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We consider a steady state problem for heat transfer in fins of various geometries, namely, rectangular, radial, and spherical. The
nonlinear steady state problem is linearizable provided that the thermal conductivity is the differential consequence of the term
involving the heat transfer coefficient. As such, one is able to construct exact solutions. On the other hand, we employ the Lie point
symmetry methods when the problem is not linearizable. Some interesting results are obtained and analyzed. The effects of the
parameters such as thermogeometric fin parameter and the exponent on temperature are studied. Furthermore, fin efficiency and
heat flux along the fin length of a spherical geometry are also studied.

1. Introduction

Heat transfer rate from a hot body to the surroundingmay be
increased by surfaces which extended into that surrounding.
These extended surfaces are referred to as fins. Extended
surfaces are found in many engineering appliances. Thus,
mathematical modeling of the heat transfer through these
surfaces and the solution are of continued interest. The heat
transfer in fins is governed by boundary value problems
(BVPs) which are rendered highly nonlinear by the depen-
dency of thermal properties on temperature. In this study,
both the heat transfer coefficient and thermal conductivity
are given as a power law function of temperature.

The interest in solutions of fin problems continues
unabated. Many symmetry analysts [1–5] analysed the fin
equation when the heat transfer coefficient is given as a
function of a space variable. Such a function was classified
by direct methods [2] and the extended analysis was done
in [4]. Only general solutions were provided in this case. It
was claimed that exact solutions of steady fin problems exist
only when thermal conductivity and heat transfer coefficients
are constants [6]. However Moitsheki et al. [7] have shown
that solutions may exist even whenthese thermal parame-

ters are temperature dependent. In recent years Moitsheki
[8, 9] and Moitsheki and Mhlongo [10] constructed exact
solutions for the convective heat transfer in fins of different
profiles. Furthermore, Ndlovu and Moitsheki [11] provided
the approximate analytical solutions to steady state heat
transfer in fins of different profiles which could not be solved
exactly. In their studies an excellent comparison between
exact and approximate solutions was established. One may
also refer to the work by Moradi [12] and many other
scholars.

In this study, we consider heat conduction problem in
fins of different geometries and in particular the spherical
fin which has never been studied before. We compare the
exact solutions of heat transfer in rectangular, radial, and
spherical fins. We further compare the fin efficiencies and
effectiveness of these fins and determine the effects of thermal
parameters in a spherical fin. This paper is arranged as
follows. In Section 2, we present the description of the
models considered. In Section 3 we briefly discuss the Lie
point symmetry methods. Following linearization, the exact
solution is provided in Section 4. In Section 5, we analyze the
problem when linearization fails. Conclusions are provided
in Section 6.
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2. Mathematical Description of a Fin Problem

We consider a fin of an arbitrary geometry with the length
(or radius) 𝑅 and a cross-sectional area 𝐴

𝑐
. The perimeter

of the fin is given by 𝑃. The fin is attached to a fixed prime
surface of temperature 𝑇

𝑏
and extends to an ambient fluid of

temperature 𝑇
𝑎
. The energy balance equation is given by

𝐴
𝑐

𝑅𝛼

𝑑

𝑑𝑅
[𝑅
𝛼

𝐾 (𝑇)
𝑑𝑇

𝑑𝑅
] = 𝑃𝐻 (𝑇) (𝑇 − 𝑇

𝑎
) , (1)

and the relevant boundary conditions are

𝑇 (𝑅
0
) = 𝑇
𝑏
,

𝑑𝑇

𝑑𝑅

𝑅=𝑅
1

= 0. (2)

The Greek letter 𝛼 represents different geometries; for exam-
ple 𝛼 = 0, 1, and 2 represent the longitudinal rectangular, the
rectangular radial, and the spherical fin as shown in Figures
1, 2, and 3.

