝐿

2

are equal to 1. Then

(

𝐷
1

0

0 𝐷
2

𝛾
󸀠

𝑋
𝛾
󸀠

𝑌

) = (

𝑃
1

0 0

0 𝑃
2
0

0 0 1

)(

𝐿
1

0

0 𝐿
2

𝛾
𝑋

−𝛾
𝑌

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=:𝐴

(
𝑄
1

0

0 𝑄
2

) ,

(26)

where 𝛾󸀠
𝑋

= 𝛾
𝑋
𝑄
1
and 𝛾

󸀠

𝑌
= −𝛾
𝑌
𝑄
2
. Let 𝑠

1
and 𝑠
2
be the

numbers of zero-columns of 𝐷
1
and 𝐷

2
(𝑠
1
, 𝑠
2
> 0 because

𝑇
1
and 𝑇

2
are reduced, see [1, Theorem 3.14]).

Lemma 12. The semigroup 𝑆 is an affine semigroup if and only
if

gcd ({𝛾󸀠
𝑋𝑖
}
𝑟

𝑖=𝑟−𝑠
1

∪ {𝛾
󸀠

𝑌𝑖
}
𝑡

𝑖=𝑡−𝑠
2

) = 1. (27)

Proof. With the conditions fulfilled by𝑇
1
,𝑇
2
, and (𝛾

𝑋
, 𝛾
𝑌
), the

necessary and sufficient condition for the invariant factors of
𝐴 to be all equal to one is gcd({𝛾󸀠

𝑋𝑖
}
𝑟

𝑖=𝑟−𝑠
1

∪{𝛾
󸀠

𝑌𝑖
}
𝑡

𝑖=𝑡−𝑠
2

) = 1.

The following corollary gives the explicit conditions that
𝛾
𝑋
and 𝛾
𝑌
must satisfy to construct an affine semigroup.

Corollary 13. The semigroup 𝑆 is an affine glued semigroup if
and only if

(1) 𝑇
1
and 𝑇

2
are two affine semigroups;

(2) (𝛾
𝑋
, 𝛾
𝑌
) ∈ N𝑟+𝑡;

(3) ∑𝑟
𝑖=1

𝛾
𝑋𝑖
, ∑
𝑡

𝑖=1
𝛾
𝑌𝑖
> 1;

(4) there exist 𝑓
𝑟−𝑠
1

, . . . , 𝑓
𝑟
, 𝑔
𝑡−𝑠
2

, . . . , 𝑔
𝑡
∈ Z such that

(𝑓
𝑟−𝑠
1

, . . . , 𝑓
𝑟
) ⋅ (𝛾
󸀠

𝑋(𝑟−𝑠1)
, . . . , 𝛾

󸀠

𝑋𝑟
)

+ (𝑔
𝑡−𝑠
2

, . . . , 𝑔
𝑡
) ⋅ (𝛾
󸀠

𝑌(𝑡−𝑠2)
, . . . , 𝛾

󸀠

𝑌𝑡
) = 1.

(28)

Proof. It is trivial by the given construction, Corollary 10 and
Lemma 12.

Therefore, to obtain an affine glued semigroup it is
enough to take two affine semigroups and any solution (𝛾

𝑋
,

𝛾
𝑌
) of the equations of the above corollary.

Example 14. Let 𝑇
1
and 𝑇

2
be the semigroups of Example 11.

We compute two elements 𝛾
𝑋

= (𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
) and 𝛾

𝑌
=

(𝑏
1
, 𝑏
2
, 𝑏
3
) in order to obtain an affine semigroup. First of

all, we perform a decomposition of the matrix as (26) by
computing the integer Smith Normal Form of 𝐿

1
and 𝐿

2
:
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(

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

𝑎
1
𝑎
1
− 2𝑎
2
− 𝑎
3
−7𝑎
1
+ 11𝑎
2
+ 5𝑎
3
2𝑎
1
+ 𝑎
2
+ 𝑎
4
−𝑏
1
𝑏
1
+ 2𝑏
2
+ 3𝑏
3
−3𝑏
1
− 5𝑏
2
− 7𝑏
3

)

=(

1 0 0 0 0

2 −1 0 0 0

0 0 −2 1 0

0 0 7 −4 0

0 0 0 0 1

)(

1 2 −3 −4 0 0 0

2 −1 5 −3 0 0 0

0 0 0 0 −4 1 1

0 0 0 0 −7 0 3

𝑎
1
𝑎
2

𝑎
3

𝑎
4
−𝑏
1
−𝑏
2
−𝑏
3

)
(
(
(

(

1 1 −7 2 0 0 0

0 −2 11 1 0 0 0

0 −1 5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 −1 3

0 0 0 0 0 −2 5

0 0 0 0 0 −3 7

)
)
)

)

.

