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We establish the existence of traveling wave solution for a reaction-diffusion predator-prey system with Holling type-IV functional
response. For simplicity, only one space dimension will be involved, the traveling solution equivalent to the heteroclinic orbits in
𝑅
3. The methods used to prove the result are the shooting argument and the invariant manifold theory.

1. Introduction

The paper will study the traveling wave solution for a dif-
fusive predator-prey system with Holling type-IV functional
response, which is as follows:

𝑢
𝑡
= 𝑑
1
𝑢
𝑥𝑥

+ 𝐴𝑢(1 −
𝑢

𝐾
) −

𝐵𝑢𝑤

1 + 𝐸𝑢2
,

𝑤
𝑡
= 𝑑
2
𝑤
𝑥𝑥

+ 𝑤(
𝐷𝑢

1 + 𝐸𝑢2
− 𝐶) .

(1)

All parameters are positive constant. The functions 𝑢(𝑥, 𝑡)

and 𝑤(𝑥, 𝑡) are the densities of the prey and predator,
respectively; 𝑑

1
and 𝑑

2
are diffusive rates of the prey and

predator, respectively; 𝐾 is the carrying capacity of the prey;
𝐶 is the death rate of the predator; and 𝐴 is the growth
factor of the prey. We may refer to [1, 2] for more biological
implications.

Recently, the system (1) and some related systems have
been studied by many researchers for an understanding of
the most basic features of a spatially distributed interaction;
we can refer to [3–10]. Gardner [8] proved the existence
of traveling wave solutions for a diffusive predator-prey
system with Holling type-II functional response by using
the connection index. Numerical simulation in Owen and
Lewis [11] shows that a diffusive predator-prey system with

Holling type-II functional response, when the diffusive rates
of the prey and the predator are not zero, possesses traveling
wave solutions. Huang et al. [12] proved theoretically that the
numerical simulation in [11] is true. Huang et al. considered
the system

𝑢
𝑡
= 𝑢 [𝛼 (𝑏 − 𝑢) −

𝑤

1 + 𝑢
] ,

𝑤
𝑡
= 𝑤
𝑥𝑥

− 𝑤(1 −
𝛽𝑢

1 + 𝑢
) ,

(2)

and they obtained that if 𝑐 > √4(𝑏𝛽 − 1 − 𝑏)/(1 + 𝑏), (𝑏 +

1)/𝑏 < 𝛽 < 𝑏/(𝑏 − 1), and (1 − 𝛼)(𝛽 − 1) ≥ (2𝛽/(1 + 𝑏))

√(𝑏𝛽 − 1 − 𝑏)/(1 + 𝑏), then there are nonnegative solutions
of system (2) satisfying𝑤(+∞) = 𝛼(1/(𝛽−1)+1)(𝑏−1/(𝛽−1)),
𝑤(−∞) = 0, 𝑢(+∞) = 1/(𝛽 − 1), 𝑢(−∞) = 𝑏.

Dunbar [13] studied the following system:

𝑈
𝑡
= 𝑈 (1 − 𝑊) ,

𝑊
𝑡
= 𝑊
𝑥𝑥

+ 𝜌𝑊(𝑈 − 1)

(3)

and obtained the following.
(a) If 0 < 𝑐 < √4𝛼(1 − 𝛽), then there exist traveling wave

front solutions of the system (3) satisfying𝑢(−∞) = 0,
𝑤(−∞) = 0, 𝑢(+∞) = 𝛽, 𝑤(+∞) = 1 − 𝛽.
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(b) If 𝑐 ≥ √4𝛼(1 − 𝛽), then there exist traveling wave
front solutions of the system (3) satisfying𝑢(−∞) = 1,
𝑤(−∞) = 0, 𝑢(+∞) = 𝛽, 𝑤(+∞) = 1 − 𝛽.

Dunbar [14] investigated the system

𝑈
𝑡
= 𝛼𝑈 (𝛾 − 𝑈) −

𝑈𝑊

1 + 𝑈
,

𝑊
𝑡
= 𝑊
𝑥𝑥

− 𝑊 + 𝛽
𝑈𝑊

1 + 𝑈

(4)

and obtained that if 𝑐
2

> 4(𝛾𝛽 − 𝛾 − 1)/(1 + 𝛾) and (1 +

𝛾)/𝛾 < 𝛽 ≤ 𝛾/(𝛾 − 1), then there is a bounded solution of
(4) satisfying 𝑢(−∞) = 𝛾, 𝑤(−∞) = 0, 𝑢(+∞) = 1/(𝛽 − 1),
and 𝑤(+∞) = 𝛼(𝛾 − 1/(𝛽 − 1))(1 + 1/(𝛽 − 1)).

