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Cost-sensitive support vector machine is one of the most popular tools to deal with class-imbalanced problem such as fault
diagnosis. However, such data appear with a huge number of examples as well as features. Aiming at class-imbalanced problem on
big data, a cost-sensitive support vector machine using randomized dual coordinate descent method (CSVM-RDCD) is proposed
in this paper. The solution of concerned subproblem at each iteration is derived in closed form and the computational cost
is decreased through the accelerating strategy and cheap computation. The four constrained conditions of CSVM-RDCD are
derived. Experimental results illustrate that the proposed method increases recognition rates of positive class and reduces average
misclassification costs on real big class-imbalanced data.

1. Introduction

The most popular strategy for the design of classification
algorithms is to minimize the probability of error, assuming
that all misclassifications have the same cost and classes
of dataset are balanced [1–6]. The resulting decision rules
are usually denoted as cost insensitive. However, in many
important applications of machine learning, such as fault
diagnosis [7] and fraud detection, certain types of error are
much more costly than others. Other applications involve
significantly class-imbalanced datasets, where examples from
different classes appear with substantially different proba-
bility. Cost-sensitive support vector machine (CSVM) [2] is
one of the most popular tools to deal with class-imbalanced
problem and unequal misclassification problem. However, in
many applications, such data appear with a huge number of
examples as well as features.

In this work we consider the cost-sensitive support vector
machine architecture [1]. Although CSVMs are based on
a very solid learning-theoretic foundation and have been

successfully applied to many classification problems, it is
not well understood how to design big data learning of
the CSVM algorithm. CSVM usually maps training vectors
into a high dimensional space via a nonlinear function.
Due to the high dimensionality of the weight vector, one
solves the dual problem of CSVM by the kernel trick. In
some applications, data appear in a rich dimensional feature
space; the performances are similar with/without nonlinear
mapping. If data are not mapped, we can often train much
data set.

Recently, many methods have been proposed for linear
SVM in large-scale scenarios [4]. In all methods, dual coor-
dinate descent methods for dual problem of CSVM are one of
popularmethods to dealwith large-scale convex optimization
problem. However, they do not focus on big data learning of
CSVM. We focus on big data class-imbalanced learning by
CSVM.

This paper is organized as follows. In Section 2 basic
theory of cost-sensitive support vector machine is described.
In Section 3 we derive our proposed algorithm. Section 4
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discusses both speed-ups and four constrained conditions
of cost-sensitive support vector machine. Implementation
issues are investigated in Section 5. Experiments show effi-
ciently our proposed method.

2. Basic Theory of Cost-Sensitive Support
Vector Machine

Cost-sensitive support vector machine such as 2C-SVM is
proposed in [1]. Consider examples set {(x

𝑖
, 𝑦
𝑖
)}
𝑙

𝑖=1
, x
𝑖
∈ 𝑅
𝑑,

𝑦
𝑖
∈ 𝑌 = {+1, −1}, 𝐼

+
= {𝑖 : 𝑦

𝑖
= +1}, 𝐼

−
= {𝑖 : 𝑦

𝑖
= −1}. The

2C-SVM has primal optimization problem:

min
𝑤,𝑏,𝜉

1

2
‖w‖2 + 𝐶𝛾∑

𝑖∈𝐼
+

𝜉
𝑖
+ 𝐶 (1 − 𝛾) ∑

𝑖∈𝐼
−

𝜉
𝑖

s.t. 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
𝑖 = 1, 2, . . . , 𝑙

𝜉
𝑖
≥ 0 𝑖 = 1, 2, . . . , 𝑙

𝐶 > 0.

(1)

Lagrange multipliers method can be used to solve the con-
strained optimization problem. In this method, the Lagrange
equation is defined as follows:

𝐿 (w, 𝑏, 𝜉)

=
1

2
‖w‖2 + 𝐶𝛾∑

𝑖∈𝐼
+

𝜉
𝑖
+ 𝐶 (1 − 𝛾) ∑

𝑖∈𝐼
−

𝜉
𝑖

+

𝑙

∑
𝑖=1

𝛼
𝑖
[1 − 𝜉

𝑖
− 𝑦
𝑖
(w𝑇x
𝑖
+ 𝑏)] +

𝑙

∑
𝑖=1

𝛽
𝑖
[−𝜉
𝑖
] ,

(2)

where the 𝛼
𝑖
, 𝛽
𝑖
’s are called the Lagrange multipliers. 𝐿’s

partial derivatives are set to be zero as follows:

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕w

= 0,
𝜕𝐿 (w, 𝑏, 𝜉)

𝜕𝑏
= 0,

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕𝜉
𝑖

= 0.

(3)

And solve w, 𝑏, 𝜉. The formula (3) is extended to be

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕w

= w +
𝑙

∑
𝑖=1

𝛼
𝑖
[−𝑦
𝑖
x
𝑖
] = 0

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕𝑏

=

𝑙

∑
𝑖=1

𝛼
𝑖
(−𝑦
𝑖
) = 0

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕𝜉
𝑖

= 𝐶𝛾 − 𝛼
𝑖
− 𝛽
𝑖
= 0, 𝑖 ∈ 𝐼

+
,

𝜕𝐿 (w, 𝑏, 𝜉)
𝜕𝜉
𝑖

= 𝐶 (1 − 𝛾) − 𝛼
𝑖
− 𝛽
𝑖
= 0, 𝑖 ∈ 𝐼

−
.

