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We discuss the stability of solutions to a kind of scalar Liénard type equations with multiple variable delays by means of the fixed
point technique under an exponentially weighted metric. By this work, we improve some related results from one delay to multiple
variable delays.

1. Introduction

Formore than one hundred years, Lyapunov’s direct (second)
method has been very effectively used to investigate the
stability problems in ordinary and functional differential
equations.This method is one of the highly effective methods
to determine the stability properties of solutions of ordinary
and functional differential equations of higher order in the lit-
erature. However, till now, constructing or defining Lyapunov
functions or functionals which give a meaningful discussion
remains a general problem in the literature. In recent years,
many researchers discussed that the fixed point theory has
an important advantage over Lyapunov’s direct method.
While Lyapunov’s direct method usually requires pointwise
conditions, fixed point theory needs average conditions; see
Burton [1].

In 2001, Burton and Furumochi [2] observed some diffi-
culties that occur in studying the stability theory of ordinary
and functional differential equations by Lyapunov’s second
(direct) method. Rather than inventing new modifications of
the standard Lyapunov function(al) method to overcome the
difficulties, the authors demonstrate by various examples that
the contraction mapping principle can do the magic in many
circumstances.

Later, in 2005, by using contractionmappings, Burton [3]
investigated the scalar Liénard type equation with constant
delay, 𝐿(> 0):

�̈� + 𝑓 (𝑡, 𝑥, �̇�) �̇� + 𝑏 (𝑡) 𝑔 (𝑥 (𝑡 − 𝐿)) = 0. (1)

Burton [3] obtained conditions for each solution 𝑥(𝑡) to
satisfy (𝑥(𝑡), 𝑥(𝑡)) → (0, 0) as 𝑡 → ∞.

Later, in 2011, Pi [4] studied stability properties of
solutions to a scalar functional Liénard type equation with
variable delay, 𝜏(𝑡) (> 0):

�̈� + 𝑓 (𝑡, 𝑥, �̇�) �̇� + 𝑏 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) = 0. (2)

By using fixed point theory under an exponentially weighted
metric, Pi [4] obtained some interesting sufficient conditions
ensuring that the zero solution of this equation is stable and
asymptotically stable.

On the other hand, some recent relative results proceeded
on the qualitative behaviors of delay differential equations,
neutral differential equations, neutral Volterra integrodiffer-
ential equations, and certain nonlinear differential equations
of second order with and without delay can be summarized
as follows.

In [5], Fan et al. studied delay differential equations of the
form

�̇� = − 𝑎 (𝑡, 𝑥
𝑡
) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥

𝑡
) ,

�̇� = − 𝑔 (𝑡, 𝑥 (𝑡)) + 𝑓 (𝑡, 𝑥
𝑡
) ,

(3)

and the authors established sufficient and necessary criteria
for the asymptotic stability by using two different approaches,
the contractionmapping principle and Schauder’s fixed point
theorem.
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Raffoul [6] dealt with the stability of the zero solution of
a scalar neutral differential equation. The author established
sufficient conditions for the stability of the zero solution on
the base of the contraction mapping principle.

In [7], Jin and Luo aimed to study the asymptotic stability
for some scalar differential equations of retarded and neutral
type by using a fixed point approach. The authors did not
use Lyapunov’s method; they got interesting results for the
stability even when the delay is unbounded. The authors
also obtained necessary and sufficient conditions for the
asymptotic stability.

Zhang and Liu [8] considered a nonlinear neutral differ-
ential equation. By using fixed point theory, they gave some
conditions to ensure that the zero solution to the equation
is asymptotically stable. Hence, some existing results were
improved and generalized by this work.

Ardjouni and Djoudi [9] used the contraction mapping
theorem to obtain an asymptotic stability result of the zero
solution of a nonlinear neutral Volterra integrodifferential
equation with variable delays. The asymptotic stability the-
orem with a necessary and sufficient condition was proved,
which improves and extends the results in the literature.

In 2010, Tunç [10] considered the following Liénard type
equation with multiple variable deviating arguments, 𝜏

𝑗
(𝑡):

�̈� (𝑡) + 𝑓
1
(𝑥 (𝑡) , �̇� (𝑡)) �̇� (𝑡) + 𝑓

2
(𝑥 (𝑡)) �̇� (𝑡)

+ 𝑔
0
(𝑥 (𝑡)) +

𝑚

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))

= 𝑝 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
(𝑡)) , . . . ,

𝑥 (𝑡 − 𝜏
𝑚
(𝑡)) , . . . , �̇� (𝑡 − 𝜏

𝑚
(𝑡))) .