Introducing the nondimensional variables and numbers,

𝜃 =
𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

, 𝑟 =
𝑅 − 𝑅

1

𝑅
0
− 𝑅
1

, 𝐻 = ℎ
𝑏
(
𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

)

𝑛

,

𝐾 = 𝑘
𝑎
(
𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

)

𝑚

, 𝑀
2

=
𝑃ℎ
𝑏
𝐿
2

𝑘
𝑎
𝐴
𝑐

,

(3)

and then (1) and the boundary conditions (2) become

1

𝑟𝛼

𝑑

𝑑𝑟
[𝑟
𝛼

𝜃
𝑚
𝑑𝜃

𝑑𝑟
] −𝑀

2

𝜃
𝑛+1

= 0, 0 ≤ 𝑟 ≤ 1, (4)

𝜃 (1) = 1, 𝜃


(0) = 0. (5)

Two main cases may be analyzed, namely, 𝑚 = 𝑛 and 𝑚 ̸= 𝑛.
One may construct exact solution when 𝑚 = 𝑛 since the
problem is linearizable and employ symmetry methods given
𝑚 ̸= 𝑛.

3. A brief Account on Lie Point
Symmetry Analysis

In this section we provide a brief theory of Lie point
symmetry techniques. In short, a symmetry of a differential
equation is an invertible transformation of the dependent
and independent variables that does not change the original
differential equation. Detailed theory and applications of Lie
symmetry groups may be found in the texts such as those of
[13–17]. Since in this study we deal with nonlinear second
order ODEs therefore we will restrict our discussion to the
determination of symmetries for such equations.

We seek transformations of the form

𝑟 = 𝑟 + 𝜉 (𝑟, 𝜃) 𝑎, 𝑦 = 𝑦 + 𝜂 (𝑟, 𝜃) 𝑎, (6)

called the infinitesimal transformations generated by the
vector

𝑋 = 𝜉 (𝑟, 𝜃)
𝜕

𝜕𝑟
+ 𝜂 (𝑟, 𝜃)

𝜕

𝜕𝜃
, (7)
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Fin tip

Figure 1: Graphical representation of a longitudinal rectangular fin.

Figure 2: Graphical representation of a rectangular radial fin.

R

L0

Figure 3: Graphical representation of a spherical fin.

which leave the given differential equation invariant. Here 𝑎 is
a group parameter. The group generated by transformations
(6) is called a one-parameter group of transformations. If the
given equation is of second order, for instance,

𝑓 (𝑟, 𝜃, 𝜃


, 𝜃


) = 0, (8)

then we extend the symmetry generator (7) to

𝑋
[2]

= 𝜉
𝜕

𝜕𝑟
+ 𝜂

𝜕

𝜕𝜃
+ 𝜁
1

𝜕

𝜕𝜃
+ 𝜁
2

𝜕

𝜕𝜃
, (9)

where

𝜁
1
= 𝐷 (𝜂) − 𝜃



𝐷(𝜉) ,

𝜁
2
= 𝐷 (𝜁

1
) − 𝜃


𝐷 (𝜉) ,

(10)

with𝐷 being the total derivative operator defined as

𝐷 =
𝜕

𝜕𝑟
+ 𝜃

𝜕

𝜕𝜃
+ 𝜃


𝜕

𝜕𝜃
+ ⋅ ⋅ ⋅ (11)
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Figure 4: Temperature profile given solutions (14), (16), and (17).
Here𝑀 = 2 and 𝑛 = 0.

The invariance surface condition

𝑋
[2]

(Equation (8)) |
(Equation (8)) = 0 (12)

yields the overdetermined system of linear equations called
the determining equation which may be solved to obtain the
admitted symmetry generators (or equivalently symmetry
transformation groups). In our analysis we determine the
symmetries admitted by the single governing equation rather
than the boundary value problem (BVP). Usually the symme-
try algebra for the BVP is less in dimensions than that of the
governing equation (see also [13]).

4. Linearization and Exact Solutions

It has been proven in [9] that equation such as (4) is
linearizable provided that 𝑚 = 𝑛. Thus assuming 𝑚 = 𝑛 and
letting 𝑦 = 𝜃

𝑛+1 then (4)

𝑑
2

𝑦

𝑑𝑟2
+
𝛼

𝑟

𝑑𝑦

𝑑𝑟
− (𝑛 + 1)𝑀

2

𝑦 = 0. (13)

Several subcases arise, namely, 𝛼 = 0, 1, 2 and arbitrary,
given 𝑛 < 1 and 𝑛 > 1.