Li and Wu [15] studied a system with Holling type-III
functional response and proved the existence of traveling
wave solutions by using the shooting argument in𝑅

3 together
with a Lyapunov function [16], LaSalle’s invariance principle
[17], and the Hopf bifurcation theorem [18]. We may refer to
Murray [19], Mischaikow and Reineck [20], and Volpert et al.
[21] for more results.

We notice that the Holling type-II and the Holling type-
III functional response are monotonic in the first quadrant,
while the Holling type-IV functional response considered
in this paper is nonmonotonic in the first quadrant. It is
an interesting problem to know whether the above results
are available for the system (1). We should mention that
although the techniques used here are similar to those in
[12–15, 22], there are several differences. Firstly, it is a more
complex system. The systems studied in [13, 22] are the ones
with the Lotka-Volterra functional response. The systems
studied in [12, 14, 15] are the ones with the Holling type-II or
Holling type-III functional response. Secondly, we construct
a different Wazewski set 𝑊 and a new Lyapunov function.
For simplicity, we assume that 𝑑

1
= 0 can be considered to

correspond to a situation in which the prey species is evenly
distributed. We should mention that the assumption is not
essential.

For further simplification, taking

𝑢
∗
= √𝐸𝑢, 𝑤

∗
=

𝐵

𝐶
𝑤, 𝑥

󸀠
= √

𝐶

𝑑
2

𝑥,

𝑡
󸀠
= 𝐶𝑡, 𝛼 =

𝐴

√𝐸𝐶𝐾

, 𝑏 = √𝐸𝐾, 𝛽 =
𝐷

√𝐸𝐶

,

(5)

and dropping the stars on 𝑢, 𝑤 and the primes on 𝑥, 𝑡 for
convenience, we obtain

𝑢
𝑡
= 𝛼𝑢 (𝑏 − 𝑢) −

𝑢𝑤

1 + 𝑢2
,

𝑤
𝑡
= 𝑤
𝑥𝑥

− 𝑤 +
𝛽𝑢𝑤

1 + 𝑢2
.

(6)

There are several reasonable parameter restrictions. We
assume that 𝑏 > 1 or equivalently that 𝐸 > 1/𝐾

2, so that the
satiation effect is great enough. We also assume that 𝛼 > 0

and 𝛽 > 2, which ensure that the system (6) has positive
equilibrium point corresponding to constant coexistence of
the two species. Obviously, the system (6) has four equilibria
points: (0, 0), (𝑏, 0), (𝑢

0
,𝑤
0
), and (𝑢

1
,𝑤
1
), which are equilibria

of the corresponding ODE system without diffusion, where

𝑢
0
=

𝛽 − √𝛽2 − 4

2
, 𝑤

0
= 𝛼 (𝑏 − 𝑢

0
) (1 + 𝑢

2

0
) ,

𝑢
1
=

𝛽 + √𝛽2 − 4

2
, 𝑤

1
= 𝛼 (𝑏 − 𝑢

1
) (1 + 𝑢

2

1
) .

(7)

In this paper, we also require that 𝑏 < 𝑢
1
, which ensures that

equations (6) has only a positive equilibrium. We notice that
𝑢
0

< 𝑏, so the system (6) has only one positive equilibri-
um point. The equilibrium (0, 0), representing the absence
of both species, is a saddle point. The equilibrium (𝑏, 0),
representing the population of the prey at the environmental
carrying capacity in the absence of predators, is unstable.The
equilibrium (𝑢

0
, 𝑤
0
), representing the time constant coexis-

tence of both species, is stable.We establish the travelingwave
solution connecting the equilibria (𝑏, 0) and (𝑢

0
, 𝑤
0
), which

is called the “waves of invasion”; see Chow and Tam [23].
The paper is organized as follows. In the next section, we

first recall a lemma which is a variant ofWazewski’sTheorem
and then we state the result on the existence of traveling wave
solution. Section 3 is devoted to prove the result.

