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This paper solves the optimal portfolio selection model under the framework of the prospect theory proposed by Kahneman and
Tversky in the 1970s with decision rule replaced by the 𝑔-expectation introduced by Peng.Thismodel was established in the general
continuous time setting and firstly adopted the 𝑔-expectation to replace Choquet expectation adopted in the work of Jin and
Zhou, 2008. Using different S-shaped utility functions and 𝑔-functions to represent the investors’ different uncertainty attitudes
towards losses and gains makes the model not only more realistic but also more difficult to deal with. Although the models are
mathematically complicated and sophisticated, the optimal solution turns out to be surprisingly simple, the payoff of a portfolio of
two binary claims. Also I give the economic meaning of my model and the comparison with that one in the work of Jin and Zhou,
2008.

1. Introduction

In the area of optimal financial portfolio selection, the
expected utility maximization theory (EUT), developed by
Neumann and Morgenstern [1], has been the most impor-
tant decision rule for a long time. During the past twenty
years, portfolio choice theory has been developed to both
discrete time and continuous timemodels in dynamic setting.
Markowitz [2] laid down the basement for modern financial
portfolio selection theory by his pioneer work on single-
period mean-variance portfolio selection. Li and Ng [3]
extended the Markowitz model to the dynamic setting. El-
Karoui et al. [4] considered a portfolio-consumption model
where the objective is to optimize the recursive utility
of consumption and terminal wealth, and they adopted
the terminal perturbation method to solve this problem.
Bielecki et al. [5] employed the dual approach to deal
with a continuous time portfolio selection model without
negativity constraint on wealth process. Pliska had earlier
introduced this approach for discrete time models in [6].
In [7], Ji and Zhou firstly used the terminal perturbation
method and dual approach together, and they reformulated
FBSDE controlled system as a backward system by taking the
terminal condition of the forward state as a control variable.
By applying Ekeland’s variational principle, they could deal
with additional constraint without convexity assumption on

the coefficients of the backward approach to continuous time
mean-variance portfolio selection problem in a complete
market. Until now, this terminal perturbation method has
been widely used in many control problems; see [8–16]. As
for these problems, there have been essentially two classical
approaches developed to solve in the utility model: one is the
stochastic control or the dynamic programming approach,
firstly developed by Merton [17, 18], which transforms the
problem into solving a partial differential equation called the
Hamilton-Jacob-Bellman (HJB) equation. The other one was
developed by Harrison and Kreps [19] called the martingale
approach.

Although the optimal portfolio selection models under
the expected utility theory have been well solved, the risk
preference measure or the expected utility theory has some
basic tenets which has systematically violated the reality. In
other words, the EUT cannot be able to describe the way
people make decision in the real world clearly and precisely.
Firstly, for example, EUT has an underlying assumption
that decision makers are rational and uniformly risk averse
when facing uncertainties. But in the real world, people are
risk averse on gains and risk taking on losses and appear
significantly more sensitive to losses than to gains. Secondly
EUT thinks that everyone is able to objectively evaluate prob-
abilities, but the fact is that people usually overweight small
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probabilities and underweight large probabilities. Thirdly,
in EUT, investors evaluate wealth according to final asset
position, but evidence shows that people evaluate assets on
gains and losses, not on final wealth position. The difference
between the theory and the practice leads to many para-
doxes and puzzles that the EUT fails to explain, including
the famous Allais paradoxes, Ellsberg paradoxes, and the
equity premium puzzle. Hence, many alternative preference
measures have been put forth. For example, goal reaching,
dual theory of choice, and Lope’s SP/Amodel. However, these
new models which have successfully solved some paradoxes
and puzzles would create new ones.

In 1970s, Kahneman and Tversky proposed the prospect
theory (PT) for decision making under uncertainty [20],
incorporating human emotions and psychology into their
theory. The key elements of this Nobel-prize-winning theory
are as follows.

(1) A reference point in wealth which defines gains and
losses.

(2) Value function, being similar with utility function,
which is concave for gains, convex for losses, and
steeper for losses than for gains.

(3) Nonlinear probability distortion, that is, a trans-
formation of the probability scale, enlarging small
probabilities and diminishing large probabilities.

The three points above have given PT the power to
describe a man’s risk attitude and emotions more clearly. So
the model under the prospect theory is closer to the reality
and the research on it is very interesting and important.

In this framework, owing to the discontinuity and non-
global convexity of the S-shaped value function, Lagrange
method cannot be used. Worse still, the coupling of these
two ill-behaved features greatly amplifies the difficulties
of the problem. Berkelaar et al. [21] did some research
on continuous setting, but they neglected the probability
distortion, which is the main difficulty for the problem.
Jin et al. [22, 23] studied the continuous model, with both
the S-shaped value function and the nonlinear probability
distortion. The probability distortions involved the nonlin-
ear Choquet expectation instead of the conventional linear
expectation. Using Choquet expectation, the thought in
theory of Kahneman and Tversky is described.

This paper extends the thought of prospect theory to
another nonlinear case. I replace the Choquet expectation
in [22] by another nonlinear expectation, 𝑔-expectation.
Mathematically 𝑔-expectation and Choquet integral are
two different ways to describe nonlinear case, where 𝑔-
expectation is more nonlinear in some sense. It is shown
that they coincide only when they become linear expectation;
see (Chen and Selum [24]). Although Choquet expectation
has many applications in statistics, economics, and finance,
it is difficult to define conditional Choquet expectation in
terms of Choquet expectation, while it is easy to define
conditional expectation via 𝑔-expectation. Then there are
some important applications for 𝑔-expectation in various
areas especially in finance. For example, the ambiguity in
financial model can be described by the 𝑔-expectation; see

Chen and Epstein [25].The𝑔-probabilities and𝑔-expectation
have also been found to have intimate connection with the
rapidly developed dynamic risk measure theory. Choquet et
al. [26] showed that in dynamic setting, risk measures could
be formulated via the 𝑔-expectation.

This paper firstly adopts 𝑔-expectation and 𝑔-probability
to describe an ambiguous environment. The only difference
from prospect theory framework in Jin and Zhou [22] is
the decision rule when cost constraint is linear. In prospect
theory, there is only a reference or “real” probability in the
world, where an agent has a distortion to this probability to
describe his attitude. Here, the economic meaning to use 𝑔-
expectation instead of Choquet integral is that an agent faces
an ambiguous world, where there may be a set of priors.
So ambiguous attitude replaces the probability distortion.
Actually the model I build is a general form, so it can feature
many other cases when specific 𝑔-function is chosen, which
can be searched in the future.

This paper is organized as follows. Section 2 gives out the
background of the problem and the optimal portfolio selec-
tion model under the prospect theory and 𝑔-expectation. In
Section 3, the original model is divided into three subprob-
lems owing to the discontinuity, nonconvexity maximization
problem. Also this section proves the equivalence between
the original problem and the three subproblems. Section 4
solves out the subproblemswith the perturbationmethod and
Ekeland’s variational principle. Section 5 analyzes the form
of the optimal solution under two simple but fundamental
examples, gives out the economic meaning under the model,
and compares our model with the one in Jin and Zhou [22].
The final part presents some concluding comments.

2. The Model under Prospect Theory
and 𝑔-Expectation

In this paper 𝑇 is a fixed terminal time, and 𝑊(⋅) =

(𝑊
1
(⋅), . . . ,𝑊

𝑚
(⋅))
 is a standard 𝑚-dimensional Brownian

motion defined on a complete filtration probability space
(Ω,F, 𝑃). The information structure is given by a filtration
𝐹 = {F

𝑡
}
0≤𝑡≤𝑇

, which is generated by 𝑊(⋅) and augmented
by all the 𝑃-null sets. According to Karatzas and Shreve [27],
they define a complete capital market in continuous setting:
given 𝑚 kinds of risky assets, for example, 𝑚 kinds of stocks
whose price processes are written as 𝑆

𝑖
(𝑡) 𝑖 = 1, 2, . . . , 𝑚 and

given a riskless asset, for example, the bank account, whose
price process is written as 𝑆

0
(𝑡).These processes of𝑚+1 kinds

of assets satisfy the equations below:

𝑑𝑆
𝑖
(𝑡) = 𝑆

𝑖
(𝑡) [

[

𝑏
𝑖
(𝑡) 𝑑𝑡 +

𝑚

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡) 𝑑𝑊

𝑗
(𝑡)]

]

,

𝑆
𝑖
(0) = 𝑠

𝑖
≥ 0,

𝑑𝑆
0
(𝑡) = 𝑆

0
(𝑡) 𝑟 (𝑡) 𝑑𝑡,

𝑆
0
(0) = 𝑠

0
≥ 0; 𝑡 ∈ [0, 𝑇] ,

(1)
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where 𝑏
𝑖
(⋅) and 𝜎

𝑖𝑗
(⋅), 𝑖 = 1, 2, . . . , 𝑚, show the appreciation

rate and the disperse rate of risky assets, respectively. They
are allF

𝑡
-progressively measurable and satisfy

∫

𝑇

0

[

[

𝑚

∑

𝑖=1

𝑏𝑖 (𝑡)
 +

𝑚

∑

𝑖,𝑗=1


𝜎
𝑖𝑗
(𝑡)


2
]

]

𝑑𝑡 < +∞, a.s, (2)

and 𝑟(𝑡) is the interest rate which is an adapted progressively
measurable random process satisfying ∫𝑇

0
|𝑟(𝑡)|𝑑𝑡 < ∞, a.s.