(4)

The author studied the problems of stability and boundedness
of the solutions of this equation by using the Lyapunov second
method and made a comparison with some earlier works in
the literature.

In [11], the author considered the nonlinear differential
equation of second order with a constant delay, 𝑟:

�̈� (𝑡) + {𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , �̇� (𝑡) , �̇� (𝑡 − 𝑟))

+𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , �̇� (𝑡) , �̇� (𝑡 − 𝑟)) �̇� (𝑡)} �̇� (𝑡)

+𝑏 (𝑡) ℎ (𝑥 (𝑡−𝑟)) = 𝑒 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟) , �̇� (𝑡) , �̇� (𝑡 − 𝑟)) .

(5)

The author discussed the stability of the zero solution of
this equation, when 𝑒(⋅) = 0, and established two new
results on the boundedness and uniform-boundedness of the
solutions of the same equation, when 𝑒(⋅) ̸= 0. By this work,
Tunç [11] improved the existing results on the stability and
boundedness of the solutions of the differential equations of
second order without a delay by imposing a few new criteria
to the second order nonlinear and nonautonomous delay
differential equations of the above form.

Further, Tunç [12] took into consideration the vector
Liénard equation with the multiple constant deviating argu-
ments, 𝜏

𝑖
> 0:

�̈� (𝑡) + 𝐹 (𝑋 (𝑡) , �̇� (𝑡)) �̇� (𝑡) + 𝐺 (𝑋 (𝑡))

+

𝑛

∑

𝑖=1

𝐻
𝑖
(𝑋 (𝑡 − 𝜏

𝑖
)) = 𝑃 (𝑡) .

(6)

Based on the Lyapunov-Krasovskii functional approach, the
asymptotic stability of the zero solution and the boundedness
of all solutions of this equation, when 𝑃(𝑡) = 0 and 𝑃(𝑡) ̸= 0,
respectively, are discussed.

More recently, by using Lyapunov’s function and func-
tional approach, Tunç [13, 14] and Tunç and Yazgan [15]
discussed some problems on stability, the boundedness, and
the existence of periodic solutions of a certain second order
vector and scalar nonlinear differential equationswithout and
with delay. In [16], Tunç also gave certain sufficient conditions
for the existence of periodic solutions to a Rayleigh-type
equation with state-dependent delay.

By the mentioned papers, the authors contributed to the
subject for a class of ordinary and functional differential
equations.

In this paper, instead of the mentioned equations, we
consider the scalar Liénard type equation with multiple
variable delays:

�̈� + 𝑓 (𝑡, 𝑥, �̇�) �̇� +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) = 0, (7)

where 𝑡 ∈ R+,R+ = [0,∞), 𝑏
𝑗
: R+ → R+ are bounded and

continuous functions, 𝑔
𝑗
: R → R,𝑔

𝑗
(0) = 0, 𝑓 : R+ ×R ×

R → R+, and 𝜏
𝑗
: R+ → R+ are all continuous functions

such that 𝑡 − 𝜏
𝑗
(𝑡) ≥ 0.

We can write (7) as follows:

�̇� = 𝑦,

̇𝑦 = −𝑓 (𝑡, 𝑥, 𝑦) 𝑦 −

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) .

(8)

For each 𝑡
0
≥ 0, we define 𝑚(𝑡

0
) = inf{𝑠 − 𝜏

1
(𝑠), . . . , 𝑠 −

𝜏
𝑛
(𝑠) : 𝑠 ≥ 𝑡

0
} and 𝐶(𝑡

0
) = 𝐶([𝑚(𝑡

0
), 𝑡
0
], 𝑅) with the

continuous function norm ‖ ⋅ ‖, where
𝜓

 = sup {𝜓 (𝑠)
 : 𝑚 (𝑡

0
) ≤ 𝑠 ≤ 𝑡

0
} . (9)

It will cause no confusion even if we use ‖𝜙‖ as the
supremum on [𝑚(𝑡

0
),∞). It can be seen from [9] that, for

a given continuous function 𝜙 and a number 𝑦
0
, there exists

a solution of system (8) on an interval [𝑡
0
, 𝑇); if the solution

remains bounded, then 𝑇 = ∞. Let (𝑥(𝑡), 𝑦(𝑡)) denote the
solution (𝑥(𝑡, 𝜙, 𝑦

0
), 𝑦(𝑡, 𝜙, 𝑦

0
)).