2. Main Result

In order to establish the existence of traveling wave solution
of the system (6), we assume that the solution has the special
form 𝑢(𝑥, 𝑡) = 𝑢(𝑥 + 𝑐𝑡), 𝑤(𝑥, 𝑡) = 𝑤(𝑥 + 𝑐𝑡), where the wave
speed parameter 𝑐 is positive. Substituting 𝑢(𝑥, 𝑡) = 𝑢(𝑠),
𝑤(𝑥, 𝑡) = 𝑤(𝑠), 𝑠 = 𝑥 + 𝑐𝑡 into the system (6), the responding
system becomes

𝑐𝑢
󸀠
= 𝛼𝑢 (𝑏 − 𝑢) −

𝑢𝑤

1 + 𝑢2
,

𝑐𝑤
󸀠
= 𝑤
󸀠󸀠
− 𝑤 +

𝛽𝑢𝑤

1 + 𝑢2
.

(8)

Here 󸀠 denotes the differentiation with respect to the variable
𝑠. We require that the traveling wave solutions 𝑢 and 𝑤 are
nonnegative and satisfy the boundary conditions

𝑢 (−∞) = 𝑏, 𝑢 (+∞) = 𝑢
0
,

𝑤 (−∞) = 0, 𝑤 (+∞) = 𝑤
0
.

(9)

We write the system (6) as a first order system in 𝑅
3

𝑢
󸀠
=

𝛼

𝑐
𝑢 (𝑏 − 𝑢) −

𝑢𝑤

𝑐 (1 + 𝑢2)
,

𝑤
󸀠
= 𝑧, 𝑧

󸀠
= 𝑐𝑧 + 𝑤 −

𝛽𝑢𝑤

1 + 𝑢2
.

(10)

In this section a variant of Wazewski’s Theorem, which is a
formalization and extension of the shootingmethod, is stated.
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This proposition recognizes that the flow defined by the
solutions of a differential system gives a topological mapping
between regions of phase space. The statement and the proof
of Wazewski’s Theorem are given in [24].

Consider a system

𝑦
󸀠
= 𝑓 (𝑦) ,

󸀠
=

𝑑

𝑑𝑠
, 𝑦 ∈ 𝑅

𝑛
. (∗)

Here 𝑓 : 𝑅
𝑛

→ 𝑅
𝑛 is a continuous function and satisfies the

Lipschitz condition. Let 𝑦(𝑠, 𝑦
0
) be the unique solution of (∗)

satisfying 𝑦(0, 𝑦
0
) = 𝑦

0
. For convenience, we set 𝑦(𝑠, 𝑦

0
) =

𝑦
0
⋅ 𝑠; let 𝑌 ⋅ 𝑆 be the set of points 𝑦

0
⋅ 𝑠, where 𝑦

0
∈ 𝑌 and

𝑠 ∈ 𝑆.
Given 𝑊 ⊆ 𝑅

𝑛, the notation cl(𝑊) is used for the closure
of 𝑊. Define

𝑊
−
= {𝑦
0
∈ 𝑊 | ∀𝑠 > 0, 𝑦

0
⋅ [0, 𝑠) ̸⊆ 𝑊} ; (11)

𝑊
− is called the immediate exit set of 𝑊. Given Σ ⊂ 𝑊, let

Σ
0
= {𝑦
0
∈ Σ | ∃𝑠

0
= 𝑠
0
(𝑦
0
) such that𝑦

0
⋅ 𝑠
0
∉ 𝑊} . (12)

For 𝑦
0
∈ Σ
0, define

𝑇 (𝑦
0
) = sup {𝑠 | 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊} ; (13)

𝑇(𝑦
0
) is called an exit time. Note that 𝑦

0
⋅ 𝑇(𝑦
0
) ∈ 𝑊

− and
𝑇(𝑦
0
) = 0 if and only if 𝑦

0
∈ 𝑊
−.

Lemma 1. Suppose that

(i) if 𝑦
0
∈ Σ and 𝑦

0
⋅ [0, 𝑠] ⊆ cl(W), then 𝑦

0
⋅ [0, 𝑠] ⊆ 𝑊;

(ii) if 𝑦
0
∈ Σ, 𝑦

0
⋅ 𝑠 ∈ 𝑊, 𝑦

0
⋅ 𝑠 ∉ 𝑊

−, then there is an open
set 𝑉
𝑠
about 𝑦

0
⋅ 𝑠 disjoint from 𝑊

−;

(iii) Σ = Σ
0, Σ is a compact set and intersects a trajectory of

𝑦
󸀠
= 𝑓(𝑦) only once.