Accordingly, in a complete market the total wealth process
which is replicated with a portfolio of the 𝑚 + 1 assets can
be represented by backward stochastic differential equations
(BSDE) introduced in [28]

−𝑑𝑥 (𝑡) = 𝑔
0
(𝑥 (𝑡) , 𝑧 (𝑡) , 𝑡) 𝑑𝑡 − 𝑧


(𝑡) 𝑑𝑊 (𝑡) ,

𝑥 (𝑇) = 𝜉,

(3)

where 𝜉 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃) is the terminal wealth at 𝑇, 𝑔

0
=

(−𝑟(𝑡)𝑥(𝑡) − (𝑏(𝑡) − 𝑟(𝑡))

𝜎
−1
(𝑡)𝑧(𝑡)), and 𝑧(𝑡) = 𝜎(𝑡)𝜋(𝑡).

Here, 𝑥(𝑡) is the value process replicated by constructing
a self-financing portfolio 𝜋(𝑡) with 𝑚 kinds of risky assets
whose nonsingular volatility matrix is 𝜎(𝑡). This wealth
process means that there are no transaction costs including
price effects in the market. In fact, in a standard complete
market, it is possible to construct a portfolio which attains as
final wealth the amount 𝜉, as in (3).Then, the dynamics of the
value of the replicating portfolio 𝑥 are given by a BSDE with
linear function 𝑔

0
, with 𝑧(𝑡) (or in fact 𝜋(𝑡)) corresponding to

the hedging portfolio. So, the existence of solution restricted
to square-integrable ones of (3) should be guaranteed. In
[29], Pardoux and Peng got the existence and uniqueness
of solutions under some conditions which will be showed
later, and because of the uniqueness of solutions, there is only
one price as well as hedging portfolio so that valuation of
the terminal wealth (e.g., contingent claim) is well possessed
without arbitrage.

Furthermore, the 𝑔
0
can be expended to the nonlinear

form. For example, people can allocate part of the capital to
buy the call option, or people can assume the rates between
loan and deposit are different. An interesting example of the
nonlinear wealth equation is the optimal portfolio choice for
large investor that is considered in [30]. A large investor’s
portfolio choices can affect the securities’ price process. The
impact of the investor’s position on price is specified exoge-
nously and the price may rise because of size or because of
other agents in themarket believing that the large investor has
superior information. In [30], the respective asset price 𝑆

0
(⋅)

and 𝑆
1
, . . . , 𝑆

𝑚
(⋅) are described by the following equations:

𝑑𝑆
0
(𝑡) = 𝑆

0
(𝑡) [𝑟 (𝑡) + 𝑙

0
(𝑥 (𝑡) , 𝜋 (𝑡))] 𝑑𝑡,

𝑆
0
(0) = 𝑠

0
≥ 0,

𝑑𝑆
𝑖
(𝑡) = 𝑆

𝑖
(𝑡) [

[

𝑏
𝑖
(𝑡) 𝑑𝑡 + 𝑙

𝑖
(𝑥 (𝑡) , 𝜋 (𝑡)) 𝑑𝑡

+

𝑚

∑

𝑗=1

𝜎
𝑖𝑗
(𝑡) 𝑑𝑊

𝑗
(𝑡)]

]

,

𝑆
𝑖
(0) = 𝑠

𝑖
≥ 0; 𝑡 ∈ [0, 𝑇] ,

(4)

where 𝑙
𝑖
, 𝑖 = 1, . . . , 𝑚, are functions describing the effect of

the wealth and the strategies possessed by the large investor.
The corresponding wealth process is governed by

−𝑑𝑥 (𝑡) = 𝑔
0
(𝑥 (𝑡) , 𝑧 (𝑡) , 𝑡) − 𝑧 (𝑡) 𝑑𝑡

= 𝑔
0
(𝑥 (𝑡) , 𝜎


(𝑡) 𝜋 (𝑡) , 𝑡) 𝑑𝑡

− 𝜋

(𝑡) 𝜎 (𝑡) 𝑑𝑊 (𝑡) ,

𝑥 (0) = 𝑥
0
≥ 0,

(5)

where

𝑔
0
(𝑥, 𝜎

𝜋, 𝑡) = −𝑟

𝑡
𝑥 − (𝑥 − 𝜋


𝐼) 𝑙
0
(𝑥, 𝜋)

− 𝜋

[𝑏
𝑡
− 𝑟
𝑡
𝐼 + 𝑙 (𝑥, 𝜋)] ,

𝜎 (𝑡) := (𝜎
𝑖𝑗
(𝑡))
𝑚∗𝑚

(6)

is a volatility process.
In this wealth equation, the function 𝑔

0
(𝑥, 𝑧, 𝑡) is nonlin-

ear about 𝑥(𝑡) and 𝑧(𝑡), where 𝑧(𝑡) := 𝜋

(𝑡)𝜎(𝑡) and 𝑧(𝑡) is

R𝑚-valued. So clearly I can break through the limit of the
linearwealth equation; then I can incorporatemore situations
which are closer to the real market.

As I see, BSDE can formmore generalized kinds of finan-
cial models. In fact, BSDE can define generalized stochastic
differential utility (see [28]) and model drift uncertainty by
using a dynamic nonlinear expectation called 𝑔-expectation
(see [25]). The key point is that in BSDE the time consistency
related to dynamic model is kept because of the property of
solutions. Generally, I need several assumptions about BSDE
for getting its solution.

Assumption 1. Let 𝑔 = 𝑔(𝜔, 𝑥, 𝑧, 𝑡) : Ω×R×R𝑚×[0, 𝑇] → R

be a function satisfying the following:

𝐿
1
: 𝑔 is uniformly Lipschitz with (𝑥, 𝑧);

𝐿
2
: 𝑔(𝑥, 𝑧, 𝑡) is continuous about 𝑡 and 𝐸[∫

𝑇

0
𝑔
2
(0, 0,

𝑡)𝑑𝑡] < +∞;
𝐿
3
: 𝑔(𝑥, 0, 𝑡) = 0, ∀(𝜔, 𝑥, 𝑡) ∈ Ω × 𝑅

1
× [0, 𝑇];

𝐿
4
: 𝑔(0, 0, 𝑡) ≡ 0, ∀(𝜔, 𝑡) ∈ Ω × [0, 𝑇].

I can say that for any given 𝜉 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑅) and 𝑔

satisfying 𝐿
1
, 𝐿
2
, the solution of the backward stochastic

differential equation satisfying 𝑋(𝑇) = 𝜉 is formed by a pair
of uniquely adapted solutions (𝑥(⋅), 𝑧(⋅)) ∈ 𝐿

2

F
𝑡

(0, 𝑇;R1) ×

𝐿
2

F
𝑡

(0, 𝑇;R1×𝑚); see [29].
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Then I will give the definition of 𝑔-expectation and
dynamic pricing mechanism correspondence to a BSDE.

Definition 2. Given 𝑔 satisfying 𝐿
1
–𝐿
3
and 𝜉 ∈ 𝐿2(Ω,F

𝑇
, 𝑃),

the𝑔-expectation of 𝜉 can be defined asE
𝑔
[𝜉], whereE

𝑔
[𝜉] =

𝑥(0) in (3) with respect to 𝑔. The properties and applications
of 𝑔-expectation can be read in [28].

Definition 3. Given 𝑟 ≤ 𝑡 ≤ 𝑇, and 𝑥(𝑡) ∈ 𝐿
2
(Ω,F

𝑡
, 𝑃),

𝑔(𝑡, 𝑥, 𝑧) satisfies 𝐿
1
, 𝐿
2
, and 𝐿

4
. Considering the BSDE (3)

above with respect to function 𝑔 and terminal claim 𝑥(𝑡), I
will define the dynamic pricingmechanism from [31] by Peng
as follows:

𝐺
𝑟,𝑡 [𝑥 (𝑡)] = 𝑥 (𝑟) : 𝐿

2
(Ω,F

𝑡
, 𝑃) → 𝐿

2
(Ω,F

𝑟
, 𝑃) . (7)

Peng proves that the dynamic pricing mechanism has the
following properties:

(1) 𝐺
𝑡
1
,𝑡
[𝑥(𝑡)] = 𝐺

𝑡
1
,𝑡
2

[𝐺
𝑡
2
,𝑡
[𝑥(𝑡)]] for all 0 ≤ 𝑡

1
≤ 𝑡
2
≤ 𝑡;

(2) 𝐺
𝑡,𝑡
[𝑥(𝑡)] = 𝑥(𝑡);

(3) 𝑥
1
(𝑡) ≥ 𝑥

2
(𝑡), a.s then one can have 𝐺

𝑟,𝑡
[𝑥
1
(𝑡)] ≥

𝐺
𝑟,𝑡
[𝑥
2
(𝑡)];

(4) 𝐼
𝐴
𝐺
𝑡,𝑇
[𝑥(𝑇)] = 𝐺

𝑡,𝑇
[𝐼
𝐴
𝑥(𝑇)], ∀𝐴 ∈ F

𝑡
.