(4)

Equation (4) can be reformatted as

w =
𝑙

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
x
𝑖
, (5)

𝑙

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0, (6)

𝐶𝛾 − 𝛼
𝑖
− 𝛽
𝑖
= 0, 𝑖 ∈ 𝐼

+
,

𝐶 (1 − 𝛾) − 𝛼
𝑖
− 𝛽
𝑖
= 0, 𝑖 ∈ 𝐼

−
.

(7)

By incorporating (5) to (7), Lagrange equation (2) is
rewritten as

𝐿 (𝑤, 𝑏, 𝜉)

=
1

2



𝑛

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
x
𝑖



2

+ 𝐶𝛾∑
𝑖∈𝐼
+

𝜉
𝑖
+ 𝐶 (1 − 𝛾) ∑

𝑖∈𝐼
−

𝜉
𝑖

+

𝑙

∑
𝑖=1

𝛼
𝑖
[

[

1 − 𝜉
𝑖
− 𝑦
𝑖
((

𝑛

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
x
𝑖
)

𝑇

x
𝑖
+ 𝑏)]

]

+ ∑
𝑖∈𝐼
+

(𝐶𝛾 − 𝛼
𝑖
) [−𝜉
𝑖
] + ∑
𝑖∈𝐼
−

(𝐶 (1 − 𝛾) − 𝛼
𝑖
) [−𝜉
𝑖
] .

(8)

Lagrange equation (8) is simplified as

𝐿 (𝑤, 𝑏, 𝜉)

= −
1

2

𝑙

∑
𝑖=1

𝛼
𝑖
[

[

𝑦
𝑖
((

𝑙

∑
𝑗=1

𝛼
𝑗
𝑦
𝑗
x
𝑗
)

𝑇

x
𝑖
)]

]

+

𝑙

∑
𝑖=1

𝛼
𝑖
.

(9)

Recall that the equation above is obtained by minimizing
𝐿 with respect to w and 𝑏. Putting this together with the
constraints 𝛼

𝑖
≥ 0 and the constraints (5) to (7), the following

dual optimization problem of 2C-SVM is obtained as

min
𝛼

𝑓 (𝛼) =
1

2

𝑙

∑
𝑖=1

𝑙

∑
𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
x𝑇
𝑖
x
𝑗
−

𝑙

∑
𝑖=1

𝛼
𝑖

s.t. 0 ≤ 𝛼
𝑖
≤ 𝐶𝛾, 𝑖 ∈ 𝐼

+

0 ≤ 𝛼
𝑖
≤ 𝐶 (1 − 𝛾) , 𝑖 ∈ 𝐼

−

𝑙

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0,

(10)

where𝛼
𝑖
, 𝑖 = 1, . . . , 𝑙 are Lagrangemultipliers and𝐶𝛾,𝐶(1−𝛾),

𝐶 > 0, 𝛾 ∈ [0, 1] are misclassification cost parameters. The
matrixes 𝑄 and 𝛼 are defined, respectively, as follows:

𝑄 = [𝑄
𝑖𝑗
]
𝑙×𝑙
, where 𝑄

𝑖𝑗
= 𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
x𝑇
𝑖
x
𝑗
,

𝛼 = [𝛼
1
, . . . , 𝛼

𝑖
, . . . , 𝛼

𝑗
, . . . , 𝛼

𝑙
] .

(11)
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3. Cost-Sensitive Support Vector
Machine Using Randomized Dual
Coordinate Descent Method

In this section, randomized dual coordinate descent method
is used to solve 2C-SVM that is one version of cost-sensitive
support vectormachine.Theoptimization process starts from
an initial point 𝛼0 ∈ R𝑙 and generates a sequence of vectors
𝛼
𝑘, 𝑘 = 0, . . . ,∞. The process from 𝛼𝑘 to 𝛼𝑘+1 is called

an outer iteration. In each outer iteration 𝑙 is called inner
iteration, so that 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑙
are sequentially updated. Each

outer iteration thus generates vectors𝛼𝑘,𝑖 ∈ R𝑙, 𝑖 = 1, 2, . . . , 𝑙+
1, such that

𝛼
𝑘,1
= 𝛼
𝑘
, 𝑖 = 1,

𝛼
𝑘,𝑖
= [𝛼
𝑘+1

1
, . . . , 𝛼

𝑘+1

𝑖−1
, 𝛼
𝑘

𝑖
, . . . , 𝛼

𝑘

𝑙
] , ∀𝑖 = 2, . . . , 𝑙,

𝛼
𝑘,𝑙
= 𝛼
𝑘
, 𝑖 = 𝑙 + 1.

(12)

For updating 𝛼𝑘,𝑖 to 𝛼𝑘,𝑖+1, the following one-variable
subproblem is solved as

min
𝑑

𝑓 (𝛼
𝑘,𝑖
+ 𝑑𝑒
𝑖
) , (13)

where 𝑒
𝑖
= [0, . . . , 1, . . . , 0]

𝑇. This is general process of
one-variable coordinate descent method. However, the sum
constrained condition of the optimization problem (13) is
denoted as follows:

𝑛

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0, (14)

where 𝛼
𝑖
is exactly determined by the other 𝛼

𝑖
,s, and if we

were to hold {𝛼
𝑖
}
𝑛

𝑖=1
\ 𝛼
𝑖
fixed, then we cannot make any

change 𝛼
𝑖
without violating the constraint condition (14) in

the optimization problem.
Thus if we want to update some subject of the 𝛼

𝑖
,s, we

must update at least two of them simultaneously in order
to keep satisfying the constraints. We currently have some
setting of the 𝛼