Then themapping𝐹(𝑦
0
) = 𝑦
0
⋅𝑇(𝑦
0
) is a homeomorphism from

Σ to its image on 𝑊
−. The proof is given in [22]. A set 𝑊 ⊆ 𝑅

𝑛

satisfying the conditions (i) and (ii) is called a Wazewski set.

Theorem 2. (i) If 𝛽 > (1 + 𝑏
2
)/𝑏, and 0 < 𝑐 <

2√(𝛽𝑏 − 1 − 𝑏2)/(1 + 𝑏2), then there are no nonnegative solu-
tions of the system (10) satisfying the boundary conditions (9).

(ii) If 𝛽 > (1 + 𝑏
2
)/𝑏, 𝑐 > √2𝛽 − 4, 𝛼(1 + 𝑏

2
) < 𝑐
2, and

𝑏 < 2√1 + 𝑢
2

0
− 𝑢
0
, then there exists nonnegative solution of

the system (10) satisfying the boundary conditions (9), which
correspond to traveling wave solution of the system (6).

3. Proofs of the Result

The eigenvalues of the linearization of the system (10) at (𝑏, 0,
0) are

𝜆
1
= −

𝛼𝑏

𝑐
,

𝜆
2
=

𝑐 − √𝑐2 − 4 (𝛽𝑏 − 1 − 𝑏2) / (1 + 𝑏2)

2
,

𝜆
3
=

𝑐 + √𝑐2 − 4 (𝛽𝑏 − 1 − 𝑏2) / (1 + 𝑏2)

2
.

(14)

If 0 < 𝑐 < 2√(𝛽𝑏 − 1 − 𝑏2)/(1 + 𝑏2), then 𝜆
2
and 𝜆

3
are a

pair of complex conjugate eigenvalues with positive real part.
By Theorems 6.1 and 6.2 in [16], there is a two-dimensional
unstable manifold base at (𝑏, 0, 0); the critical point is a spiral
point on this unstablemanifold, so the trajectory approaching
(𝑏, 0, 0) as 𝑠 → −∞must have𝑤(𝑠) < 0 for some 𝑠. It violates
the requirement that the solution of the system (10) must be
nonnegative. It proves the first part of Theorem 2.

We only need to discuss the case 𝑐 ≥

2√(𝛽𝑏 − 1 − 𝑏2)/(1 + 𝑏2). In fact we require the stronger
condition 𝑐 > √2𝛽 − 4 for mathematical simplicity. With
the requirement there are three distinct real eigenvalues
𝜆
1
< 0 < 𝜆

2
< 𝜆
3
. Let the eigenvectors e1, e2, e3 associated

with 𝜆
1
, 𝜆
2
, 𝜆
3
, respectively, be

e1 = (1, 0, 0) , e2 = (1, 𝑝 (𝜆
2
) , 𝜆
2
𝑝 (𝜆
2
)) ,

e3 = (1, 𝑝 (𝜆
3
) , 𝜆
3
𝑝 (𝜆
3
)) .

(15)

Here 𝑝(𝜆
𝑖
) = −(1/𝑏)(𝑐𝜆

𝑖
+ 𝑐𝑏
2
𝜆
𝑖
+ 𝛼𝑏 + 𝛼𝑏

3
) < 0, 𝑖 = 2, 3.

ApplyingTheorems 6.1 and 6.2 of [16], there exists a one-
dimension strongly unstable manifold Ω

1
tangent to e3 at (𝑏,

0, 0). A parametric representation for the strongly unstable
manifold Ω

1
in a small neighborhood of (𝑏, 0, 0) is

𝑓
1
(𝑚) = (𝑏, 0, 0) + 𝑚 ⋅ e3 + 𝑂 (|𝑚|) . (16)

There exists a two-dimension unstable manifold Ω
2
tangent

to the span of e2 and e3 at (𝑏, 0, 0). A parametric representa-
tion for the two-dimensional unstable manifoldΩ