Attention. 𝐺
𝑡,𝑇
(⋅) is not the same with 𝑔-expectation. I could

say that if a function satisfies the properties (1), (2), and (4),
then it is a kind of dynamic pricing mechanism. Through
a testation in [31] people could know whether a dynamic
pricing mechanism is a 𝑔-expectation. Obviously a dynamic
pricing mechanism has weaker assumption compared with
the 𝑔-expectation.

In this paper, I consider an agent with an endowment
𝑥
0
∈ R.Without loss of generality, I assume the psychological

reference point at terminal 𝑇 which serves as a base point to
distinguish gains from losses is zero (for details, see remarks
in Jin and Zhou [22]). As a result, 𝑋(𝑇)+ means gains while
𝑋(𝑇)
− represents losses. For convenience, this paper adopted

the backward method [7, 10] and transformed the limit of
the initial capital into the control of form of the dynamic
pricing mechanism: 𝐺

0,𝑇
[𝑋] = 𝑥

0
. Next, I give two utility

functions 𝑢
+
(⋅) and 𝑢

−
(⋅), both of which map from 𝑅

+
→ 𝑅
+

to measure the gains and losses, respectively. The technical
assumptions on these utility functions, whichwill be imposed
throughout this paper, are summarized as follows.

Assumption 4. 𝑢
+
(⋅), 𝑢
−
(⋅) : 𝑅

+
→ 𝑅
+ are strictly concave,

increasing functions and satisfy 𝑢
+
(0) = 𝑢

−
(0) = 0 and

𝑢
+
(⋅), 𝑢
−
(⋅) are continuously differential, with their deriva-

tives bounded.
Note that, under Assumption 4, when 𝑋 ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃),

then 𝑢
+
(𝑋), 𝑢

−
(𝑋) ∈ 𝐿

2
(Ω,F

𝑇
, 𝑃).

Now I give out the contingent claim a value reflecting the
investor’s risk attitudes and psychological emotions different
from the prospect theory. It can be written as V(𝑋), where
𝑋 = 𝑥(𝑇), that is, the terminal contingent claim value, and

𝑋
+
, 𝑋
− are, respectively, the positive part and the negative

part of the contingent claim:

V (𝑋) = V
+
(𝑋
+
) −V

−
(𝑋
−
) . (8)

Here I replace Choquet integrals in [22] with 𝑔-
expectations: V

+
(𝑋
+
) = E

𝑔
1

[𝑢
+
(𝑋
+
)], V

−
(𝑋
−
) =

E
𝑔
2

[𝑢
−
(𝑋
−
)], given two backward stochastic differential

equations generating functions 𝑔
1
, 𝑔
2
as below satisfying

𝐿
1
–𝐿
3
and they can be nonlinear form so as to generate the

nonlinear expectations:

−𝑑𝑥
1
(𝑡) = 𝑔

1
(𝑥
1
(𝑡) , 𝑧
1
(𝑡) , 𝑡) 𝑑𝑡 − 𝑧



1
(𝑡) 𝑑𝑊 (𝑡) ,

𝑥
1
(𝑇) = 𝑢

+
(𝑋
+
) ,

−𝑑𝑥
2
(𝑡) = 𝑔

2
(𝑥
2
(𝑡) , 𝑧
2
(𝑡) , 𝑡) 𝑑𝑡 − 𝑧



2
(𝑡) 𝑑𝑊 (𝑡) ,

𝑥
2
(𝑇) = 𝑢

−
(𝑋
−
) .

(9)

I consider V
+
(𝑋
+
) and V

−
(𝑋
−
) as a kind of measure or

evaluation on the utility of gains and losses of terminal time.
This formwill greatly enrich the riskmeasuremethods.Then,
I give V(𝑋) = V

+
(𝑋
+
) − V

−
(𝑋
−
) = 𝑥

1
(0) − 𝑥

2
(0). So, the

problem under prospect theory with 𝑔-expectation’s decision
rule can be introduced as follows:

Maximize E
𝑔
1

[𝑢
+
(𝑋
+
)] −E

𝑔
2

[𝑢
−
(𝑋
−
)]

= 𝑥
1
(0) − 𝑥

2
(0)

subject to 𝐺
0,𝑇 [𝑋] ≤ 𝑥

0
; 𝑋 = 𝑥 (𝑇) .

(10)

Here, 𝐺
0,𝑇
[𝑋] is the solution of BSDE (3) with respect to

function 𝑔
0
and terminal variable 𝑋 and actually it is a cost

constraint.
Note the following.

(1) I did not assume that wealth function 𝑔
0
satisfies

𝐿
1
–𝐿
3
, which will limit the scope of 𝑔

0
. For exam-

ple, the large investor case will be omitted by the
assumption 𝐿

3
. So I could not replace 𝐺

0,𝑇
[𝑋] with

the form of 𝑔-expectation. However, when 𝑔
0
satisfies

the assumption 𝐿
1
, 𝐿
2
, 𝐿
4
, it will incorporate some

nonlinear cases, for example, the wealth equation
which allows borrowing money. This makes my
model expand to a larger scope that is important both
in the theory meaning and in the practical meaning.

(2) This valueV has some goodmathematical properties
compared with the rule in [22] (see Chen and Selum
[24]). (1)E

𝑔
has dynamic consistencywhich is impor-

tant in practice, while the Choquet integral does not.
(2) The probability distortion 𝑇

+
(⋅) and 𝑇

−
(⋅) in [22]

is

𝑉 (𝑋) = ∫

+∞

0

𝑇
+
(𝑃 (𝑢
+
(𝑋
+
) > 𝑡)) 𝑑𝑡

− ∫

+∞

0

𝑇
−
(𝑃 (𝑢
−
(𝑋
−
) > 𝑡)) 𝑑𝑡,

(11)
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where 𝑇
+
(⋅) and 𝑇

−
(⋅) are two differentiable and strictly

increasing functions, [0, 1] → [0, 1] satisfying 𝑇
+
(0) =

𝑇
−
(0) = 0 and 𝑇

+
(1) = 𝑇

−
(1) = 1. In my model,

V
+
(𝑋
+
) = E

𝑔
1

[𝑢
+
(𝑋
+
)] , (12)

when 𝑔 has a special form, for example, 𝑔 does not depend
on 𝑦 and is linear in 𝑧 (see Lemma 12), and E

𝑔
1

[𝑢
+
(𝑋
+
)] =

𝐸
𝑃
𝑔1

[𝑢
+
(𝑋
+
)] = ∫

+∞

0
𝑃
𝑔
1

(𝑢
+
(𝑋
+
) ≥ 𝑡)𝑑𝑡, here 𝑃

𝑔
1

(𝐴) =

E
𝑔
1

(𝐼
𝐴
) is the 𝑔

1
-probability. Obviously this equivalent prob-

ability is on the event sets adapted with F
𝑇
and have the

similar effect as the distortion of probability 𝑇
+
∘ 𝑃(⋅), but it

cannot be represented by a 𝑇
+
∘ 𝑃(⋅) in [22].

Before I deal with the original Problem (10), I need the
following Theorem 5 and Lemma 6 by Peng in [31] to ensure
the dividing below.

Theorem 5. For the original Problem (10), the constraint
𝐺
0,𝑇
[𝑋] ≤ 𝑥

0
is equivalent with 𝐺

0,𝑇
[𝑋] = 𝑥

0
.

Proof. For any given 𝑥
1

≤ 𝑥
0
, if I could prove that the

constraint 𝐺
0,𝑇
[𝑋] = 𝑥

0
is superior to the constraint

𝐺
0,𝑇
[𝑋] = 𝑥

1
, then I could prove the equivalence. For

any given investment portfolio selection 𝜋(𝑡), with the given
capital 𝑥

1
, through the wealth equation I could get 𝑋

1
(𝑇) at

terminal time.With the same portfolio 𝜋(𝑡), the random part
has the same form which could be omitted. Since the original
capital 𝑥

0
≥ 𝑥
1
, and by the comparison theorem of SDE, we

could get𝑋
0
(𝑇) ≥ 𝑋

1
(𝑇). Then I can get the conclusion.

Lemma 6. 𝐺
𝑡,𝑇
(⋅) satisfies that 𝐺

𝑡,𝑇
(0) = 0, ∀0 ≤ 𝑡 ≤ 𝑇 if and

only if the generating function 𝑔
0
satisfies 𝐿

1
, 𝐿
2
, 𝐿
4
.

So throughout this paper I assume that 𝑔
0
satisfies 𝐿

1
–𝐿
3

and 𝑔
1
, 𝑔
2
satisfy 𝐿

1
, 𝐿
2
, 𝐿
4
.

3. The Analysis of the Model Structure

This section divides the original problem (10) into three
subproblems, and I give out the proof that the solution of
problem (15) is exactly the solution of problem (10), which
means that I can translate the focus on the original problem
(10) into the treatment of subproblems (13), (14), and (15).
Because the subproblems can be treated beautifully using the
method proposed by Ji and Zhou [7] and Ji and Peng [10], the
original problems can be solved at the same time. At first, for
any given (𝑥

+
, 𝐴), we have the following.

Subproblem One

Maximize V
+
(𝑋) = E

𝑔
1

[𝑢
+
(𝑋)] = 𝑥

1
(0)

subject to 𝐺
0,𝑇 [𝑋 (𝑇)] = 𝑥

+
; 𝑋 ≥ 0 a.s; 𝑋 = 0 on 𝐴

𝑐
.