Definition 1. The zero solution of system (8) is stable if for
each 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀, 𝑡

0
) > 0 such that [𝜙 ∈

𝐶(𝑡
0
), 𝑦
0
∈ 𝑅, ‖𝜙‖ + |𝑦

0
| < 𝛿] implies that |𝑥(𝑡, 𝜙, 𝑦

0
)| +

|𝑦(𝑡, 𝜙, 𝑦
0
)| < 𝜀 for 𝑡 ≥ 𝑡

0
.
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We make the following basic assumptions on the delay
functions 𝜏

𝑗
(𝑡) : (𝐴

1
). Let 𝑡 − 𝜏

𝑗
(𝑡) be strictly increasing

and lim
𝑡→∞

(𝑡 − 𝜏
𝑗
(𝑡)) = ∞. The inverses of 𝑡 − 𝜏

𝑗
(𝑡) exist,

denoted by 𝑃
𝑗
(𝑡) and 0 ≤ 𝑏

𝑗
(𝑡) ≤ 𝑀

𝑗
, 𝑗 = 1, 2, . . . , 𝑛. Let

𝑀 = max{𝑀
1
, . . . ,𝑀

𝑛
}. Hence, 0 ≤ 𝑏

𝑗
(𝑡) ≤ 𝑀.

It is also worth mentioning that throughout the papers
[10–15] the authors discussed the qualitative behavior of
solutions of certain scalar and vector ordinary and functional
differential equations of second order by means of the Lya-
punov function or functional approach. In this paper, instead
of the mentioned methods, we use the fixed point technique
under an exponentially weighted metric to discuss stability
of solutions to a kind of scalar Liénard type equations with
multiple variable delays. This approach has a contribution to
the topic in the literature, and it may be useful for researchers
to work on the qualitative behaviors of solutions.

2. Main Result

In this section, sufficient conditions for stability are presented
by the fixed point theory. We give some results on stability
of the zero solution of (7). Before giving our main result, we
introduce some auxiliary results.

Lemma 2. Let 𝜓:[𝑚(𝑡
0
),𝑡
0
] → 𝑅 be a given continuous

function. If (𝑥(𝑡), 𝑦(𝑡)) is the solution of system (8) on [𝑡
0
, 𝑇
1
)

satisfying (𝑡) = 𝜓(𝑡), 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], and 𝑦(𝑡

0
) = 𝑥

(𝑡
0
), then

𝑥(𝑡) is the solution of the following integral equation:

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠)

× 𝑔
𝑗
(𝑥 (𝑠−𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(10)

Conversely, if the continuous function 𝑥(𝑡) = 𝜓(𝑡), 𝑡 ∈

[𝑚(𝑡
0
), 𝑡
0
] is the solution of (10) on [𝑡

0
, 𝑇
2
], then (𝑥(𝑡), 𝑦(𝑡))

is the solution of system (8) on [𝑡
0
, 𝑇
2
].

Proof. Let 𝑓(𝑡, 𝑥(𝑡), 𝑦(𝑡)) = 𝐴(𝑡). Then, (8) can be written as
the following system:

�̇� = 𝑦,

̇𝑦 = −𝐴 (𝑡) 𝑦 −

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))

(11)

so that

̇𝑦 + 𝐴 (𝑡) 𝑦 +

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡) 𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) = 0. (12)

Multiplying both sides of (12) by 𝑒∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠 and then integrat-
ing from 𝑡

0
to 𝑡, we obtain

𝑦 (𝑡) = 𝑦 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠

− ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢,

(13)

and hence

�̇� (𝑡) = �̇� (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠

− ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢.

(14)

If we choose �̇�(𝑡
0
)𝑒
−∫
𝑡

𝑡0

𝐴(𝑠)𝑑𝑠

= 𝐵(𝑡), then it follows that

�̇� (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢) 𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢))) 𝑑𝑢.

(15)

Let
𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢) =

𝑛

∑

𝑗=1

𝐶
𝑗
(𝑡, 𝑢) ,

𝑛

∑

𝑗=1

∫

∞

𝑡
0

𝐶
𝑗
(𝑢 + 𝑡 − 𝑡

0
, 𝑡) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡)

1 − 𝜏
𝑗
(𝑡)

=

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑝
𝑗
(𝑡)) =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) ,

𝑛

∑

𝑗=1

∫

∞

𝑡
0
+𝑡−𝑠

𝐶
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐸
𝑗
(𝑡, 𝑠) .