Case 1 (𝛼 = 0, 𝑛 < −1 and 𝑛 > −1). This case has been solved
in [7]. In this case the solutions are given by

𝜃 = {

cosh (√𝑛 + 1𝑀𝑟)

cosh (√𝑛 + 1𝑀)

}

1/(𝑛+1)

, −1 < 𝑛 < ∞, (14)

𝜃 = {

sinh (√𝑛 + 1𝑀𝑟)

sinh (√𝑛 + 1𝑀)

}

1/(𝑛+1)

, −1 < 𝑛 < 0. (15)
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Figure 5: Temperature profile given solutions (17) for varying values
of𝑀. Here 𝑛 = 2 is fixed.

The solution for 𝑛 < −1 is given in terms of sine and cosine
functions.

Case 2 (𝛼 = 1, 𝑛 < −1 and 𝑛 > −1). This case has been solved
in [8]. In this case the exact solutions are given:

𝜃 = {

𝐼
0
(√𝑛 + 1𝑀𝑟)

𝐼
0
(√𝑛 + 1𝑀)

}

1/(𝑛+1)

, −1 < 𝑛 < ∞. (16)

The solutions for 𝑛 < −1 are given in terms of Bessel
functions.

Case 3 (𝛼 = 2, 𝑛 < −1 and 𝑛 > −1). In this case we obtain the
exact solutions

𝜃 = {
1

𝑟
[

sinh (𝑀√𝑛 + 1𝑟)

sinh (𝑀√𝑛 + 1)

]}

1/(𝑛+1)

, 𝑛 > −1, (17)

𝜃 = {
1

𝑟
[

sin (𝑀√𝑛 + 1𝑟)

sin (𝑀√𝑛 + 1)

]}

1/(𝑛+1)

, 𝑛 < −1. (18)

The solutions (14), (16), and (17) are depicted in Figure 4.
Figures 5 and 6 depict the plot of solution (17) for varying𝑀
and 𝑛, respectively.
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Figure 6: Temperature profile given solutions (17) for varying values
of 𝑛. Here𝑀 = 2 is fixed.

Case 4 (𝛼 = arbitrary, 𝑛 < −1 and 𝑛 > −1). Given an arbitrary
𝛼, we obtain the general solutions

𝜃 = {𝑟
1/2−𝛼/2

[𝑐
1
𝐽
𝛼/2−1/2

(𝑀√𝑛 + 1𝑟)

+ 𝑐
2
𝑌
𝛼/2−1/2

(𝑀√𝑛 + 1𝑟)]}
1/(𝑛+1)

,

𝑛 < −1,

𝜃 = {𝑟
1/2−𝛼/2

[𝑐
1
𝐽
𝛼/2−1/2

(𝑖𝑀√𝑛 + 1𝑟)

+ 𝑐
2
𝑌
𝛼/2−1/2

(𝑖𝑀√𝑛 + 1𝑟)]}
1/(𝑛+1)

,

𝑛 > −1.

(19)

Note that onemay obtain exact solutionswhich satisfy the
boundary conditions only when 𝛼 = 1 but this will coincide
with solution (16). One may also construct exact solution
when 𝑚 ̸= 𝑛 = −1. In this case the solution satisfying the
boundary condition is given by

𝜃 = (𝑚 + 1) [
𝑀
2

𝑟
2

2 (𝛼 + 1)
+

1

𝑚 + 1
−

𝑀
2

2 (𝛼 + 1)
] . (20)

The solution (20) is depicted in Figure 7.

5. Symmetry Reductions

In this section we consider the case 𝑚 ̸= 𝑛, with 𝛼 = 2 and 𝛼

being arbitrary. In this case (4) is not linearizable and as such
we employ the Lie point symmetry analysis.
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Figure 7: Temperature profile given solutions (20) for varying
values of 𝑛. Here𝑀 = 2 is fixed.