(13)

Subproblem Two

Minimize V
−
(𝑋) = E

𝑔
2

[𝑢
−
(𝑋)] = 𝑥

2
(0)

subject to 𝐺
0,𝑇 [𝑋 (𝑇)] = 𝑥

+
− 𝑥
0
; 𝑋 ≥ 0 a.s;

𝑋 = 0 on𝐴.

(14)

I write the extreme values of subproblem (13) and subproblem
(14) asV

+
(𝑥
+
, 𝐴) andV

−
(𝑥
+
, 𝐴).

SubproblemThree

Maximize V
+
(𝑥
+
, 𝐴) −V

−
(𝑥
+
, 𝐴)

subject to 𝑥
+
≥ 𝑥
0
; 𝑥
+
= 0 when𝑃 (𝐴) = 0;

𝑥
+
= 𝑥
0

when 𝑃 (𝐴) = 1.

(15)

In order to get the equivalence between the original
problem (10) and its three subproblems, I need 𝑔

0
to be linear.

Under the linear cost constraint, I give the following theorem.

Theorem7. Let𝑔
0
be linearwith (𝑥, 𝑧). Given𝑋∗, define𝐴∗ =

(𝜔 : 𝑋
∗
≥ 0) and 𝑥∗

+
= 𝐺
0,𝑇
[(𝑋
∗
)
+
]. Then 𝑋∗ is the optimal

solution of problem (10) if and only if (𝑥∗
+
, 𝐴
∗
) is the optimal

solution of problem (15); also (𝑋∗)+ and (𝑋∗)− are, respectively,
the optimal solutions of problems (13) and (14) with respect to
(𝑥
∗

+
, 𝐴
∗
).

Proof. (1)⇐ Consider

𝐺
0,𝑇

[𝑋
∗
] = 𝐺
0,𝑇

[(𝑋
∗
)
+

− (𝑋
∗
)
−

]

= 𝐺
0,𝑇

[(𝑋
∗
)
+

𝐼
𝐴
∗ − (𝑋

∗
)
−

𝐼
(𝐴
∗
)
𝑐]

= 𝐺
0,𝑇

[(𝑋
∗
)
+

𝐼
𝐴
∗] − 𝐺

0,𝑇
[(𝑋
∗
)
−

𝐼
(𝐴
∗
)
𝑐]

= 𝐺
0,𝑇

[(𝑋
∗
)
+

] − 𝐺
0,𝑇

[(𝑋
∗
)
−

]

= 𝑥
∗

+
− (𝑥
∗

+
− 𝑥
0
) = 𝑥
0
.

(16)

So, 𝑋∗ is a feasible solution for the original problem (10).
Then, I have V(𝑋

∗
) = V

+
((𝑋
∗
)
+
) − V

−
((𝑋
∗
)
−
) =

V
+
(𝑥
∗

+
, 𝐴
∗
) − V

−
(𝑥
∗

+
, 𝐴
∗
). So for any feasible solution of

problem (10) written as𝑋, I define 𝐴 = (𝜔 : 𝑋 ≥ 0) and 𝑥
+
=

𝐺
0,𝑇
[𝑋
+
]. Then I get V

+
(𝑋
+
) ≤ V

+
(𝑥
+
, 𝐴) and V

−
(𝑋
−
) ≥

V
−
(𝑥
+
, 𝐴), so V(𝑋) = V

+
(𝑋
+
) − V

−
(𝑋
−
) ≤ V

+
(𝑥
+
, 𝐴) −

V
−
(𝑥
+
, 𝐴) ≤ V

+
(𝑥
∗

+
, 𝐴
∗
) − V

−
(𝑥
∗

+
, 𝐴
∗
) = V(𝑋

∗
), which

means𝑋∗ is the optimal solution of the original problem (10).
(2)⇒ Assume 𝑋∗ is the optimal solution of the original

problem (10); then definitely V
+
((𝑋
∗
)
+
) ≤ V

+
(𝑥
∗

+
, 𝐴
∗
) and

V
−
((𝑋
∗
)
−
) ≥ V

−
(𝑥
∗

+
, 𝐴
∗
). If I assume the inequality is

strict, then there exists 𝑋
1
which is a feasible solution for

problem (13) with (𝐴
∗
, 𝑥
∗

+
), so that V

+
((𝑋
∗
)
+
) < V

+
(𝑋
1
).

So I can define 𝑋 = 𝑋
1
𝐼
𝐴
∗ − (𝑋

∗
)
−
𝐼
(𝐴
∗
)
𝑐 which is a feasible

solution for problem (10), andV(𝑋) > V(𝑋
∗
); this convicts

with the optimality of 𝑋∗, so (𝑋
∗
)
+ is an optimal solution

of subproblem (13). Similarly I can prove that (𝑋∗)− is also



6 Abstract and Applied Analysis

the optimal solution of subproblem (14). So, V
+
((𝑋
∗
)
+
) =

V
+
(𝑥
∗

+
, 𝐴
∗
) and V

−
((𝑋
∗
)
−
) = V

−
(𝑥
∗

+
, 𝐴
∗
). For any feasible

(𝑥
+
, 𝐴) I only need to prove the following:

V
+
(𝑥
+
, 𝐴) −V

−
(𝑥
+
, 𝐴)

≤ V
+
(𝑥
∗

+
, 𝐴
∗
) −V

−
(𝑥
∗

+
, 𝐴
∗
) = V (𝑋

∗
) .

(17)

There are three different cases in the following.

(1) When 𝑃(𝐴) = 0, 𝑥
+
= 0, and 𝑥

0
≤ 0, so

V
+
(𝑥
+
, 𝐴) −V

−
(𝑥
+
, 𝐴)

= −V
−
(0, 𝐴) = −V

−
(𝑥
+

0
, 𝐴)

= sup
𝐺
0,𝑇
[𝑋]=𝑥

−

0
;𝑋≥0

[−V
−
(𝑋)]

≤ sup
𝐺
0,𝑇
[−𝑋]=−𝑥

−

0
;𝑋≤0

[V (−𝑋)]

= sup
𝐺
0,𝑇
[𝑋]=−𝑥

−

0
;𝑋≤0

[V (𝑋)]

≤ sup
𝐺
0,𝑇
[𝑋]=−𝑥

−

0
=𝑥
0

[V (𝑋)]

= V (𝑋
∗
) .

(18)

Attention: owing to the 𝐺
0,𝑇
[𝑋] + 𝐺

0,𝑇
[−𝑋] =

𝐺
0,𝑇
[0] = 0, so 𝐺

0,𝑇
[−𝑋] = −𝐺

0,𝑇
[𝑋] = −𝑥

−

0
, which

contributes to the fourth equality above.

(2) When𝑃(𝐴) = 1, then 𝑥
+
= 𝑥
0
, and sinceV

+
(𝑥
0
, 𝐴) =

sup
𝐺
0,𝑇
[𝑋]≤𝑥

0

[V(𝑋)], so I could get V
+
(𝑥
0
, 𝐴) − 0 ≤

V(𝑋
∗
).

(3) When 0 < 𝑃(𝐴) < 1, for any 𝑥
+
≥ 𝑥
+

0
, problems

(13), (14) have nonempty feasible solution space for
any (𝑥

+
, 𝐴), so, for any given 𝜖 > 0, I can find

𝑋
1
, 𝑋
2
, respectively, feasible for (13) and (14), and

also I can get V
+
(𝑋
1
) ≥ V

+
(𝑥
+
, 𝐴) − 𝜖, V

−
(𝑋
2
) ≤

V
−
(𝑥
+
, 𝐴)+𝜖. Since𝑋 = 𝑋

1
−𝑋
2
is a feasible solution

for problem (10), then V
+
(𝑥
+
, 𝐴) − V

−
(𝑥
+
, 𝐴) ≤

V
+
(𝑋
1
) − V

−
(𝑋
2
) + 2𝜖 = V(𝑋) + 2𝜖 ≤ V(𝑋

∗
)+

2𝜖.

Theorem 7 gives out the equivalence between the original
problem and the three subproblems. In the next section, I
will address separately the maximum and minimum control
problems under 𝑔-expectation environment.

4. The Treatment of the Model

In this section, I deal with the optimal portfolio problem. To
get the optimal portfolio of problem (10), I need additional
assumption.

𝐿
5
: 𝑔
0
, 𝑔
1
and 𝑔

2
are both continuously differentiable

function with (𝑥, 𝑧), and their derivatives are uniformly
bounded.

Then, I give the necessary formof solution in problem (13)
as the theorem below.