(16)
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Then, (15) can be written in the form of

�̇� (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡))) ∫

∞

𝑡
0

𝐶
𝑗
(𝑢 + 𝑡 − 𝑡

0
, 𝑡) 𝑑𝑢

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(17)

Hence

�̇� (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑥 (𝑡 − 𝜏

𝑗
(𝑡)))𝐷

𝑗
(𝑡)

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

(18)

so that

�̇� (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑝
𝑗
(𝑡)) 𝑔
𝑗
(𝑥 (𝑡))

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑝
𝑗
(𝑠)) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(19)

Thus, it can be written that

�̇� (𝑡) = 𝐵 (𝑡) −

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) 𝑥 (𝑡)

+

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) [𝑥 (𝑡) − 𝑔

𝑗
(𝑥 (𝑡))]

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(20)

Let ∑𝑛
𝑗=1

𝐷
𝑗
(𝑡) = 𝐾(𝑡). Then,

�̇� (𝑡) + 𝐾 (𝑡) 𝑥 (𝑡) = 𝐵 (𝑡) +

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑡) [𝑥 (𝑡) − 𝑔

𝑗
(𝑥 (𝑡))]

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠.

(21)

Multiplying both sides of (21) by 𝑒∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠 and then integrat-
ing from 𝑡

0
to 𝑡, then

∫

𝑡

𝑡
0

[𝑥(𝑢)𝑒
∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

]



𝑑𝑢

= ∫

𝑡

𝑡
0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠 𝑑

𝑑𝑡
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
∫
𝑢

𝑡0

𝐾(𝑠)𝑑𝑠 𝑑

𝑑𝑡
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠 𝑑𝑢

(22)

so that

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

[
𝑑

𝑑𝑢
∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

× [
𝑑

𝑑𝑢
∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑑𝑢.

(23)

Applying the integration by parts formula for the last two
terms, we have

𝑥 (𝑡)

= 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝑥 (𝑢) − 𝑔

𝑗
(𝑥 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠
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−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑥 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠)

× 𝑔
𝑗
(𝑥 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(24)

Conversely, we assume that a continuous function 𝑥(𝑡) =
𝜓(𝑡) for 𝑡 ∈ [𝑚(𝑡

0
), 𝑡
0
] and satisfies the integral equation on

𝑡 ∈ [𝑡
0
, 𝑇
2
]. Then, it is differentiable on [𝑡

0
, 𝑇
2
]. Hence, it

is only needed to differentiate the integral equation. When
we differentiate the integral equation, we can conclude the
desired result.

Let (𝐶, ‖ ⋅ ‖) be the Banach space of bounded continuous
functions on [𝑚(𝑡

0
),∞) with the supremum norm ‖𝜙‖ =

sup{|𝜙(𝑡)| : 𝑡 ∈ [𝑚(𝑡
0
),∞)} for 𝜙 ∈ 𝐶. Let 𝜌 denote the

supremummetric and𝜌(𝜙
1
, 𝜙
2
) = ‖𝜙

1
−𝜙
2
‖, where𝜙

1
, 𝜙
2
∈ 𝐶.

Next, let 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → 𝑅 be a given continuous initial

function.
Define the set 𝑆 ⊂ 𝐶 by

𝑆 = {𝜙 : [𝑚 (𝑡
0
) ,∞) → 𝑅 | 𝜙 ∈ 𝐶,

𝜙 (𝑡) = 𝜓 (𝑡) , 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
]}

(25)

and its subset

𝑆

= {𝜙 : [𝑚 (𝑡

0
) ,∞) → 𝑅 | 𝜙 ∈ 𝐶, 𝜙 (𝑡)

= 𝜓 (𝑡) , 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
] ,
𝜙 (𝑡)

 ≤ 𝑙, 𝑡 ≥ 𝑚 (𝑡
0
)} ,

(26)

where 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → [−𝑙, 𝑙] is a given initial function and

𝑙 is a positive constant. Define the mapping 𝑃 : 𝑆

→ 𝑆
 by

(𝑃𝜙) (𝑡) = 𝜓 (𝑡) , if 𝑡 ∈ [𝑚 (𝑡
0
) , 𝑡
0
] , (27)

and if 𝑡 > 𝑡
0
, then

(𝑃𝜙) (𝑡) = 𝜓 (𝑡
0
) 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

+ ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐵 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) [𝜙 (𝑢)−𝑔

𝑗
(𝜙 (𝑢))] 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝜙 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝜓 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝜙 (𝑠)) 𝑑𝑠

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠)

× 𝑔
𝑗
(𝜙 (𝑠)) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

−

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠)

×𝑔
𝑗
(𝜙 (𝑠 − 𝜏

𝑗
(𝑠))) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

× 𝐾 (𝑢) 𝑑𝑢.