(29)

Second, by Corollary 13, we must find a solution to the
system:

𝑎
1
+ 𝑎
2
+ 𝑎
3
+ 𝑎
4
> 1,

𝑏
1
+ 𝑏
2
+ 𝑏
3
> 1,

𝑓
1
, 𝑓
2
, 𝑔
1
∈ Z,

𝑓
1
(−7𝑎
1
+ 11𝑎
2
+ 5𝑎
3
) + 𝑓
2
(2𝑎
1
+ 𝑎
2
+ 𝑎
4
)

+ 𝑔
1
(−3𝑏
1
− 5𝑏
2
− 7𝑏
3
) = 1,

(30)

with 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑏
1
, 𝑏
2
, 𝑏
3
∈ N. Such solution is computed (in

less than a second) using FindInstance of Wolfram Math-
ematica (see [14]):

FindInstance [(−7𝑎
1
+ 11𝑎
2
+ 5𝑎
3
) ∗ 𝑓
1

+ (2𝑎
1
+ 𝑎
2
+ 𝑎
4
) ∗ 𝑓
2

+ (−3𝑏
1
− 5𝑏
2
− 7𝑏
3
) ∗ 𝑔
1
== 1

&&𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 > 1

&&𝑏
1
+ 𝑏
2
+ 𝑏
3
> 1&&𝑎

1
≥ 0&&𝑎

2
≥ 0

&&𝑎
3
≥ 0&&𝑎

4
≥ 0&&𝑏

1
≥ 0

&&𝑏
2
≥ 0&&𝑏

3
≥ 0,

{𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑓
1
, 𝑓
2
, 𝑔
1
} ,

Integers]

⇊

{{𝑎
1
󳨀→ 0, 𝑎

2
󳨀→ 0, 𝑎

3
󳨀→ 3, 𝑎

4
󳨀→ 0, 𝑏

1
󳨀→ 1,

𝑏
2
󳨀→ 1, 𝑏

3
󳨀→ 0, 𝑓

1
󳨀→ 1, 𝑓

2
󳨀→ 0, 𝑔

1
󳨀→ 0}} .

(31)

We now take 𝛾
𝑋
= (0, 0, 3, 0) and 𝛾

𝑌
= (1, 1, 0), and con-

struct the matrix

𝐴 =(

1 2 −3 −4 0 0 0

2 −1 5 −3 0 0 0

0 0 0 0 −4 1 1

0 0 0 0 −7 0 3

0 0 3 0 −1 −1 0

). (32)

We have the affine semigroup 𝑆 ⊂ Z2 which is minimally
generated by

{

{

{

(2, −56) , (1, 88) , (0, 40) , (1, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
1

, (0, 45) , (0, 75) , (0, 105)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
2

}

}

}

(33)
satisfying that ker 𝑆 is generated by the rows of𝐴 and it is the
result of gluing the semigroups ⟨𝐵

1
⟩ and ⟨𝐵

2
⟩. The ideal 𝐼

𝑆
is

generated by

{

{

{

𝑥
1
𝑥
8

3
𝑥
4
− 𝑥
3

2
, 𝑥
1
𝑥
2

2
− 𝑥
3

3
𝑥
4

4
, 𝑥
2

1
𝑥
5

3
− 𝑥
2
𝑥
3

4
, 𝑥
3

1
𝑥
2
𝑥
2

3
− 𝑥
7

4
,

𝑦
1
𝑦
3
− 𝑦
2

2
, 𝑦
3

1
𝑦
2
− 𝑦
2

3
, 𝑦
4

1
− 𝑦
2
𝑦
3
, 𝑥
3

3
− 𝑦
1
𝑦
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

glued binomial

}

}

}

;

(34)
therefore, 𝑆 is a glued semigroup.

All glued semigroups have been computed by using our
program Ecuacioneswhich is available in [15] (this program
requires Wolfram Mathematica 7 or above to run).
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