𝑖
s that satisfy the constraint conditions (14)

and suppose we have decided to hold {𝛼
𝑖
}
𝑛

𝑖=1
\ 𝛼
𝑖
, 𝛼
𝑗
fixed and

reoptimize the dual problem of CSVM (10) with respect to 𝛼
𝑖
,

𝛼
𝑗
(subject to the constraints). Equation (6) is reformatted as

𝛼
𝑖
𝑦
𝑖
+ 𝛼
𝑗
𝑦
𝑗
=

𝑙

∑
𝑚=1

𝛼
𝑚
𝑦
𝑚
− 𝛼
𝑖
𝑦
𝑖
− 𝛼
𝑗
𝑦
𝑗
. (15)

Since the right hand side is fixed, we can just let it be
denoted by some constant 𝜁:

𝜁 =

𝑙

∑
𝑚=1

𝛼
𝑚
𝑦
𝑚
− 𝛼
𝑖
𝑦
𝑖
− 𝛼
𝑗
𝑦
𝑗
. (16)

We can form the updated coordinates before and after
with respect to 𝛼

𝑖
, 𝛼
𝑗
:

𝛼
𝑘

𝑖
𝑦
𝑖
+ 𝛼
𝑘

𝑗
𝑦
𝑗
= 𝛼
𝑘+1

𝑖
𝑦
𝑖
+ 𝛼
𝑘+1

𝑗
𝑦
𝑗
= 𝜁. (17)

𝛼
𝑘

𝑖
𝑦
𝑖
, 𝛼𝑘+1
𝑖
𝑦
𝑖
are updated coordinates before and after with

respect to 𝛼𝑘
𝑖
. Consider the following dual two-variable

subproblem of 2C-SVM:

𝑓 (𝛼
𝑘,𝑖
+ 𝑑
𝑖
𝑒
𝑖
) + 𝑓 (𝛼

𝑘,𝑗
+ 𝑑
𝑗
𝑒
𝑗
)

= 𝑄
𝑖𝑖
𝑑
2

𝑖
+ {2(𝛼

𝑘,𝑖
𝑄)
𝑖
− 1} 𝑑

𝑖

+ 𝑄
𝑗𝑗
𝑑
2

𝑗
+ {2(𝛼

𝑘,𝑗
𝑄)
𝑗
− 1} 𝑑

𝑗
+ 𝑐,

(18)

where 𝑐 is constant, 𝑄
𝑖
= [𝑄
𝑖,𝑠
, . . . , 𝑄

𝑖,𝑠−1
, 𝑄
𝑖,𝑠
, . . . , 𝑄

𝑖,𝑙
], and

(𝛼
𝑘,𝑖
𝑄)
𝑖
=

𝑙

∑
𝑠=1

𝑄
𝑖,𝑠
𝛼
𝑘,𝑠

𝑖
. (19)

From (18), we obtain

𝑓

(𝛼) = 𝛼

𝑇
𝑄 − 1, (20)

𝜕𝑓 (𝛼
𝑘,𝑖
)

𝜕𝛼
𝑖

= 2(𝛼
𝑘,𝑖
𝑄)
𝑖
− 1, (21)

where 𝜕𝑓(𝛼𝑘,𝑖)/𝜕𝛼
𝑖
is the 𝑖th component of the gradient𝑓(𝛼).

By incorporating (21), (18) is rewritten as

𝑓 (𝛼
𝑘,𝑖
+ 𝑑
𝑖
𝑒
𝑖
) + 𝑓 (𝛼

𝑘,𝑗
+ 𝑑
𝑗
𝑒
𝑗
)

= 𝑄
𝑖𝑖
𝑑
2

𝑖
+
𝜕𝑓 (𝛼
𝑘,𝑖
)

𝜕𝛼
𝑖

𝑑
𝑖
+ 𝑄
𝑗𝑗
𝑑
2

𝑗
+
𝜕𝑓 (𝛼
𝑘,𝑗
)

𝜕𝛼
𝑗

𝑑
𝑗
+ 𝑐.

(22)

From (17), we have 𝑑
𝑗
= −𝑑

𝑖
𝑦
𝑖
𝑦
𝑗
. Equation (22) is

reformed as follows:

𝑓 (𝛼
𝑘,𝑖
+ 𝑑
𝑖
𝑒
𝑖
) + 𝑓 (𝛼

𝑘,𝑗
+ 𝑑
𝑗
𝑒
𝑗
)

= 𝑄
𝑖𝑖
𝑑
2

𝑖
+
𝜕𝑓 (𝛼
𝑘,𝑖
)

𝜕𝛼
𝑖

𝑑
𝑖
+ 𝑄
𝑗𝑗
𝑑
2

𝑖
−
𝜕𝑓 (𝛼
𝑘,𝑗
)

𝜕𝛼
𝑗

𝑑
𝑖
𝑦
𝑖
𝑦
𝑗
+ 𝑐

= (𝑄
𝑖𝑖
+ 𝑄
𝑗𝑗
) 𝑑
2

𝑖
+ (

𝜕𝑓 (𝛼
𝑘,𝑖
)

𝜕𝛼
𝑖

−
𝜕𝑓 (𝛼
𝑘,𝑗
)

𝜕𝛼
𝑗

𝑦
𝑖
𝑦
𝑗
)𝑑
𝑖
+ 𝑐.