(28)

Since 𝑔
𝑗
(𝑥) satisfy the Lipschitz condition, let 𝐿

1
, . . . , 𝐿

𝑛

denote the common Lipschitz constants for 𝑔
𝑗
(𝑥) and 𝑥 −

𝑔
𝑗
(𝑥).
It is also clear that

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢 = 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠



𝑡

𝑡
0

= 1 − 𝑒
−∫
𝑡

𝑡0

𝐾(𝑠)𝑑𝑠

≈ 1, for large 𝑡.
(29)

But since 𝑔
𝑗
(𝑥) are nonlinear, then 𝐿

𝑗
may not be small

enough. Hence, 𝑃may not be a contracting mapping. We can
solve this problem by giving an exponentially weight metric
via the next lemma.

Lemma 3. We suppose that there exists a constant 𝑙 > 0 such
that 𝑔

𝑗
(𝑥) satisfy the Lipschitz condition on [−𝑙, 𝑙]. Then there

exists a metric on 𝑆 such that

(i) the metric space (𝑆, 𝑑) is complete,
(ii) 𝑃 is a contraction mapping on (𝑆, 𝑑) if 𝑃 maps 𝑆 into

itself.

Proof. (i)We change the supremumnorm to an exponentially
weighted norm |𝜙|

ℎ
, which is defined on 𝑆. Let𝑋 be the space

of all continuous functions 𝜙 : [𝑚(𝑡
0
),∞) → 𝑅 such that

𝜙
ℎ
= sup
𝑛

{
𝜙 (𝑡)

 𝑒
−ℎ(𝑡)

: 𝑡 ∈ [𝑚 (𝑡
0
) ,∞)} < ∞, (30)

where ℎ(𝑡) = 𝑘∑
𝑛

𝑗=1
𝐿
𝑗
∫
𝑡

𝑡
0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)]𝑑𝑠, 𝑘 is a constant,

and 𝐿
𝑗
are the common Lipschitz constants for 𝑥 − 𝑔

𝑗
(𝑥)

and 𝑔
𝑗
(𝑥). Then (𝑋, | ⋅ |

ℎ
) is a Banach space. Thus (𝑋, 𝑑) is a
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complete metric space with 𝑑(𝜙, 𝜑) = |𝜙 − 𝜑|
ℎ
, where 𝜙, 𝜑 ∈

𝑆. Under this metric, the space 𝑆 is a closed subset of𝑋.Thus
the metric space (𝑆, 𝑑) is complete.

(ii) Let 𝑃 : 𝑆

→ 𝑆
. It is clear that ∑𝑛

𝑗=1
𝐷
𝑗
(𝑡) ≥ 0 and

∑
𝑛

𝑗=1
𝐸
𝑗
(𝑡, 𝑠) ≥ 0. Then, for 𝜙, 𝜑 ∈ 𝑆

, we can get

(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)
 𝑒
−ℎ(𝑡)

≤

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢)


[𝜙 (𝑢) − 𝑔

𝑗
(𝜙 (𝑢))]

− [𝜑 (𝑢) − 𝑔
𝑗
(𝜑 (𝑢))]


𝑒
−ℎ(𝑡)

𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠)


𝑔
𝑗
(𝜙 (𝑠)) − 𝑔

𝑗
(𝜑 (𝑠))


𝑒
−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠)


𝑔
𝑗
(𝜙 (𝑠)) − 𝑔

𝑗
(𝜑 (𝑠))


𝑒
−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑑𝑠


𝑔
𝑗
(𝜙 (𝑠))

−𝑔
𝑗
(𝜑 (𝑠))


𝑒
−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠)


𝑔
𝑗
(𝜙 (𝑠 − 𝜏

𝑗
(𝑠)))

−𝑔
𝑗
(𝜑 (𝑠 − 𝜏

𝑗
(𝑠)))


𝑒
−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(31)

For 𝑢 ≤ 𝑡, since𝐷
𝑗
(𝑡) ≥ 0, we have

ℎ (𝑢) − ℎ (𝑡) =

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑢

𝑡
0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑡

𝑡
0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

=

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑢

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

≤

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑢

𝐷
𝑗
(𝑠) 𝑑𝑠.