5.1. Case ∀𝛼 ̸= 0. In this case (4) admits one-dimensional Lie
algebra spanned by the base vector

𝑋 =
𝑚

2 (𝑚 + 1)
(−2𝜃

𝜕

𝜕𝜃
+ (𝑛 − 𝑚) 𝑟

𝜕

𝜕𝑟
) . (21)

Note that an obvious extra symmetry when 𝛼 = 0 is a
translation in 𝑟. We employ method of differential invariants
to reduce the order of (4) by one.The first prolongation of the
generator𝑋 is given by

𝑋
[1]

=
𝑚

2 (𝑚 + 1)
(−2𝜃

𝜕

𝜕𝜃
+ (𝑛 − 𝑚) 𝑟

𝜕

𝜕𝑟
)

− [
2𝑚 + 𝑚 (𝑛 − 𝑚)

2 (𝑚 + 1)
] 𝜃

𝜕

𝜕𝜃
,

(22)

and the corresponding characteristic equation is given by

𝑑𝑟

𝑚 (𝑛 − 𝑚) 𝑟
= −

𝑑𝜃

2𝑚𝜃
= −

𝑑𝜃


[2𝑚 + 𝑚 (𝑛 − 𝑚)] 𝜃

. (23)

Solving the above characteristics gives the invariants

𝐼
1
= 𝜃𝑟
2/(𝑛−𝑚)

, 𝐼
2
= 𝜃


𝑟
(2+𝑛−𝑚)/(𝑛−𝑚)

. (24)

Now we let 𝐼
1
= 𝑡, 𝐼

2
= 𝑢 and write 𝑢 = 𝑢(𝑡). From the

definition of 𝑡 and by using chain rule

𝐷
𝑟
= 𝐷
𝑟
(𝑡) 𝐷
𝑡
, (25)

we obtain

2 + 𝑛 − 𝑚

𝑛 − 𝑚
𝜃


+ 𝑟𝜃


= [
2𝜃

(𝑛 − 𝑚) 𝑟
+ 𝜃


] 𝑢


. (26)
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Substituting into (8) we have

𝑢


(
2𝑡
2

𝑛 − 𝑚
+ 𝑡𝑢) + 𝛼𝑡𝑢 + 𝑚𝑢

2

−𝑀
2

𝑡
𝑛−𝑚+2

= 0. (27)

We notice that the above equation may not be solved exactly.

5.1.1. Subcase 𝛼 = (3𝑚+𝑛+4)/(𝑚+𝑛+2). This choice of 𝛼 is
not physical since there is no relationship between the geom-
etry of the fin and the exponents of the thermal conductivity
and heat transfer coefficient. However, this case is mathemat-
ically interesting since (4) admits two Lie point symmetries
which implies [18] that the ODE in question is integrable or
reducible to the one with cubic degree in first derivative. The
admitted Lie algebra is spanned by the base vectors

𝑋
1
=

1

𝑚 − 𝑛
(2𝜃

𝜕

𝜕𝜃
+ (𝑚 − 𝑛) 𝑟

𝜕

𝜕𝑟
) ,

𝑋
2
= exp ( 𝑛 + 1

𝑚 + 𝑛 + 2
)

× 𝑟
2

[2 (𝑚 + 𝑛 + 2) 𝜃
𝜕

𝜕𝜃
+ (𝑛 + 2) (2𝑚 + 𝑛 + 2) 𝑟

𝜕

𝜕𝑟
] .

(28)
We omit further analysis since the initial assumption is not
physically realistic.

5.1.2. Subcase 𝛼 = 2, 𝑛 = −1. In this subcase (4) is integrable
and admits an eight-dimensional Lie algebra spanned by the
base vectors

𝑋
1
= −

𝑟
2

𝜃
−𝑚

3
(𝑀
2

𝑟
𝜕

𝜕𝜃
+ 3𝜃
𝑚
𝜕

𝜕𝑟
) ,

𝑋
2
= −

2𝑟𝜃
−𝑚

3
(𝑀
2

𝑟
𝜕

𝜕𝜃
+ 3𝜃
𝑚
𝜕

𝜕𝑟
) ,

𝑋
3
=

𝑚

2 (𝑚 + 1)

× {[(𝑚 + 1)𝑀
2

𝑟
2

− 2𝜃
𝑚+1

]
𝜕

𝜕𝜃
+ 2 (𝑚 + 1) 𝑟𝜃

𝑚
𝜕

𝜕𝑟
} ,

𝑋
4
=

𝑟
2

𝜃
−𝑚

18 (𝑚 + 1)
{(𝑚𝑀

4

𝑟 +𝑀
2

𝑟
3

− 6𝑀
2

𝑟𝜃
𝑚+1

)
𝜕

𝜕𝜃

+ [3𝑀
2

(𝑚 + 1) 𝜃
𝑚

− 18𝜃
2𝑚+1

]
𝜕

𝜕𝑟
} ,

𝑋
5
=

𝜃
−𝑚

12(𝑚 + 1)
2

× { [12𝜃
2(𝑚+1)