Theorem 8. Assume that 𝑔
1
and 𝑔

0
also satisfy 𝐿

5
, for

any given (𝑥
+
, 𝐴), where 𝑥

+
≥ 𝑥
0
, and 𝑢

+
(𝑥) satisfies

Assumption 4; if𝑋∗ is the optimal solution of problem (13)with
these parameters, then𝑋∗ has the following form:

𝑋
∗
= (𝑢


+
)
−1

[−
ℎ
11
𝑚(𝑇)

ℎ
01
𝑛
1
(𝑇)

] 𝐼
𝐴
 , (19)

where 𝐴 is the subset of 𝐴. 𝑚(𝑡), 𝑛
1
(𝑡) are respective solutions

to the following stochastic differential equations:

𝑑𝑚 (𝑡) = 𝑚 (𝑡) [𝑔
0

𝑥
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡) 𝑑𝑡

+𝑔
0

𝑧
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡)



𝑑𝑊 (𝑡)] ;

𝑚 (0) = 1;

𝑑𝑛
1
(𝑡) = 𝑛

1
(𝑡) [𝑔
1

𝑥
(𝑥
∗

1
(𝑡) , 𝑧
∗

1
(𝑡) , 𝑡) 𝑑𝑡

+𝑔
1

𝑧
(𝑥
∗

1
(𝑡) , 𝑧
∗

1
(𝑡) , 𝑡)



𝑑𝑊 (𝑡)] ;

𝑛
1
(0) = 1,

(20)

where ℎ
01
< 0 and ℎ

11
> 0, |ℎ

01
|
2
+ |ℎ
11
|
2
= 1 when 0 < 𝑥

+
<

+∞. If 𝑥
+
= 0, then let ℎ

01
= 0, ℎ

11
< 0, and when 𝑥

+
= +∞,

let ℎ
11
= 0, ℎ

01
< 0. Functions 𝑔0

𝑥
, 𝑔0
𝑧
, 𝑔1
𝑥
, and 𝑔1

𝑧
are respective

derivatives of 𝑔
0
, 𝑔
1
with respect to 𝑥 or 𝑧, and (𝑥∗

0
(𝑡), 𝑧
∗

0
(𝑡))

and (𝑥∗
1
(𝑡), 𝑧
∗

1
(𝑡)) are respective solutions of BSDE (3) and (9)

with terminal random variables𝑋∗ and 𝑢
+
(𝑋
∗
).

Proof. Here I adopt the terminal variation method and
Ekeland’s variational principle to get the form that optimal
solution of problem (13) needs to satisfy. First I define the state
constraint as follows:

𝑈 = {𝑋𝑋 ≥ 0,𝑋 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃) , 𝑋 ≡ 0 on𝐴𝑐} . (21)

For each 0 < 𝜌 ≤ 1 and 𝑋 ∈ 𝑈, I define: 𝑋𝜌 = 𝑋
∗
+

𝜌(𝑋 − 𝑋
∗
). Let (𝑥𝜌

0
, 𝑧
𝜌

0
, 𝑥
𝜌

1
, 𝑧
𝜌

1
) be the solution to (3) and

(9) corresponding to 𝑋 = 𝑋
𝜌, and let (𝑥

0
, �̂�
0
, 𝑥
1
, �̂�
1
) be the

solutions to the following variational equations:

−𝑑𝑥
0
(𝑡) = [𝑔

0

𝑥
(𝑡) 𝑥
0
(𝑡) + 𝑔

0

𝑧
(𝑡)

�̂�
0
(𝑡)] 𝑑𝑡 − �̂�



0
𝑑𝑊 (𝑡) ,

𝑥
0
(𝑇) = 𝑋 − 𝑋

∗
,

−𝑑𝑥
1
(𝑡) = [𝑔

1

𝑥
(𝑡) 𝑥
1
(𝑡) + 𝑔

1

𝑧
(𝑡)

�̂�
1
(𝑡)] 𝑑𝑡 − �̂�



1
𝑑𝑊 (𝑡) ,

𝑥
1
(𝑇) = 𝑢



+
(𝑋
∗
) (𝑋 − 𝑋

∗
)

(22)

and define

𝑥
𝜌

1
(𝑡) = 𝜌

−1
(𝑥
𝜌

1
(𝑡) − 𝑥

∗

1
(𝑡)) − 𝑥

1
(𝑡) ,

�̃�
𝜌

1
(𝑡) = 𝜌

−1
(𝑧
𝜌

1
(𝑡) − 𝑧

∗

1
(𝑡)) − �̂�

1
(𝑡) ,

𝑥
𝜌

0
(𝑡) = 𝜌

−1
(𝑥
𝜌

0
(𝑡) − 𝑥

∗

0
(𝑡)) − 𝑥

0
(𝑡) ,

�̃�
𝜌

0
(𝑡) = 𝜌

−1
(𝑧
𝜌

0
(𝑡) − 𝑧

∗

0
(𝑡)) − �̂�

0
(𝑡) .

(23)
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Lemma 9. (1) lim
𝜌→0

𝐸[sup
0≤𝑡≤𝑇

(𝑋
𝜌

𝑖
(𝑡))
2
] = 0, for 𝑖 = 0, 1;

(2) lim
𝜌→0

𝐸[∫
𝑇

0
|�̃�
𝜌

𝑖
(𝑡)|
2
𝑑𝑡] = 0, for 𝑖 = 0, 1.

Proof. I only need to prove the lemma at the case of 𝑖 = 0.
From the variational equations and (3), (9) I can get the
following equations:

−𝑑𝑥
𝜌

0
(𝑡) = 𝜌

−1
[𝑔
0
(𝑥
𝜌

0
(𝑡) , 𝑧
𝜌

0
(𝑡) , 𝑡)

− 𝑔
0
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡)

− 𝜌𝑔
0

𝑥
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡) 𝑥

0

−𝜌𝑔
0

𝑧
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡)



�̂�
0
] 𝑑𝑡

− �̃�
𝜌

0
(𝑡)

𝑑𝑊 (𝑡) ,

𝑥
𝜌

0
(𝑇) = 0.

(24)

Let

𝐴
𝜌
(𝑡) = ∫

1

0

𝑔
0

𝑥
(𝑥
∗

0
(𝑡) + 𝜆𝜌 (𝑥

0
(𝑡) + 𝑥

𝜌

0
) ,

𝑧
∗

0
(𝑡) + 𝜆𝜌 (�̂�

0
(𝑡) + �̃�

𝜌

0
) , 𝑡) 𝑑𝜆,

𝐵
𝜌
(𝑡) = ∫

1

0

𝑔
0

𝑧
(𝑥
∗

0
(𝑡) + 𝜆𝜌 (𝑥

0
(𝑡) + 𝑥

𝜌

0
) ,

𝑧
∗

0
(𝑡) + 𝜆𝜌 (�̂�

0
(𝑡) + �̃�

𝜌

0
) , 𝑡) 𝑑𝜆,

𝐶
𝜌
(𝑡) = [𝐴

𝜌
(𝑡) − 𝑔

0

𝑥
(𝑥
∗

0
, 𝑧
∗

0
, 𝑡)] 𝑥

0
(𝑡)

+ [𝐵
𝜌
(𝑡) − 𝑔

0

𝑧
(𝑥
∗

0
, 𝑧
∗

0
, 𝑡)]


�̂�
0
(𝑡) .

(25)

Then,

−𝑑𝑥
𝜌

0
(𝑡) = (𝐴

𝜌
(𝑡) 𝑥
𝜌

0
(𝑡) + 𝐵

𝜌
(𝑡)

�̃�
𝜌

0
(𝑡) + 𝐶

𝜌
(𝑡)) 𝑑𝑡

− �̃�
𝜌

0
(𝑡)

𝑑𝑊 (𝑡) ;

𝑥
𝜌

0
(𝑇) = 0.

(26)

A standard estimation on the above BSDE yields

𝐸[ sup
0≤𝑡≤𝑇

(𝑥
𝜌

𝑖
(𝑡))
2

] + 𝐸∫

𝑇

𝑡

�̃�
𝜌

0
(𝑠)


2

𝑑𝑠

≤ 𝐾𝐸∫

𝑇

𝑡

(𝑥
𝜌

0
(𝑠))
2

𝑑𝑠 + 𝐾𝐸∫

𝑇

𝑡

(𝐶
𝜌
(𝑠))
2

𝑑𝑠,

(27)

where𝐾 > 0 is a constant. However the Lebesgue dominated
convergence theorem implies that

lim
𝜌→0

𝐸∫

𝑇

0

(𝐶
𝜌
(𝑡))
2

𝑑𝑡 = 0. (28)

The desired result follows by applying Gronwall’s inequality.

Let 𝑑(⋅) be metric in 𝑈 naturally introduced by its norm
and introduce a mapping 𝐹

𝜖
(⋅) : 𝑈 → 𝑅 which has the form

as follows:

𝐹
𝜖
(𝑋) = ( (𝐺

0,𝑇 [𝑋] − 𝑥+)

2

+ {max (0,E
𝑔
1

(𝑢
+
(𝑋
∗
))

−E
𝑔
1

(𝑢
+
(𝑋)) + 𝜖)}

2

)

1/2

.

(29)

Lemma 10. There must exist ℎ
11

∈ 𝑅
1, ℎ
01

∈ 𝑅
1 with ℎ

01
≤

0, ℎ
11

≥ 0, and |ℎ
01
|
2
+ |ℎ
11
|
2
= 1 such that the following

variational inequality holds:

ℎ
11
𝑥
0
(0) + ℎ

01
𝑥
1
(0) ≥ 0. (30)

Proof. It can be easily checked that𝐹
𝜖
(𝑋
∗
) = 𝜖 and𝐹

𝜖
(𝑋) > 0,

∀𝑋 ∈ 𝑈. This leads to 𝐹
𝜖
(𝑋
∗
) ≤ inf

𝑥∈𝑈
𝐹
𝜖
(𝑋) + 𝜖. Thus by

Ekeland’s variational principle, there exists𝑋𝜖 ∈ 𝑈 such that

𝐹
𝜖
(𝑋
𝜖
) ≤ 𝐹
𝜖
(𝑋
∗
) ,

𝑑 (𝑋
𝜖
, 𝑋
∗
) ≤ √𝜖,

𝐹
𝜖
(𝑋) + √𝜖𝑑 (𝑋,𝑋

𝜖
) ≥ 𝐹
𝜖
(𝑋
𝜖
) , ∀𝑋 ∈ 𝑈.