(32)

Further for 𝑠 ≤ 𝑡, it follows that

ℎ (𝑠 − 𝜏
𝑗
(𝑠)) − ℎ (𝑡)

=

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑠−𝜏
𝑗
(𝑠)

𝑡
0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑘𝐿
𝑗
∫

𝑡

𝑡
0

[𝐷
𝑗
(𝑠) + 𝐷

𝑗
(𝑠)] 𝑑𝑠

=

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑠−𝜏
𝑗
(𝑠)

[𝐷
𝑗
(𝑢) + 𝐷

𝑗
(𝑢)] 𝑑𝑢

≤

𝑛

∑

𝑗=1

(−𝑘) 𝐿
𝑗
∫

𝑡

𝑠

𝐷
𝑗
(𝑢) 𝑑𝑢.

(33)

Since 𝐸(𝑡, 𝑠) ≥ 0, then we have

𝑛

∑

𝑗=1

𝐸
𝑗
(𝑡, 𝑠) =

𝑛

∑

𝑗=1

∫

∞

𝑡
0
+𝑡−𝑠

𝑐
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢

≤

𝑛

∑

𝑗=1

∫

∞

𝑡
0

𝑐
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 =

𝑛

∑

𝑗=1

𝐷
𝑗
(𝑠) .

(34)

Hence

(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)
 𝑒
−ℎ(𝑡)

≤
𝜙 − 𝜑

ℎ

×

{

{

{

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑒

ℎ(𝑠)−ℎ(𝑡)
𝑑𝑠

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑒
ℎ(𝑠)−ℎ(𝑡)

𝑑𝑠

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑒
ℎ(𝑠)−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠) 𝑒

ℎ(𝑠−𝜏
𝑗
(𝑠))−ℎ(𝑡)

𝑑𝑠]

× 𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

}

}

}

.

(35)
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Therefore,
𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

=

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝑒
−∑
𝑛

𝑗=1
∫
𝑡

𝑢
�̂�
𝑗
(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑒
ℎ(𝑢)−ℎ(𝑡)

𝑑𝑢

≤

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝑒
−∑
𝑛

𝑗=1
∫
𝑡

𝑢
�̂�
𝑗
(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢)

𝑒
∑
𝑛

𝑗=1
𝑘𝐿
𝑗
∫
𝑡

𝑢
�̂�
𝑗
(𝑠)𝑑𝑠

𝑑𝑢

=

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝑒
−∑
𝑛

𝑗=1
(𝑘𝐿
𝑗
+1) ∫
𝑡

𝑢
�̂�
𝑗
(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) 𝑑𝑢

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
(𝑘𝐿
𝑗
+ 1)

𝑒
−∑
𝑛

𝑗=1
(𝑘𝐿
𝑗
+1) ∫
𝑡

𝑢
�̂�
𝑗
(𝑠)𝑑𝑠



𝑡

𝑡
0

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
𝑘𝐿
𝑗

≤
1

𝑘
,

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑒

ℎ(𝑠)−ℎ(𝑡)
𝑑𝑠

≤

𝑛

∑

𝑗=1

𝐿
𝑗
∫

𝑡

𝑡
0

𝐷
𝑗
(𝑠) 𝑒
∑
𝑛

𝑗=1
(−𝑘)𝐿

𝑗
∫
𝑡

𝑠
𝐷
𝑗
(𝑠)𝑑𝑠

𝑑𝑠

≤

𝑛

∑

𝑗=1

𝐿
𝑗

1

∑
𝑛

𝑗=1
𝑘𝐿
𝑗

𝑒
−∑
𝑛

𝑗=1
𝑘𝐿
𝑗
∫
𝑡

𝑢
𝐷
𝑗
(𝑠)𝑑𝑠



𝑡

𝑡
0

≤
1

𝑘
.

(36)

Thus, we have

(𝑃𝜙) (𝑡) − (𝑃𝜑) (𝑡)
 𝑒
−ℎ(𝑡)

≤
5

𝑘

𝜙 − 𝜑
ℎ
, 𝑡 > 𝑡

0
. (37)

For 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], (𝑃𝜙)(𝑡) = (𝑃𝜑)(𝑡) = 𝜃(𝑡). Thus,

𝑑 (𝑃𝜙, 𝑃𝜑) ≤
5

𝑘
𝑑 (𝜙 − 𝜑) , (𝑘 > 5) . (38)

Therefore, 𝑃 is contraction mapping on (𝑆, 𝑑).

Theorem 4. We suppose that the assumption (𝐴
1
) holds.

Moreover, we assume the following.