− 8 (𝑚 + 1)𝑀
2

𝑟
2

𝜃
𝑚+1

+𝑀
4

(𝑚 + 1)
2

𝑟
4

]
𝜕

𝜕𝜃

+ [2(𝑚 + 1)
2

𝑀
2

𝑟
3

𝜃
𝑚

− 12 (𝑚 + 1) 𝑟𝜃
2𝑚+1

]

×
𝜕

𝜕𝑟
} ,

𝑋
6
=

𝑚 [(𝑚 + 1)𝑀
2

𝑟
2

− 6𝜃
𝑚+1

]

6 (𝑚 + 1) 𝜃
𝑚

𝜕

𝜕𝜃
,

𝑋
7
= −

𝜃
−𝑚

𝑟

𝜕

𝜕𝜃
, 𝑋

8
= −𝜃
−𝑚

𝜕

𝜕𝜃
.

(29)

Equation (4) is equivalent to the simple motion equation
𝑦


= 0 [18]. We adopt method of canonical coordinate to
demonstrate this claim. We introduce the method of finding
the solutions using 𝑋

7
and 𝑋

8
from the above dimensional

Lie algebra vectors.The two symmetries lead to the canonical
variables

𝑡 = 𝑟, 𝑢 = −
𝑟𝜃
1+𝑚

1 + 𝑚
, (30)

and the corresponding canonical forms of𝑋
7
and𝑋

8
are

𝑋
1
= 𝜕
𝑢
, 𝑋

2
= 𝑡𝜕
𝑢
. (31)

Writing 𝑢 = 𝑢(𝑡) transforms (4) into

𝑢


(𝑡) + 𝑡𝑀
2

= 0. (32)

Integrating the latter equation and writing it into its original
variables we obtain

𝜃 (𝑟) = {[
1

6
𝑀
2

𝑟
2

−
𝑐
1

𝑟
− 𝑐
2
] (1 + 𝑚)}

1/(1+𝑚)

. (33)

Imposing the boundary conditions, we obtain

𝜃 = 𝑟
2/(𝑚+1)

, ∀𝑚 < 1. (34)

5.1.3. Subcase 𝛼= 2, 𝑚= 𝑛. In this subcase the admitted
eight-dimensional Lie symmetry algebra includes

𝑋
1
= 𝜃

𝜕

𝜕𝜃
,

𝑋
2
=

𝜕

𝜕𝑟
−

𝜃

(1 + 𝑛) 𝑟

𝜕

𝜕𝜃
,

𝑋
3
=

𝑒
−√𝑀

2
(1+𝑛)𝑟

𝜃
−𝑛

𝑟

𝜕

𝜕𝜃
,

𝑋
4
=

𝑒
√𝑀
2
(1+𝑛)𝑟

𝜃
−𝑛

√𝑀2 (1 + 𝑛)𝑟

𝜕

𝜕𝜃
,

𝑋
5
= (1 + 𝑛)𝑀

2
𝜕

𝜕𝑟
+ (𝑀

3√1 + 𝑛 −
𝑀
2

𝑟
) 𝜃

𝜕

𝜕𝜃
,

𝑋
6
= − (1 + 𝑛)𝑀

2
𝜕

𝜕𝑟
+ (𝑀

3√1 + 𝑛 +
𝑀
2

𝑟
) 𝜃

𝜕

𝜕𝜃
,

𝑋
7
= (1 + 𝑛)

𝜕

𝜕𝑟
− (1 + √𝑀2 (1 + 𝑛)𝑟) 𝜃

𝜕

𝜕𝜃
,

𝑋
8
= (1 + 𝑛)

𝜕

𝜕𝑟
− (1 − √𝑀2 (1 + 𝑛)𝑟) 𝜃

𝜕

𝜕𝜃
.