(23)

Treating (𝑄
𝑖𝑖
+𝑄
𝑗𝑗
), ((𝜕𝑓(𝛼𝑘,𝑖)/𝜕𝛼

𝑖
) − (𝜕𝑓(𝛼

𝑘,𝑗
)/𝜕𝛼
𝑗
)𝑦
𝑖
𝑦
𝑗
),

𝑐 as constants, we should be able to verify that this is just
some quadratic function in 𝑑

𝑖
. We can easily maximize

this quadratic function by setting its derivative to zero and
solving the optimization problem.The following two-variable
optimization problem is obtained as

min
𝑑
𝑖

𝑓 (𝛼
𝑘,𝑖
+ 𝑑
𝑖
𝑒
𝑖
) + 𝑓 (𝛼

𝑘,𝑗
+ 𝑑
𝑗
𝑒
𝑗
) . (24)



4 Abstract and Applied Analysis

The closed form is derived as follows:

𝑑
𝑖
=
(𝜕𝑓 (𝛼

𝑘,𝑖
) /𝜕𝛼
𝑖
) − (𝜕𝑓 (𝛼

𝑘,𝑗
) /𝜕𝛼
𝑗
) (𝑦
𝑖
𝑦
𝑗
)

2 (𝑄
𝑖𝑖
+ 𝑄
𝑗𝑗
)

. (25)

We now consider the box constraints (10) of the two-
variable optimization problem. The box constraints as 0 ≤
𝛼
𝑖
≤ 𝐶𝛾, 𝑖 ∈ 𝐼

+
, 0 ≤ 𝛼

𝑖
≤ 𝐶(1 − 𝛾), 𝑖 ∈ 𝐼

−
are classified

to four boxes constraints according to the labels of examples
from some two coordinates.

Firstly, suppose that the labels of examples are as

𝑦
𝑖
= +1, 𝑦

𝑗
= −1. (26)

The sum constraints of Lagrange multipliers according to
these labels are as

𝛼
𝑖
𝑦
𝑖
+ 𝛼
𝑗
𝑦
𝑗
= 𝜁. (27)

Another expressing of sum constraints of Lagrange mul-
tipliers is as

𝛼
𝑖
− 𝛼
𝑗
= 𝜁,

or 𝛼
𝑖
= 𝛼
𝑗
+ 𝜁.

(28)

The box constraints of Lagrangemultipliers are defined as

0 ≤ 𝛼
𝑖
≤ 𝛾𝐶,

0 ≤ 𝛼
𝑗
≤ (1 − 𝛾)𝐶.

(29)

We obtain the new expressing of box constraints of
Lagrange multipliers as the following:

0 ≤ 𝜁 ≤ (1 − 𝛾)𝐶,

0 ≤ 𝛼
𝑖
≤ 𝛼
𝑖
− 𝛼
𝑗
− (1 − 𝛾)𝐶,

or − (1 − 𝛾)𝐶 ≤ 𝜁 ≤ 0,

𝛼
𝑖
− 𝛼
𝑗
≤ 𝛼
𝑖
≤ 𝛾𝐶.

(30)

Thus we obtain stricter box constraints of Lagrange
multipliers 𝛼

𝑖
, 𝛼
𝑗
according to 𝑦

𝑖
= +1, 𝑦

𝑗
= −1 as the

following:

𝑈
1
= max (0, 𝛼

𝑖
− 𝛼
𝑗
) ,

𝑉
1
= min (𝛼

𝑖
− 𝛼
𝑗
− (1 − 𝛾)𝐶, 𝛾𝐶) .

(31)

Secondly, suppose that the labels of examples are as

𝑦
𝑖
= +1, 𝑦

𝑗
= +1. (32)

Similarly, similar stricter box constraints of Lagrange
multipliers 𝛼

𝑖
, 𝛼
𝑗
are obtained as follows:

𝑈
2
= max (0, 𝛼

𝑖
+ 𝛼
𝑗
− 𝛾𝐶) ,

𝑉
2
= min (𝛼

𝑖
+ 𝛼
𝑗
, 𝛾𝐶) .

(33)

Thirdly, suppose that the labels of examples are as

𝑦
𝑖
= −1, 𝑦

𝑗
= −1. (34)

Similarly, the similar stricter box constraints of Lagrange
multipliers 𝛼

𝑖
, 𝛼
𝑗
are obtained as follows:

𝑈
3
= max (0, −𝛼

𝑖
− 𝛼
𝑗
− (1 − 𝛾)𝐶) ,

𝑉
3
= min (−𝛼

𝑖
− 𝛼
𝑗
, (1 − 𝛾)𝐶) .

(35)

Finally, suppose that the labels of examples are as

𝑦
𝑖
= −1, 𝑦

𝑗
= +1. (36)

Similarly, the similar stricter box constraints of Lagrange
multipliers 𝛼

𝑖
, 𝛼
𝑗
are obtained as follows:

𝑈
4
= max (0, −𝛼

𝑖
− 𝛼
𝑗
) ,

𝑉
4
= min (𝛾𝐶 − 𝛼

𝑖
− 𝛼
𝑗
, (1 − 𝛾) 𝐶) .