(i) There exists a positive constant 𝑙 such that 𝑔
𝑗
satisfy

the Lipschitz condition on [−𝑙, 𝑙] and 𝑔
𝑗
are odd and

they are strictly increasing on [−𝑙, 𝑙], and 𝑥 − 𝑔
𝑗
(𝑥) are

nondecreasing on [−𝑙, 𝑙].
(ii) There exist an 𝛼

𝑗
∈ (0, 1) and a continuous function

𝑎(𝑡) : [0,∞) → [0,∞) such that 𝑓(𝑡, 𝑥, 𝑦) ≥ 𝑎(𝑡) for
𝑡 ≥ 0, 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅,

2sup
𝑡≥0

∫

𝑃
𝑗
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠

+ 2sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠 ≤ 𝛼

𝑗
.

(39)

(iii) There exist constants 𝑎
0
> 0 and 𝑄 > 0 such that, for

each 𝑡 ≥ 0, if 𝐽 ≥ 𝑄, then

∫

𝑡+𝐽

𝑡

𝑎 (V) 𝑑V ≥ 𝑎
0
𝐽. (40)

Then there exists 𝛿 ∈ (0, 𝑙) such that, for each initial function
𝜓 : [𝑚(𝑡

0
), 𝑡
0
] → 𝑅 and �̇�(𝑡

0
) satisfying |�̇�(𝑡

0
)| + ‖𝜓‖ ≤ 𝛿,

there is a unique continuous function 𝑥 : [𝑚(𝑡
0
),∞) → 𝑅

satisfying 𝑥(𝑡) = 𝜓(𝑡), which is a solution of (7) on [𝑡
0
,∞).

Moreover, the zero solution of (7) is stable.

Proof. Choose 𝜓 : [𝑚(𝑡
0
), 𝑡
0
] → 𝑅 and �̇�(𝑡

0
) such that

(𝑄 +
𝑒
−𝑎
0
⋅𝑄

𝑎
0

)
�̇� (𝑡0)

 + 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑑𝑠

≤ [1 − (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)]

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) .

(41)

In view of the assumptions and 𝑔
𝑗
(0) = 0, it follows that

𝑔
𝑗
(𝑙) ≤ 𝑙. Since 𝑔

𝑗
(𝑥) satisfies Lipschitz condition on [−𝑙, 𝑙],

thus 𝑔
𝑗
(𝑥) is continuous function on [−𝑙, 𝑙].Then, there exists

a constant 𝛿 such that 𝛿 < 𝑙.
Thus, we can get

(𝑃𝜙) (𝑡)


≤ 𝛿 + ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠 �̇� (𝑡0)

 𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐷
𝑗
(𝑢) (𝑙 − 𝑔

𝑗
(𝑙)) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝛿) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢.

(42)
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It also follows that

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

∫

∞

𝑡
0
+𝑡−𝑠

𝐶
𝑗
(𝑢 + 𝑠 − 𝑡

0
, 𝑠) 𝑑𝑢 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

∫

∞

𝑡
0
+𝑡−𝑠

𝑒
−∫
𝑢+𝑠−𝑡0

𝑠
𝐴(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑢 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝐴(V)𝑑V

𝑏
𝑗
(𝑠) 𝑑𝑢 𝑑𝑠

≤ sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑢 𝑑𝑠

+ ⋅ ⋅ ⋅ + sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑢 𝑑𝑠,

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑃
𝑗
(𝑠)) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑃
𝑗
(𝑠))

1 − 𝜏


𝑗
(𝑠)

𝑑𝑠 =

𝑛

∑

𝑗=1

∫

𝑃
𝑗
(𝑡)

𝑡

𝐷
𝑗
(𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑃
𝑗
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

⋅ 𝑏
𝑗
(𝑠) 𝑑𝑤𝑑𝑠

≤ sup
𝑡≥0

∫

𝑃
1
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑤𝑑𝑠

+ ⋅ ⋅ ⋅ + sup
𝑡≥0

∫

𝑃
𝑛
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑤𝑑𝑠.

(43)

From assumption (ii), we have

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝐸
𝑗
(𝑡, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑢−𝜏
𝑗
(𝑢)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡−𝜏
𝑗
(𝑡)

𝐷
𝑗
(𝑠) 𝑔
𝑗
(𝑙) 𝑑𝑠

+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

[∫

𝑢

𝑡
0

𝐸
𝑗
(𝑢, 𝑠) 𝑔

𝑗
(𝑙) 𝑑𝑠] 𝑒

−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠

𝐾 (𝑢) 𝑑𝑢

≤

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) {2sup

𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑢 𝑑𝑠

+ ⋅ ⋅ ⋅ + 2sup
𝑡≥0

∫

𝑡

0

∫

∞

𝑡−𝑠

𝑒
−∫
𝑢+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑢 𝑑𝑠

+ 2sup
𝑡≥0

∫

𝑃
1
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
1
(𝑠) 𝑑𝑤𝑑𝑠

+⋅ ⋅ ⋅+2sup
𝑡≥0

∫

𝑃
𝑛
(𝑡)

𝑡

∫

∞

0

𝑒
−∫
𝑤+𝑠

𝑠
𝑎(V)𝑑V

𝑏
𝑛
(𝑠) 𝑑𝑤𝑑𝑠}

≤ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) .