2
in a small

neighborhood of (𝑏, 0, 0) is

𝑓
2
(𝑚, 𝑛) = (𝑏, 0, 0) + 𝑚 ⋅ e3 + 𝑛 ⋅ e2 + 𝑂 (|𝑚| + |𝑛|) . (17)

The idea of constructing theWazewski set𝑊 is similar to that
in Dunbar [22]: it will be the complement of three blocks in
𝑅
3, two of which are chosen so that 𝑧󸀠 has the same sign as 𝑧

so solutions entering these blocks would not have 𝑧 → 0 as
𝑠 → ∞. Thus we define the Wazewski set 𝑊 as follows:

𝑊 = 𝑅
3
\ (𝑃 ∪ 𝑄) . (18)

Here

𝑃 = {(𝑢, 𝑤, 𝑧) | 𝑢 < 𝑢
0
, 𝑤 > 𝑤

0
, 𝑧 > 0} ,

𝑄 = {(𝑢, 𝑤, 𝑧) | 𝑢 > 𝑢
0
, 𝑤 < 𝑤

0
, 𝑧 < 0} .

(19)
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Note that 𝑊 is a closed set. Let

𝐽 = {(𝑢, V, 𝑤, 𝑧) | 𝑢 > 𝑢
1
, 0 ≤ 𝑤 ≤ 𝑤

0
, 𝑧 = 0}

∪ {(𝑢, V, 𝑤, 𝑧) | 𝑢
0
≤ 𝑢 < 𝑢

1
, 𝑤 ≤ 0, 𝑧 = 0}

∪ {(𝑢, V, 𝑤, 𝑧) | 𝑢 = 𝑢
1
, 𝑤
1
≤ 𝑤 ≤ 0, 𝑧 = 0} .

(20)

By checking the vector field on 𝜕𝑊, we obtain

𝑊
−
= 𝜕𝑊 \ (𝐽 ∪ {(𝑢

0
, 𝑤
0
, 0)}) . (21)

Details of proof that𝑊− is the set described above are tedious.
We only examine the part 𝜕𝑄 of 𝜕𝑊 as an example, which
shows why the set 𝐽must be excluded from 𝜕𝑊 to obtain𝑊

−.
The other proofs are similar. The boundary of 𝜕𝑄 is 𝑢 = 𝑢

0
,

𝑤 = 𝑤
0
, or 𝑧 = 0.

(1) 𝑢 = 𝑢
0
, 𝑤 = 𝑤

0
, and 𝑧 < 0.

Since 𝑤
󸀠

= 𝑧 < 0, 𝑤 < 𝑤
0
, 𝑢󸀠 = [(𝛼/𝑐)𝑢(𝑏 − 𝑢) −

𝑢𝑤/𝑐(1 + 𝑢
2
)]
(𝑢0 ,𝑤0)

= 0, 𝑢󸀠󸀠 = −(𝑢
0
𝑧/𝑐(1 + 𝑢

2

0
)) > 0,

and 𝑢 > 𝑢
0
, thus the trajectory enters 𝑄.

(2) 𝑢 = 𝑢
0
, 𝑤 < 𝑤

0
, and 𝑧 = 0.

Since 𝑢
󸀠
= [(𝛼/𝑐)𝑢(𝑏 − 𝑢) − 𝑢𝑤/𝑐(1 + 𝑢

2
)]
𝑢=𝑢0

> 0,
𝑧
󸀠
= [𝑐𝑧+𝑤(1−𝛽𝑢/(1+𝑢

2
))]
𝑢=𝑢0

= 0, 𝑧󸀠󸀠 = 𝛽𝑢
󸀠
𝑤(𝑢
2

0
−

1)/(1 + 𝑢
2

0
)
2, and 𝑢

0
< 1, thus 𝑢 > 𝑢

0
and we obtain

the following.

(i) 0 < 𝑤 < 𝑤
0
; then 𝑧

󸀠󸀠
< 0, 𝑧 < 0, and the trajec-

tory enters 𝑄.
(ii) 𝑤 < 0; then 𝑧

󸀠󸀠
> 0, 𝑧 > 0, and the trajectory

does not enter 𝑄.
(iii) 𝑤 = 0, 𝑧 = 0. Consider the system

𝑤
󸀠
= 𝑧, 𝑧

󸀠
= 𝑐𝑧 + 𝑤 −

𝛽𝑢𝑤

1 + 𝑢2
. (22)

We come to the conclusion that the 𝑢-axis is an invariant
manifold and the trajectory does not enter 𝑄.