(37)

For the simplification, set

𝛼
temp
𝑖

= 𝛼
𝑘,𝑖

𝑖
+ 𝑑
𝑖
, (38)

𝛼
𝑘,𝑖+1

𝑖
is defined as the temp solution, which would be edited

to satisfy

𝛼
𝑘,𝑖+1

𝑖
=

{{{{

{{{{

{

𝑉
𝑖
, if 𝛼temp

𝑖
> 𝑉
𝑖
, 𝑖 = 1, 2, 3, 4

𝛼
temp
𝑖
, if 𝑈

𝑖
< 𝛼

temp
𝑖

< 𝑉
𝑖
, 𝑖 = 1, 2, 3, 4

𝑈
𝑖
, if 𝛼temp

𝑖
< 𝑈
𝑖
, 𝑖 = 1, 2, 3, 4.

(39)

From linear constraints with respect to 𝛼𝑘,𝑖+1
𝑖

in (17), the
value of 𝛼𝑘,𝑗+1

𝑖
is obtained as

𝛼
𝑘,𝑗+1

𝑖
= 𝑦
𝑗
(𝑦
𝑖
𝛼
𝑘,𝑖

𝑖
+ 𝑦
𝑗
𝛼
𝑘,𝑗

𝑖
− 𝑦
𝑖
𝛼
𝑘,𝑖+1

𝑖
) . (40)

4. The Modified Proposed Method

4.1. Two Speeding-Up Strategies. To avoid duplicate and
invalid iterative process calculations, the two given condi-
tions are not updated. If one of two conditions ismet, then the
algorithm skips this iteration that can significantly reduce the
computational amount and accelerate the convergence speed.

Condition 1. If 𝛼𝑘,𝑖
𝑖
= 𝛼
𝑘,𝑗

𝑖
= 0 or 𝛼𝑘,𝑖

𝑖
= 𝛼
𝑘,𝑗

𝑖
= 𝐶, then the

constrained conditions are not updated.
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Due to the box constraints of (10), there will appear a lot
of boundary points of coordinates (𝛼𝑘,𝑖

𝑖
= 𝐶 or 𝛼𝑘,𝑖

𝑖
= 0) in

computing process. If there are two coordinates (𝛼𝑘,𝑖
𝑖
and 𝛼𝑘,𝑖
𝑖
)

as the value of 0 or 𝐶 in an iteration process, the analytical
solution of the two subvariables updates coordinates without
calculating. The reason is that the formula (17) guarantees
𝛼
𝑘,𝑖

𝑖
+ 𝛼
𝑘,𝑗

𝑖
= 0 or 𝛼𝑘,𝑖

𝑖
+ 𝛼
𝑘,𝑗

𝑖
= 2𝐶, while double restricted

box constrained optimization 0 ≤ 𝛼𝑘,𝑖
𝑖
≤ 𝐶 if the result is 0 or

𝐶. Constrained conditions will be edited ultimately as 0 or 𝐶.
The constrained conditions are not updated.

Condition 2. If projected gradient is 0, the constrained
conditions are not updated.

4.2. Dual Problem of Cost-Sensitive Support Vector Machine
Using Randomized Dual Coordinate Descent Method and Its
Complexity Analysis. From the above algorithmderivation of
view, solving of CSVM seems to have been successful, but the
computational complexity of the solving process is also larger.
Assume that the average value of nonzero feature of each
sample is 𝑛. Firstly, the computational complexity of the inner
product matrix 𝑄

𝑖𝑖
= 𝑦
𝑖
𝑥
𝑇

𝑖
𝑥
𝑖
𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑙 is 𝑂(𝑙𝑛), but the

process can be operated in advance and stored into memory.
Secondly, the calculation of (𝛼𝑘,𝑖𝑄)

𝑖
= ∑
𝑙

𝑠=1
𝑄
𝑖,𝑠
𝛼
𝑘,𝑠

𝑖
takes the

computational complexity 𝑂(𝑙𝑛). The amount of calculation
is very great when the data size is large. However, there is a
linear relationship model CSVM:

𝑤 =

𝑙

∑
𝑠=1

𝛼
𝑘,𝑠

𝑖
𝑥
𝑠
𝑦
𝑠
. (41)

Thus, (𝛼𝑘,𝑖𝑄)
𝑖
is further simplified as follows:

(𝛼
𝑘,𝑖
𝑄)
𝑖
=

𝑙

∑
𝑠=1

𝑄
𝑖,𝑠
𝛼
𝑘,𝑠

𝑖
=

𝑙

∑
𝑠=1

(𝛼
𝑘,𝑠

𝑖
𝑦
𝑠
𝑥
𝑇

𝑠
) 𝑥
𝑠
𝑦
𝑠
= 𝑤
𝑇
𝑥
𝑖
𝑦
𝑖
. (42)

Solving the corresponding formula (23) can be simplified
as follows:

𝑑
𝑖
=
2(𝛼
𝑘,𝑖
𝑄)
𝑖
− 1 − (2(𝛼

𝑘,𝑗
𝑄)
𝑗
− 1) 𝑦

𝑖
𝑦
𝑗

2 (𝑄
𝑖𝑖
+ 𝑄
𝑗𝑗
)

=
2𝑤
𝑇
𝑥
𝑖
𝑦
𝑖
− 1 − (2𝑤

𝑇
𝑥
𝑗
𝑦
𝑗
− 1) 𝑦

𝑖
𝑦
𝑗

2 (𝑄
𝑖𝑖
+ 𝑄
𝑗𝑗
)

.

(43)

As can be seen, computing𝑑
𝑖
with the complexity of𝑂(𝑙𝑛)

becomes computing 𝑤𝑇𝑥
𝑖
𝑦
𝑖
with the complexity of 𝑂(𝑛).