(44)

Hence

(𝑃𝜙) (𝑡)
 ≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙)

+ ∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐾(𝑠)𝑑𝑠 �̇� (𝑡0)

 𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢

≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙)

+ ∫

𝑡

𝑡
0

�̇� (𝑡0)
 𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢.

(45)

Using condition (iii) of the theorem, we get

∫

𝑡

𝑡
0

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢 = ∫

𝑡
0
+𝑄

𝑡
0

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢 + ∫

𝑡

𝑡
0
+𝑄

𝑒
−∫
𝑢

𝑡0

𝐴(𝑠)𝑑𝑠

𝑑𝑢

≤ 𝑄 +
𝑒
−𝑎
0
⋅𝑄

𝑎
0

.

(46)

Thus,
(𝑃𝜙) (𝑡)



≤ 𝛿 +

𝑛

∑

𝑗=1

𝑔
𝑗
(𝛿) ∫

𝑡
0

𝑡
0
−𝜏
𝑗
(𝑡
0
)

𝐷
𝑗
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑗=1

(𝑙 − 𝑔
𝑗
(𝑙))

+ (𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

𝑛

∑

𝑗=1

𝑔
𝑗
(𝑙) +

�̇� (𝑡0)
 (𝑄 +

𝑒
−𝑎
0
⋅𝑄

𝑎
0

)

(47)

and so

(𝑃2𝜙) (𝑡)
 ≤

𝑛

∑

𝑗=1

𝑙. (48)

It is obvious that if 𝑡 ∈ [𝑚(𝑡
0
), 𝑡
0
], then (𝑃

2
𝜙)(𝑡) = 𝜓(𝑡).

Moreover, for 𝑡 ∈ [𝑚(𝑡
0
),∞), we get |(𝑃

2
𝜙)(𝑡)| ≤ ∑

𝑛

𝑗=1
𝑙.
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Therefore, 𝑃𝜙 : 𝑆

→ 𝑆
. Since 𝑃 is a contraction mapping,

then 𝑃 has unique fixed point 𝑥(𝑡) such that |𝑥(𝑡)| ≤ ∑
𝑛

𝑗=1
𝑙.

From (14), we have

𝑦 (𝑡)
 ≤

�̇� (𝑡0)


+

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑏
𝑗
(𝑢)


𝑔
𝑗
(𝑥 (𝑢 − 𝜏

𝑗
(𝑢)))


𝑑𝑢.

(49)

Since, for 𝑡 ∈ [0,∞), 0 ≤ 𝑏
𝑗
(𝑡) ≤ 𝑀

𝑗
, then

𝑦 (𝑡)
 ≤

�̇� (𝑡0)
 +

𝑛

∑

𝑗=1

𝑀
𝑗
∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠 

𝑥 (𝑢 − 𝜏
𝑗
(𝑢))


𝑑𝑢

≤

𝑛

∑

𝑗=1

𝑙 (1 +𝑀
𝑗
∫

𝑡

𝑡
0

𝑒
−∫
𝑡

𝑢
𝐴(𝑠)𝑑𝑠

𝑑𝑢)

<

𝑛

∑

𝑗=1

𝑙 [1 +𝑀
𝑗
(𝑄 +

𝑒
−𝑎
0
𝑄

𝑎
0

)] .

(50)

Hence

|𝑥 (𝑡)| +
𝑦 (𝑡)

 <

𝑛

∑

𝑗=1

𝑙 [2 +𝑀
𝑗
(𝑄 +

𝑒
−𝑎
0
𝑄

𝑎
0

)] . (51)

If we replace 𝜀 by 𝑙, then we show that the zero solution of (7)
is stable. This result completes the proof of the theorem.

3. Conclusion

Akind of scalar Liénard type equationswithmultiple variable
delays is considered. The stability of the zero solution of this
equation is investigated. In proving our main result, we use
the fixed points theory by giving an exponentially weight
metric. Our result extends and improves some recent results
in the literature.
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