(31)

Because 𝑋∗ is the optimal solution of problem (13), it is easy
to see that 𝐺

0,𝑇
[𝑋
𝜖
] − 𝑥
+
≥ 0. For any𝑋 ∈ 𝑈 and 0 < 𝜌 ≤ 1, I

introduce the following notation:

𝑋 = 𝑋 − 𝑋
∗
, 𝑋

𝜖
= 𝑋 − 𝑋

𝜖
, 𝑋

𝜖

𝜌
= 𝑋
𝜖
+ 𝜌𝑋
𝜖
. (32)

Then, 𝐹
𝜖
(𝑋
𝜖

𝜌
) + √𝜖𝑑(𝑋

𝜖

𝜌
, 𝑋
𝜖
) − 𝐹
𝜖
(𝑋
𝜖
) ≥ 0 and 𝑑(𝑋𝜖

𝜌
, 𝑋
𝜖
) =

{𝐸|𝜌𝑋
𝜖
|
2

}
1/2.

Consider the following variational equation:

−𝑑𝑥
𝜖

0
(𝑡) = {𝑔

0

𝑥
(𝑥
𝜖

0
, 𝑧
𝜖

0
, 𝑡) 𝑥
𝜖

0
(𝑡)

+𝑔
0

𝑧
(𝑥
𝜖

0
, 𝑧
𝜖

0
, 𝑡)


�̂�
𝜖

0
(𝑡)} 𝑑𝑡

− (�̂�
𝜖

0
)


𝑑𝑊 (𝑡) ,

𝑥
𝜖

0
(𝑇) = 𝑋 − 𝑋

𝜖
= 𝑋
𝜖
,

−𝑑𝑥
𝜖

1
(𝑡) = {𝑔

1

𝑥
(𝑥
𝜖

1
, 𝑧
𝜖

1
, 𝑡) 𝑥
𝜖

1
(𝑡)

+𝑔
1

𝑧
(𝑥
𝜖

1
, 𝑧
𝜖

1
, 𝑡)


�̂�
𝜖

1
(𝑡)} 𝑑𝑡

− (�̂�
𝜖

1
)


𝑑𝑊 (𝑡) ,

𝑥
𝜖

1
(𝑇) = 𝑢



+
(𝑋
𝜖
)𝑋
𝜖
,

(33)
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where (𝑥𝜖
0
, 𝑧
𝜖

0
, 𝑥
𝜖

1
, 𝑧
𝜖

1
) corresponds to 𝑋𝜖. As for Lemma 9 we

can get the following:

lim
𝜌→0

𝜌
−1
{𝐺
0,𝑇

[𝑋
𝜖

𝜌
] − 𝐺
0,𝑇

[𝑋
𝜖
]} − 𝑥

𝜖

0
(0) = 0,

namely, 𝐺
0,𝑇

[𝑋
𝜖

𝜌
] − 𝐺
0,𝑇

[𝑋
𝜖
] = 𝜌𝑥

𝜖

0
(0) + 𝑜 (𝜌) ,

lim
𝜌→0

𝜌
−1
{E
𝑔
1

[𝑢
+
(𝑋
𝜖

𝜌
)] −E

𝑔
1

[𝑢
+
(𝑋
𝜖
)]} − 𝑥

𝜖

1
(0) = 0,

namely, E
𝑔
1

[𝑢
+
(𝑋
𝜖

𝜌
)] −E

𝑔
1

[𝑢
+
(𝑋
𝜖
)] = 𝜌𝑥

𝜖

1
(0) + 𝑜 (𝜌) .

(34)

This leads to the following expansions:

𝐺
0,𝑇

[𝑋
𝜖

𝜌
] − 𝑥
+



2

−
𝐺0,𝑇 [𝑋

𝜖
] − 𝑥
+


2

= 2𝜌 (𝐺
0,𝑇

[𝑋
𝜖
] − 𝑥
+
) 𝑥
𝜖

0
(0) + 𝑜 (𝜌) ,


E
𝑔
1

(𝑢
+
(𝑋
∗
)) −E

𝑔
1

(𝑢
+
(𝑋
𝜖

𝜌
)) + 𝜖



2

−

E
𝑔
1

(𝑢
+
(𝑋
∗
)) −E

𝑔
1

(𝑢
+
(𝑋
𝜖
)) + 𝜖



2

= −2𝜌𝑥
𝜖

1
(E
𝑔
1

(𝑢
+
(𝑋
∗
))

−E
𝑔
1

(𝑢
+
(𝑋
𝜖
)) + 𝜖) + 𝑜 (𝜌) .

(35)

Now I consider two cases.

Case 1. E
𝑔
1

(𝑢
+
(𝑋
∗
)) − E

𝑔
1

(𝑢
+
(𝑋
𝜖
)) + 𝜖 > 0, so there exists

𝜌
𝑛
↓ 0 such thatE

𝑔
1

(𝑢
+
(𝑋
∗
))−E
𝑔
1

(𝑢
+
(𝑋
𝜖

𝜌
𝑛

))+𝜖 > 0. Consider

lim
𝑛→+∞

𝐹
𝜖
(𝑋
𝜖

𝜌
𝑛

) − 𝐹
𝜖
(𝑋
𝜖
)

𝜌
𝑛

= lim
𝑛→+∞

𝐹
2

𝜖
(𝑋
𝜖

𝜌
𝑛

) − 𝐹
2

𝜖
(𝑋
𝜖
)

𝜌
𝑛

1

𝐹
𝜖
(𝑋𝜖
𝜌
𝑛

) + 𝐹
𝜖
(𝑋𝜖)

=
𝐺
0,𝑇

[𝑋
𝜖
] − 𝑥
+

𝐹
𝜖
(𝑋𝜖)

𝑥
𝜖

0
(0)

−
E
𝑔
1

(𝑢
+
(𝑋
∗
)) −E

𝑔
1

(𝑢
+
(𝑋
𝜖
)) + 𝜖

𝐹
𝜖
(𝑋𝜖)

𝑥
𝜖

1
(0) .

(36)

I define

ℎ
𝜖

11
=
𝐺
0,𝑇

[𝑋
𝜖
] − 𝑥
+

𝐹
𝜖
(𝑋𝜖)

,

ℎ
𝜖

01
= −

E
𝑔
1

(𝑢
+
(𝑋
∗
)) −E

𝑔
1

(𝑢
+
(𝑋
𝜖
)) + 𝜖

𝐹
𝜖
(𝑋𝜖)

.

(37)

So, ℎ𝜖
11
𝑥
𝜖

0
(0) + ℎ

𝜖

01
𝑥
𝜖

1
(0) ≥ −√𝜖𝐸|𝑋

𝜖
|
1/2, where ℎ𝜖

01
< 0.

Case 2.E
𝑔
1

(𝑢
+
(𝑋
∗
))−E
𝑔
1

(𝑢
+
(𝑋
𝜖
))+𝜖 ≤ 0.There exists𝜌

𝑛
↓ 0

such that E
𝑔
1

(𝑢
+
(𝑋
∗
)) −E

𝑔
1

(𝑢
+
(𝑋
𝜖

𝜌
𝑛

)) + 𝜖 ≤ 0, so

lim
𝑛→+∞

𝐹
𝜖
(𝑋
𝜖

𝜌
𝑛

) − 𝐹
𝜖
(𝑋
𝜖
)

𝜌
𝑛

=
𝐺
0,𝑇

[𝑋
𝜖
] − 𝑥
+

𝐹
𝜖
(𝑋𝜖)

𝑥
𝜖

0
(0) . (38)

Also I define that ℎ𝜖
11
= (𝐺
0,𝑇
(𝑋
𝜖
)−𝑥
+
)/𝐹
𝜖
(𝑋
𝜖
), ℎ𝜖
01
= 0. I can

get the following:

ℎ
𝜖

11
𝑥
𝜖

0
(0) + ℎ

𝜖

01
𝑥
𝜖

1
(0) ≥ −√𝜖𝐸


𝑋
𝜖

1/2

. (39)

At last, ℎ𝜖
01
≤ 0, ℎ𝜖

11
≥ 0, and |ℎ𝜖

01
|
2
+ |ℎ
𝜖

11
|
2
= 1 for both cases.

There exists a converging subsequence of (ℎ𝜖
01
, ℎ
𝜖

11
) with the

limit (ℎ
01
, ℎ
11
). Since ℎ𝜖

01
≤ 0, we have ℎ

01
≤ 0, so ℎ

11
≥ 0.

On the other hand, it is easy to check that 𝑥𝜖
0
(0) → 𝑥

0
(0),

𝑥
𝜖

1
(0) → 𝑥

1
(0).