Thus the calculation times reduce 𝑙 − 1. However,

𝑤 =

𝑙

∑
𝑠=1

𝛼
𝑘,𝑠

𝑖
𝑥
𝑠
𝑦
𝑠
, (44)

where 𝑤 is the updated still computational complexity𝑂(𝑙𝑛).
The amount of calculation can be reduced significantly when
𝑤 is updated by changing 𝛼𝑘,𝑠

𝑖
. Let 𝛼𝑘,𝑖

𝑖
, 𝛼𝑘,𝑗
𝑖

be the values of

the current selection; 𝛼𝑘,𝑖+1
𝑖

, 𝛼𝑘,𝑗+1
𝑖

are updated values, which
can be updated via a simple way:

𝑤 ← 𝑤 + (𝛼
𝑘,𝑖

𝑖
− 𝛼
𝑘,𝑖+1

𝑖
) 𝑥
𝑖
𝑦
𝑖
+ (𝛼
𝑘,𝑗

𝑖
− 𝛼
𝑘,𝑗+1

𝑖
) 𝑥
𝑗
𝑦
𝑗
. (45)

Its computational complexity only is 𝑂(𝑛). So, whether
calculating 𝑑

𝑖
or updating 𝑤, coordinate gradient compu-

tation complexity is 𝑂(𝑛), which is one of the coordinate
gradient method rapid convergence speed reasons.

When assigned an initial value and constraints based on

𝑛

∑
𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0,

0 ≤ 𝛼
𝑖
≤ 𝛾𝐶,

0 ≤ 𝛼
𝑗
≤ (1 − 𝛾)𝐶,

(46)

set the initial point

𝛼
0
= [. . . , 𝛼

𝑖
, . . . , 𝛼

𝑗
, . . . , ]

𝑇

1×𝑙
, (47)

where 𝛼
𝑖
= 1/𝑡, 𝛼

𝑗
= (1/(𝑙 − 𝑡))𝑙, 𝑡 are the total number

of samples and the number of positive samples, respectively.
Thus the weight vector 𝑤 of the original problem is obtained
by optimizing Lagrangian multipliers 𝛼 of the dual problem.

4.3. Description of Cost-Sensitive Support Vector Machine
Using Randomized Dual Coordinate Descent Method. Accel-
erated conditions are judged by Section 4.1. One chooses the
coordinate optimized number 𝑖, 𝑗. We use formula (43) to
calculate𝑑

𝑖
, formulas (39) and (40) to update𝛼𝑘,𝑖

𝑖
,𝛼𝑘,𝑗
𝑖
, and the

formula (45) to update 𝑤, respectively. We can see that inner
iteration takes 𝑂(𝑛) effort. The computer memory is mainly
used to store samples information 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑙
and each

sample point and their inner products 𝑄
𝑖𝑖
= 𝑦
𝑖
𝑥
𝑇

𝑖
𝑥
𝑖
𝑦
𝑖
. Cost-

sensitive support vector machine using dual randomized
coordinate gradient descent algorithm is described as follows.

Algorithm 3. Cost-sensitive support vector machine using
randomized dual coordinate descent algorithm (CSVM-
RDCD).

Input: sample information {(𝑥
𝑖
, 𝑦
𝑖
)}
𝑙

𝑖=1
, 𝛼0.

Output: 𝛼𝑇𝑤.

Initialize 𝛼0 and the corresponding 𝑤 = ∑𝑙
𝑖=1
𝛼
𝑖
𝑥
𝑖
𝑦
𝑖
.

For 𝑘 = 1, 2, . . . , 𝑇 do

𝛼
𝑘,1
← 𝛼

𝑘
. (48)

Step 1. Randomly choose 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑙}, 𝑖 ̸= 𝑗 and the
corresponding 𝑦

𝑖
, 𝑦
𝑗
.
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Table 1: Specification of the benchmark datasets. Number of ex. is the number of example data points. Number of feat. is the number of
features. Ratio is the class imbalance ratio. Target specifies the target or positive class. Number is the number of the datasets.

Dataset Number of ex. Number of feat. Ratio Positive class Number
KDD99 (intrusion detection) 5,209,460 42 1 : 4 Normal 1
Web span 350,000 254 1 : 2 −1 2
MNIST 70,000 780 1 : 10 5 3
Covertype 581,012 54 1 : 211 Cottonwood/Willow(4) 4
SIAM1 28,596 30,438 1 : 2000 1, 6, 7, 11 5
SIAM11 28,596 30,438 1 : 716 11, 12 6

Step 2.

If (𝑦
𝑖
= +1, 𝑦

𝑗
= −1)

{𝑈
1
= max (0, 𝛼

𝑖
− 𝛼
𝑗
) ;

𝑉
1
= min (𝛼

𝑖
− 𝛼
𝑗
− (1 − 𝛾)𝐶, 𝛾𝐶) ; }

if (𝑦
𝑖
= +1, 𝑦

𝑗
= +1)

{𝑈
2
= max (0, 𝛼

𝑖
+ 𝛼
𝑗
− 𝛾𝐶) ;

𝑉
2
= min (𝛼

𝑖
+ 𝛼
𝑗
, 𝛾𝐶) ; }

if (𝑦
𝑖
= −1, 𝑦

𝑗
= −1)

{𝑈
3
= max (0, −𝛼

𝑖
− 𝛼
𝑗
− (1 − 𝛾)𝐶) ;

𝑉
3
= min (−𝛼

𝑖
− 𝛼
𝑗
, (1 − 𝛾) 𝐶) ; }

if (𝑦
𝑖
= −1, 𝑦

𝑗
= +1)

{𝑈
4
= max (0, −𝛼

𝑖
− 𝛼
𝑗
) ;

𝑉
4
= min (𝛾𝐶 − 𝛼

𝑖
− 𝛼
𝑗
, (1 − 𝛾) 𝐶) ; } .