(35)
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Since (4) admits eight symmetries it is linearizable (see
also [18]). Using the symmetry generators 𝑋

1
and 𝑋

2
, we

obtain the canonical variables

𝑡 = ln (𝜃𝑟1/(1+𝑛)) , 𝑢 = 𝑟. (36)

The corresponding generators in canonical variables are

𝑋
1
= 𝜕
𝑡
, 𝑋

2
𝜕
𝑢
. (37)

Writing 𝑢 = 𝑢(𝑡) transforms (4) into

𝑢


= (𝑛 + 1) 𝑢


−𝑀
2

𝑢
3

. (38)

6. Fin Efficiency and Heat Flux

The fin efficiency is defined as the ratio of the actual heat
transfer from the fin surface to the surrounding fluid while
the whole fin is kept at the same temperature. On the other
hand, heat flux is the total amount of heat flowing per unit
area per unit time. The fin efficiency and the heat flux in
dimensionless variables are given by

𝜂 = ∫

1

0

𝜃
𝑛+1

𝑑𝑟, (39)

𝑞 =
1

𝐵𝑖

𝑘 (𝜃)

ℎ (𝜃)

𝑑𝜃

𝑑𝑟
, (40)

respectively. Here the dimensionless parameter 𝐵𝑖 = ℎ
𝑏
𝐿/𝑘
𝑎

is the Biot number.
Given solution (17), we obtain

𝜂 = (ln (𝑀√𝑛 + 1) − ln (−𝑀√𝑛 + 1)

+ 𝐸𝑖 (1,𝑀√𝑛 + 1) − 𝐸𝑖 (1, −𝑀√𝑛 + 1))

× (2 sinh (𝑀√𝑛 + 1))
−1

,

(41)

where 𝐸𝑖(𝑎, 𝑧) is the exponential integral [19]. Fin efficiency
(41) is depicted in Figure 8.

And the heat flux becomes

𝑞 =
1

𝐵𝑖

𝑟𝑀√𝑛 + 1 cosh (𝑀√𝑛 + 1𝑟) − sinh (𝑀√𝑛 + 1𝑟)

(𝑛 + 1) 𝑟 sinh (𝑀√𝑛 + 1𝑟)

(42)

Heat flux (42) is depicted in Figures 9 and 10.

7. Some Discussions and Concluding Remarks

In Figure 4, we observe that heat is transferred much slower
in spherical fins than in radial and rectangular fins. This is
also confirmed by the values in Table 1. Now we focus only
on spherical fins and observe in Figure 5 that temperature
decreases with increase in the values of 𝑀. Recall that the
thermogeometric fin parameter is directly proportional to the
aspect ratio of the fin. Thus longer fins (𝑀 larger) release
heat much more efficiently that shorter ones. In Figure 6,
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Figure 8: Fin efficiency for varying values of 𝑛.
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Figure 9: Heat flux for varying values of 𝑛.

temperature increases with an increase in the values of 𝑛.
Finally Figure 7 depicts the heat transfer where 𝑚 ̸= 𝑛 = 1.
Figure 8 is a plot of the fin efficiency with varying values
of 𝑛. Figures 9 and 10 depict the heat flux. In this paper
we focused on the comparison of temperature distribution
(or heat transfer) in fins of different geometries. One may
observe from Table 1 that at any given point 𝑟

0
on the radius

𝑟 the temperature values are much higher in a spherical fin
than radial and rectangular geometries. It turns out that the
spherical fin is not as effective in transferring heat as the radial
or rectangular fins.
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Figure 10: Heat flux for varying values of𝑀.

Table 1: Comparison of the temperature values in fins with
rectangular, radial, and spherical profiles. Here𝑀 = 4 and 𝑛 = 1.

𝑟
𝛼 = 0

(rectangular)
𝛼 = 1

(radial)
𝛼 = 2

(spherical)
0 0.125136 0.185069 0.238556
0.1 0.13479 0.192403 0.244902
0.2 0.160849 0.213754 0.363795
0.3 0.199607 0.248095 0.295078
0.4 0.25049 0.295331 0.33908
0.5 0.315255 0.356686 0.396937
0.6 0.397056 0.434579 0.470685
0.7 0.500174 0.532528 0.563297
0.8 0.630101 0.655185 0.678749
0.9 0.793788 0.808503 0.822159
1 1 1 1
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