Now, I apply Ito’s lemma to ℎ
01
𝑥
1
(𝑡)𝑛
1
(𝑡) + ℎ

11
𝑥
0
(𝑡)𝑚(𝑡)

and then have 𝐸[ℎ
01
𝑥
1
(𝑇)𝑛
1
(𝑇) + ℎ

11
𝑥
0
(𝑇)𝑚(𝑇) −

ℎ
01
𝑥
1
(0)𝑛
1
(0) − ℎ

11
𝑥
0
(0)𝑚(0)] = 0.

So by Lemma 10

𝐸 [ℎ
01
𝑥
1
(𝑇) 𝑛
1
(𝑇) + ℎ

11
𝑥
0
(𝑇)𝑚 (𝑇)]

= 𝐸 [ℎ
01
𝑢


+
(𝑋
∗
) 𝑛
1
(𝑇) + ℎ

11
𝑚(𝑇)] ⋅ [𝑋 − 𝑋

∗
]

= ℎ
11
𝑥
0
(0) + ℎ

01
𝑥
1
(0) ≥ 0.

(40)

Since the above is true for any 𝑋 ∈ 𝑈 = {𝑋 | 𝑋 ≥ 0,𝑋 ∈

𝐿
2
(Ω,F

𝑇
, 𝑃), 𝑋 = 0 on𝐴𝑐}, so I can have [ℎ

01
𝑢


+
(𝑋
∗
)𝑛
1
(𝑇)+

ℎ
11
𝑚(𝑇)] ⋅ [𝑢 − 𝑋

∗
] ≥ 0, 𝑃-a.s, ∀𝑢 ∈ 𝑅+.

Owing to 𝑋∗, 𝑋 ∈ 𝑈, so 𝑋∗ = 𝑋
∗
𝐼
𝐴
, 𝑋 = 𝑋𝐼

𝐴
and 𝑋 −

𝑋
∗
= (𝑋 − 𝑋

∗
)𝐼
𝐴

ℎ
01
𝑢


+
(𝑋
∗
) 𝑛
1
(𝑇) + ℎ

11
𝑚(𝑇) ≥ 0 when𝑋∗ = 0 on𝐴,

ℎ
01
𝑢


+
(𝑋
∗
) 𝑛
1
(𝑇) + ℎ

11
𝑚(𝑇) = 0 when𝑋∗ ̸= 0 on𝐴.

(41)

Then the proof is completed.

For problem (14) I can solve it in the similar way.

Theorem 11. Assume that 𝑔
2
and 𝑔

0
also satisfy 𝐿

5
, for

any given (𝑥
+
, 𝐴), where 𝑥

+
≥ 𝑥
0
, and 𝑢

−
(𝑥) satisfies

Assumption 4; if𝑋∗ is the optimal solution of problem (14)with
these parameters, then𝑋∗ has the following form:

𝑋
∗
= (𝑢


−
)
−1

[−
ℎ
12
𝑚(𝑇)

ℎ
02
𝑛
2
(𝑇)

] 𝐼
𝐴
𝑐 , (42)

where ℎ
12

< 0, ℎ
02

> 0, and |ℎ
02
|
2
+ |ℎ
12
|
2
= 1. 𝐴 𝑐 is

a subset of 𝐴𝑐. (𝑥∗
0
(𝑡), 𝑧
∗

0
(𝑡)) and (𝑥∗

2
(𝑡), 𝑧
∗

2
(𝑡)) are respective

solutions of BSDE (3) and (9) with terminal random variables
𝑋
∗ and 𝑢

−
(𝑋
∗
). 𝑚(𝑡), 𝑛

2
(𝑡) are, respectively, the solutions of

the following stochastic differential equations:

𝑑𝑚 (𝑡) = 𝑚 (𝑡) [𝑔
0

𝑥
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡) 𝑑𝑡

+𝑔
0

𝑧
(𝑥
∗

0
(𝑡) , 𝑧
∗

0
(𝑡) , 𝑡)



𝑑𝑊 (𝑡)] ;

𝑚 (0) = 1,

𝑑𝑛
2
(𝑡) = 𝑛

2
(𝑡) [𝑔
2

𝑥
(𝑥
∗

2
(𝑡) , 𝑧
∗

2
(𝑡) , 𝑡) 𝑑𝑡

+𝑔
2

𝑧
(𝑥
∗

2
(𝑡) , 𝑧
∗

2
(𝑡) , 𝑡)



𝑑𝑊 (𝑡)] ;

𝑛
2
(0) = 1.

(43)
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Combined with Theorems 7, 8, and 11, I can get the
necessary form of optimal solution for the original problem
(10). Let 𝑔

0
be of linear form; if𝑋∗ is the optimal solution,

𝑋
∗
= (𝑢


+
)
−1

[−
ℎ
∗

11
𝑚
∗

1
(𝑇)

ℎ∗
01
𝑛∗
1
(𝑇)

] 𝐼
𝐴
1

− (𝑢


−
)
−1

[−
ℎ
∗

12
𝑚
∗

2
(𝑇)

ℎ∗
02
𝑛∗
2
(𝑇)

] 𝐼
𝐴
2

,

(44)

where 𝐴
1
∩ 𝐴
2
= 0.

5. The Economic Explanation and
Model Comparison

In this section, I try to illustrate the difference between
my model and that in [22] and the economic explanation.
Because 𝑔

0
is a linear form, the cost constraint is the same

form; then the only difference is the contingent claim’s value:
I use the 𝑔-expectation to replace the Choquet integral. The
relation between two nonlinear expectations is searched in
[24].

Lemma 12. Suppose 𝑔 satisfies 𝐿
1
–𝐿
3
. Define 𝑃

𝑔
(𝐴) :=

E
𝑔
(1
𝐴
) for a given event 𝐴 ∈ F

𝑇
. Then, E

𝑔
[𝜉] can be

represented as a Choquet integral for any 𝜉 ∈ 𝐿
2
(Ω,F

𝑇
, 𝑃);

that is,

E
𝑔
[𝜉] = ∫

0

−∞

[𝑃
𝑔
(𝜉 ≥ 𝑡) − 1] 𝑑𝑡 + ∫

+∞

0

𝑃
𝑔
(𝜉 ≥ 𝑡) 𝑑𝑡 (45)

if and only if there exists a function 𝑏(𝑡) such that 𝑔 is of the
following form:

𝑔 (𝑥, 𝑧, 𝑡) = 𝑏 (𝑡) 𝑧. (46)

This lemma implies the 𝑔-expectation coincides to the
Choquet integral only when it becomes a classic linear
expectation. Note that this kind of Choquet integral repre-
sented by 𝑔-probability is different from the form in [22].
Here, when 𝑔 is a linear form, the original probability 𝑃

is transformed to an equivalent probability, 𝑃
𝑔
. Actually, 𝑔-

expectation and Choquet integral are two parallel ways to
search nonlinear expectation and nonadditive probability.
Besides, it has been proved that the 𝑔-expectation derived in
the BSDE framework is more nonlinear in some sense.

The economic motive in model [22] is from prospect
theory founded by Kahneman and Tversky. The key point
is that an agent considers the world differently when facing
gains and losses. In the world, there is a reference probability
or I could say it is a “real” probability. Because of the
emotion and psychology of an agent, the assumption of
rational behavior is slack; then this leads to a probability
distortion. The distortion makes the probability of events in
agent’s thought nonadditive. So, a Choquet integral is used to
express the expectation. Moreover, the agent treats the model
differently when facing gains and losses, so there are two
utilities and probability distortions.

In my model, I accept the idea that an agent treats the
world differently when facing gains and losses; that is, there is

a change in agents’ thought (even I could rationally consider
that the agent is absolutely different between facing gains and
losses).The reason I use𝑔-expectation to replace theChoquet
integral is that I try to describe another economic back-
ground. Here, I consider an ambiguous setting, a complicated
world. In an ambiguous world, there is a set of priors instead
of one reference probability. So the ambiguous environment
replaces the probability distortion environment in [22]. Also,
I use 𝑔

1
and 𝑔

2
to describe two sets of priors in the agent’s

thought, which reflects two uncertainty attitude to gains
and losses. The uncertainty under 𝑔-expectation framework
is considered as drift uncertainty. Recently, Epstein and Ji
consider the volatility uncertainty case; see [32, 33].

Then, I will give two fundamental examples to describe
some economic explanations.

Example 13. For simplicity I will define that 𝑔
0
= −𝑟(𝑡)𝑥(𝑡) −

𝜃(𝑡)

𝑧(𝑡), 𝑔

1
= 𝑔
2
= 0, which means that investors adopted

the same risk attitude as the market. Now the optimal model
can be transformed to

Max: V (𝑋) = 𝐸
𝑃
[𝑢
+
(𝑋
+
)] − 𝐸

𝑃
[𝑈
−
(𝑋
−
)]

St 𝐺
0,,𝑇 [𝑋 (𝑇)] = E

𝑔
0

(𝑋) = 𝐸
𝑝
0
[𝑋] ≤ 𝑥

0
.

(47)

For given (𝑥
+
, 𝐴), it could be divided into three parts as the

method above.