(49)

Step 3.

𝛼
temp
𝑖

= 𝛼
𝑘,𝑖

𝑖
+
2𝑤
𝑇
𝑥
𝑖
𝑦
𝑖
− 1 − (2𝑤

𝑇
𝑥
𝑗
𝑦
𝑗
− 1) 𝑦

𝑖
𝑦
𝑗

2 (𝑄
𝑖𝑖
+ 𝑄
𝑗𝑗
)

. (50)

Step 4.

if (𝑦
𝑖
= 1, 𝑦

𝑗
= −1)𝑚 = 1;

if (𝑦
𝑖
= 1, 𝑦

𝑗
= 1)𝑚 = 2;

if (𝑦
𝑖
= −1, 𝑦

𝑗
= −1)𝑚 = 3;

𝑓 (𝑦
𝑖
= −1, 𝑦

𝑗
= +1)𝑚 = 4;

𝛼
𝑘,𝑖+1

𝑖
=

{{{{

{{{{

{

𝑉
𝑚
, if 𝛼temp

𝑖
> 𝑉
𝑚

𝛼
temp
𝑖
, if 𝑈

𝑚
< 𝛼

temp
𝑖

< 𝑉
𝑚

𝑈
𝑚
, if 𝛼temp

𝑖
< 𝑈
𝑚
.

(51)

Step 5.

𝛼
𝑘,𝑗+1

𝑖
= 𝑦
𝑗
{𝑦
𝑖
𝛼
𝑘,𝑖

𝑖
+ 𝑦
𝑗
𝛼
𝑘,𝑗

𝑗
− 𝑦
𝑖
𝛼
𝑘,𝑖+1

𝑖
} . (52)

Step 6.

𝑤 ← 𝑤 + (𝛼
𝑘,𝑖

𝑖
− 𝛼
𝑘,𝑖+1

𝑖
) 𝑥
𝑖
𝑦
𝑖
+ (𝛼
𝑘,𝑗

𝑖
− 𝛼
𝑘,𝑗+1

𝑖
) 𝑥
𝑗
𝑦
𝑗
. (53)

Until A stopping condition is satisfied,

𝛼
𝑘+1
← 𝛼

𝑘
. (54)

End for.

5. Experiments and Analysis

5.1. Experiment on Big Class-Imbalanced Benchmark Datasets
Classification Problem. In this section, we analyze the perfor-
mance of the proposed cost-sensitive support vectormachine
using randomized dual coordinate descent method (CSVM-
RDCD). We compare our implementation with the state-of-
the-art cost-sensitive support vector. Three implementations
of related cost-sensitive SVMs are compared. We proposed
the cost-sensitive SVM using randomized dual coordinate
descent method (CSVM-RDCD) by modifying the LibSVM
[8, 9] source code. Eitrich and Lang [10] proposed parallel
cost-sensitive support vector machine (PCSVM). [6] pro-
posed cost-sensitive support vector machines (CSSVM).

Table 1 lists the statistics of data sets. KDD99, Web
Spam, Covertype, MNIST, SIAM1, and SIAM11 are obtained
from the following data website. KDD99 is at http://kdd.ics
.uci.edu/databases/kddcup99/kddcup99.html. Web Spam is
at http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus
.html. Covertype is at http://archive.ics.uci.edu/ml/datasets/
Covertype. MNIST is at http://yann.lecun.com/exdb/mnist/.
SIAM is at https://c3.nasa.gov/dashlink/resources/138/.

To evaluate the performance of CSVM-RDCD method,
we use a stratified selection to split each dataset to 9/10
training and 1/10 testing. We briefly describe each set below.
For each dataset we choose the class with the higher cost or
fewer data points as the target or positive class. All multiclass
datasets were converted to binary data sets. In particular, the
binary datasets SIAM1 and SIAM2 are datasets which have
been constructed from the same multiclass dataset but with
different target class and different imbalance ratios.
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Table 2: Cost-sensitive parameters of three algorithms using CSVM
on 6 datasets.

Dataset 𝐶𝛾 𝐶(1 − 𝛾)

KDD99 (intrusion detection) 4 1
Web span 2 1
MNIST 10 1
Covertype 211 1
SIAM1 2000 1
SIAM11 716 1

Evaluation of the performance of the three algorithms
using CSVM was 10-fold cross-validation tested average
misclassification cost, the training time, and the recognition
rate of the positive class (i.e., the recognition rate of the
minority class).

Average misclassification cost (AMC) represents 10-fold
cross-validation averagemisclassification cost on test datasets
for related CSVMs, described as follows:

AMC =
𝑓𝑝 × 𝐶𝛾 + 𝑓𝑛 × 𝐶 (1 − 𝛾)

𝑁
, (55)

where 𝑓𝑝 and 𝑓𝑛 represent the number of the positive
examples misclassified as the negative examples in the test
dataset and the number of the negative examplesmisclassified
as the positive examples in the test data set, respectively.
𝐶𝛾 and 𝐶(1 − 𝛾) denote the cost of the positive examples
misclassified as the negative examples in the test data set
and the cost of the negative examples misclassified as the
positive examples in the test data set, respectively.𝑁 denotes
the number of test examples.

The recognition rate of the positive class is the number
of classified positive classes and the number of the positive
classes on testing dataset.

Training time in seconds is used to evaluate the conver-
gence speeding of three algorithms using CSVM on the same
computer.

Cost-sensitive parameters of three algorithms using
CSVM are specified as the following Table 2. Cost-sensitive
parameters 𝐶𝛾 and 𝐶(1 − 𝛾) are valued according to the class
ratio of datasets, namely, the class ratio of minority class and
majority class.

Three datasets with relative class imbalance are exam-
ined. Namely, KDD99 (intrusion detection), Web span, and
MNIST datasets are considered. Three datasets with severe
class imbalance are examined. Namely, Covertype, SIAM1,
and SIAM11 datasets are considered. The average misclassi-
fication cost comparison of three algorithms using CSVM
is shown in Figure 1 for each of the datasets. The CSVM-
RDCD algorithm outperforms the PCSVM and CSVM on all
datasets.

The recognition rate of positive class comparison of three
algorithms using CSVM is shown in Figure 2 for each of
the datasets. The CSVM-RDCD algorithm outperforms the
PCSVM and CSSVM on all datasets, surpasses the PCSVM
on four datasets, and ties with the PCSVM on two datasets.

We examine large datasets with relative imbalance ratios
and severe imbalance ratios to evaluate the convergence
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Figure 1: Average misclassification cost comparison of three algo-
rithms using CSVM on 6 datasets.
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algorithms using CSVM.

speed of CSVM-RDCD algorithm. The training time com-
parison of three algorithms using CSVM is shown in Figure 3
for each of the datasets.TheCSVM-RDCD algorithm outper-
forms the PCSVM and CSSVM on all datasets.

5.2. Experiment on Real-World Big Class-Imbalanced Dataset
Classification Problems. In order to verify the effectiveness
of the proposed algorithm CSVM-RDCD on real-world
big class-imbalanced data classification problems, it was
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Figure 3: Training time (s) comparison of three algorithms using
CSSVM.

Table 3: Specification of the benchmark datasets and cost-sensitive
parameters on the dataset.

Dataset Fault diagnosis of wind turbine
Number of ex. 20000
Number of feat. 56
Ratio 190
Positive class Local crack fault
𝐶𝛾 190
𝐶(1 − 𝛾) 1

evaluated using the real vibration data measured in the wind
turbine. The experimental data were from the SKF Wind-
Con software and collected from a wind turbine gearbox
type TF138-A [11]. The vibration signals were continuously
acquired by an accelerometer mounted on the outer case of
the gearbox.

All parameter settings for the dataset are listed in Table 3.
The statistical results of the big class-imbalanced data prob-
lems that measure the quality of results (average misclassi-
fication cost, recognition rate of positive class, and training
time) are listed in Table 4. From Table 4, it can be concluded
that CSVM-RDCD is able to consistently achieve superior
performance in the big class-imbalanced data classification
problems.

Experimental results show that it is applicable to solve
cost-sensitive SVM dual problem using randomized dual
coordinate descent method on the large-scale experimental
data sets. The proposed method can achieve superior perfor-
mance in the average misclassification cost, recognition rate
of positive class, and training time. Large-scale experimental
data sets show that cost-sensitive support vector machines
using randomized dual coordinate descent method run

Table 4: Classification performance of three algorithms using
CSVM on the dataset.

Name of
algorithms AMC Recognition of

positive class Training time

CSVM-RDCD 0.01825 98.5% 5.43 s
PCSVM 0.0334 97.6% 6.15 s
CSSVM 0.0379 97.2% 7.34 s

more efficiently than both PCSVM and CSSVM; especially
randomized dual coordinate descent algorithmhas advantage
of training time on large-scale data sets. CSSVM needs to
build complex whole gradient and kernel matrix 𝑄 and
needs to select the set of complex work in solving process of
decomposition algorithm. Decomposition algorithm updates
full uniform gradient information as a whole, the computa-
tional complexity 𝑂(𝑙𝑛) for the full gradient update. PCSVM
also has similar computational complexity. Randomized dual
coordinate gradient method updates linearly the coordinates,
its computational complexity as 𝑂(𝑛), which increases con-
siderably the convergence speed of the proposed method.

6. Conclusions

Randomized dual coordinate descentmethod (RDCD) is the
optimization algorithm to update the global solution which is
obtained by solving an analytical solution of the suboptimal
problem.The RDCDmethod has the rapid convergence rate,
which is mainly due to the following: (1) the subproblem
has formal analytical solution, which is solved in solving
process without complex numerical optimization; (2) the
next component of RDCD method in solving process is
updated on the basis of a previous component; compared
with the full gradient information updated CSSVM method
as a whole, the objective function of RDCD method can
decline faster; (3) the single coordinate gradient calculation
of RDCDmethod is simpler and easier than the full gradient
calculation.

Randomized dual coordinate descent method is applied
to cost-sensitive support vector machine, which expanded
the scope of application of the randomized dual coordinate
descent method. For large-scale class-imbalanced problem,
a cost-sensitive SVM using randomized dual coordinate
descent method is proposed. Experimental results and anal-
ysis show the effectiveness and feasibility of the proposed
method.
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