Subproblem One

Max: V
+
(𝑋) = 𝐸

𝑝
[𝑢
+
(𝑋)] = ∫

Ω

𝑢
+
(𝑋 (𝜔)) 𝑑𝑝 (𝜔)

= ∫

+∞

0

𝑃 (𝑢
+
> 𝑦) 𝑑𝑦

St 𝐺
0,𝑇 [𝑋] = 𝐸

𝑃
0
[𝑋] = 𝑥

+
, 𝑋 ≥ 0, 𝑋 = 0 on𝐴𝑐.

(48)

Subproblem Two

Min: V
−
(𝑋) = 𝐸

𝑝
[𝑢
−
(𝑋)] = ∫

Ω

𝑢
−
(𝑋 (𝜔)) 𝑑𝑝 (𝜔)

= ∫

+∞

0

𝑃 (𝑢
−
> 𝑦) 𝑑𝑦

St 𝐺
0,𝑇 [𝑋] = 𝐸

𝑃
0
[𝑋] = 𝑥

+
− 𝑥
0
, 𝑋 ≥ 0,

𝑋 = 0 on 𝐴.

(49)

SubproblemThree

Max: V
+
(𝑥
+
, 𝐴) −V

−
(𝑥
+
, 𝐴)

St 𝑥
+
≥ 𝑥
0
; 𝑥
+
= 0 when 𝑃 (𝐴) = 0;

𝑥
+
= 𝑥
0

when 𝑃 (𝐴) = 1.

(50)



10 Abstract and Applied Analysis

This is also the problem posed by Jin and Zhou, when 𝑇
+
=

𝑇
−
= 𝑥. For subproblem one by method in [22], we could

solve this problem as follows:

𝑋
∗
= (𝑢


+
)
−1

(
𝜆
∗
(𝑐
∗
, 𝑥
∗

+
) 𝜌

𝑇
+
(𝐹 (𝜌))

) 𝐼
𝜌≤𝑐
∗

= (𝑢


+
)
−1

(𝜆
∗
𝜌) 𝐼
𝜌≤𝑐
∗ ;

(51)

however, bymymethod above I could know that they have the
similar forms with my conclusion in Theorem 8 when using
𝜆 to replace −ℎ

11
/ℎ
01
, 𝜌(𝑇) = 𝑚(𝑇), and 𝑛

1
(𝑇) = 𝑛

2
(𝑇) = 1.

This leads to a hint that the two methods have the similar
effect on solving the conventional cases. This means that the
special forms of 𝑔-expectation could also be solved by the
method in [22].

Example 14. Fixing 𝑔
1
= −𝑘
1
(𝑡)

𝑧(𝑡), 𝑔

2
= −𝑘
2
(𝑡)

𝑧(𝑡), 𝑔

0

can be any form which could demonstrate all the wealth
movement forms. So the optimal model can be the following
forms:

Max: V (𝑋) = 𝐸
𝑃
1

[𝑢
+
(𝑋
+
)] − 𝐸

𝑃
2

[𝑈
−
(𝑋
−
)]

St 𝐺
0,𝑇 [𝑋] ≤ 𝑥

0
.

(52)

Here 𝑃
1
, 𝑃
2
show the risk attitudes facing earning and losses

by defining

𝑑𝑃
1

𝑑𝑃
= exp{−∫

𝑇

0

𝑘
1
(𝑠)

𝑑𝑊 (𝑠) −

1

2
∫

𝑇

0

𝑘1 (𝑠)

2

𝑑𝑠} ,

𝑑𝑃
2

𝑑𝑃
= exp{−∫

𝑇

0

𝑘
2
(𝑠)

𝑑𝑊 (𝑠) −

1

2
∫

𝑇

0

𝑘2 (𝑠)

2

𝑑𝑠} .

(53)

By the lemma above people can know that these two kinds
of 𝑔-expectations can be replaced by the special form of
Choquet expectations. In this case, the probability distortion
functions 𝑇

1
, 𝑇
2
have different forms owing to the difference

between 𝑃
1
and 𝑃

2
. The probability distortion reflects the

psychology of the investors, so 𝑃
1
and 𝑃

2
reflect the different

psychologies when facing gains and losses.

In view of the form (53), it can be seen that the optimal
strategy should deliver a wealth in good states 𝐴

∗ and
a shortfall in bad states (𝐴

∗
)
𝑐. To realize this goal, the

investor should buy a contingent claim with the payoff
(𝑢


+
)
−1
[−ℎ
∗

11
𝑚
∗
(𝑇)/ℎ

∗

01
𝑛
∗

1
(𝑇)] at the cost 𝑥∗

+
. Since 𝑥∗

+
≥ 𝑥
0
, he

needs to sell a contingent claim (𝑢


−
)
−1
[−ℎ
∗

12
𝑚
∗
(𝑇)/ℎ

∗

02
𝑛
∗

2
(𝑇)]

at the price of 𝑥∗
+
− 𝑥
0
to finance the shortfall. Given the

investors’ risk attitudes and their special S-shaped utility, the
investor should try his best to get optimized V(𝑋) with the
initial 𝑥

0
, so he has to consider how to allocate the limited

money on the call option and the put option.This also means
that the investor not only invests in stocks but also takes
leverage to gamble on the good state of themarket. As a result,
the ratio of 𝑥∗

+
/𝑥
0
reflects the risk attitudes of the investors

in some extent. Also in the optimal solution, 𝑚(𝑇)/𝑛
𝑖
(𝑇)

reflects the risk probability ratio between the investors and
the market.

Finally, I consider the nonlinear case of 𝑔, which means
ambiguous environment. Consider a 𝑔-expectation with a 𝑔
function; when 𝑔 is sublinear in (𝑥, 𝑧), E

𝑔
(𝑋) is a sublinear

expectation and it could be proved that there is a nonempty
convex closed set of probabilities absolutely continuous to
original probability, 𝑄, such that E

𝑔
(𝑋) = max

𝑝∈𝑄
𝐸
𝑃
[𝑋].

Also, if 𝑔 is superlinear, there is a set of probabilities, P,
such that E

𝑔
(𝑋) = min

𝑝∈P𝐸𝑃[𝑋]. Choosing specific 𝑔
1
,

𝑔
2
with corresponding conditions, the contingent claim’s

value can be expressed as V(𝑋) = min
𝑝∈P𝐸𝑃[𝑢+(𝑋

+
)] −

max
𝑝∈𝑄

𝐸
𝑃
[𝑢
−
(𝑋
−
)]. This form features an agent who is

extremely pessimistic or cautious about his judgment for
gains and losses. Note that it is reasonable that he has two
sets of priors, 𝑄 andP, for two kinds of environment as well
as two kinds of mood. But if 𝑔

1
(𝑥) = −𝑔

2
(−𝑥), the sets𝑄 and

P coincide.
From the above linear and nonlinear cases, I give the

detailed introduction about the similar and different points
between the probability distortion used in [22] and 𝑔-
expectation used in my model. The key point is that only
when there is no probability distortion considered in [22] and
there is only one probability 𝑃 (no ambiguous belief) in my
model like Example 13, both of the problems convert to the
conventional optimal problem, and, of course, they are the
same problem. Otherwise, the model in [22] and my model
consider two different economic situations as mentioned
above; that is, one is about probability distortion and the
other considers the ambiguous case. From the mathematical
viewpoint, Choquet integral and 𝑔-expectations are two
different and parallel ways to search nonlinear expectation.
The last point I want to say is that my model is a general
form, because 𝑔

1
, 𝑔
2
can be any nonlinear case satisfying the

conditions of Theorems 8 or 11. So my model can be applied
in other economic cases by choosing other 𝑔-functions in the
future that cannot be interpreted now.

6. Conclusions

The optimal portfolio selection problem under the conven-
tional expected utility theory has been well researched.There
are also some classical methods to be adopted. Owing to
the bad performance in realistic market, some new decision
rules have been proposed by many economists. The famous
prospect theory provided by Kahneman and Tversky has
been considered as the most acceptable rule for its three
points. Under the framework of this theory, the optimal
model becomes difficult for the S-shaped utility function and
the nonlinear probability distortion. The previous research
usually neglected one or two points of the PT theory, which
will greatly simplify the problem. My paper replaces the
nonlinear Choquet expectation in [22] by the nonlinear 𝑔-
expectation, so the nonlinear probability distortion 𝑇

+
(⋅)

could be replaced by the 𝑔 function. Also I adopt the S-
shaped utility function and different 𝑔-functions to show
the different uncertainty attitudes towards gains and losses.
If the wealth movement equations can be expanded to the
nonlinear cases, it will incorporate many famous cases, for
example, the larger investor case, the borrowing rate different
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from the lending rate case, and the different risk premium
for short and long position case. In [22], they only research
the classical linear case. Unfortunately, I can only simplify
the problem in linear wealthmovement equations. So, how to
divide the original problem (10) under nonlinearwealth func-
tion case (nonlinear cost constraint) needs further research.
Attention that for the decision rule, I use the 𝑔-expectation,
but the wealth equation adopted the 𝐺

𝑡,𝑇
(⋅) raised by Peng.

This dynamic pricingmechanismhas some similar properties
with the 𝑔-expectation, but they are different. 𝐺

𝑡,𝑇
(⋅) could

incorporate more cases than the 𝑔-expectation.
Using some techniques, for example, dividing the original

problem into three subproblems, Ekeland’s variational prin-
ciple, and the terminal perturbation method, I could get the
necessary form of the optimal solution in our model. At last,
I provide the economic meaning for my model.
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