(3) 𝑢 > 𝑢
0
, 𝑤 = 𝑤

0
, and 𝑧 = 0.

Since 𝑢
1

= (𝛽 + √𝛽2 − 4)/2 > 𝑏 and 𝑧
󸀠

= 𝑤
0
(1 −

𝛽𝑢/(1 + 𝑢
2
)), we obtain the following.

(i) 𝑢
0
< 𝑢 < 𝑢

1
; then 𝑧

󸀠
< 0, 𝑧 < 0, 𝑤󸀠󸀠 = 𝑧

󸀠
< 0,

𝑤 < 𝑤
0
, and the trajectory enters 𝑄.

(ii) 𝑢 > 𝑢
1
; then 𝑧

󸀠
> 0, 𝑧 > 0,𝑤󸀠󸀠 = 𝑧

󸀠
> 0,𝑤 > 𝑤

0
,

and the trajectory does not enter 𝑄.
(iii) 𝑢 = 𝑢

1
; then 𝑢

󸀠
= (𝛼/𝑐)𝑢

1
(𝑏 − 𝑢

1
) − 𝑢
1
𝑤
0
/𝑐(1 +

𝑢
2

1
) < 0, 𝑧󸀠 = 0, and 𝑧

󸀠󸀠
= [𝑤 − 𝛽𝑢𝑤/(1 + 𝑢

2
)]
󸀠

=

𝛽𝑢
󸀠
𝑤
0
(𝑢
2

1
− 1)/(1 + 𝑢

2

1
)
2
< 0.

That is, 𝑧 < 0, 𝑤 < 𝑤
0
, and the trajectory enters 𝑄.

(4) 𝑢 = 𝑢
0
, 𝑤 < 𝑤

0
, and 𝑧 < 0.

From the proof of (2), we come to the conclusion that
𝑢
󸀠
> 0, 𝑢 > 𝑢

0
, and the trajectory enters 𝑄.

(5) 𝑢 > 𝑢
0
, 𝑤 = 𝑤

0
, and 𝑧 < 0.

Since 𝑤
󸀠
= 𝑧 < 0 and𝑤 < 𝑤

0
, the trajectory enters 𝑄.

(6) 𝑢
0
< 𝑢 < 𝑢

1
, 𝑤 < 𝑤

0
, and 𝑧 = 0.

Since 𝑧󸀠 = 𝑤(1−𝛽𝑢/(1+𝑢
2
)), we obtain the following.

(i) 0 < 𝑤 < 𝑤
0
; then 𝑧

󸀠
< 0 and 𝑧 < 0, which im-

plies that the trajectory enters 𝑄.
(ii) 𝑤 = 0; similar to the proof of (2iii), the trajecto-

ry does not enter 𝑄.
(iii) 𝑤 < 0; then 𝑧

󸀠
> 0 and 𝑧 > 0; that is, the trajec-

tory does not enter 𝑄.

(7) 𝑢 = 𝑢
1
, 𝑤 < 𝑤

0
, and 𝑧 = 0.

Since 𝑢
󸀠
= (𝛼/𝑐)𝑢

1
(𝑏 − 𝑢

1
) − 𝑢
1
𝑤/𝑐(1 + 𝑢

2

1
), 𝑧󸀠 = [𝑐𝑧 +

𝑤(1 − 𝛽𝑢/(1 + 𝑢
2
))]
𝑢=𝑢1

= 0, and 𝑧
󸀠󸀠

= 𝛽𝑢
󸀠
𝑤(𝑢
2

1
−

1)/(1 + 𝑢
2

1
)
2, we obtain the following.

(i) 0 < 𝑤 < 𝑤
0
; then 𝑢

󸀠
< 0, 𝑧󸀠󸀠 < 0, 𝑧 < 0, and the

trajectory enters 𝑄.
(ii) 𝑤 = 0; similar to the proof of (2iii), the trajecto-

ry does not enter 𝑄.
(iii) 𝑤

1
< 𝑤 < 0; then 𝑢

󸀠
< 0 and 𝑧

󸀠󸀠
> 0; that is,

𝑧 > 0, and the trajectory does not enter 𝑄.
(iv) 𝑤 = 𝑤

1
. It is a singular point (𝑢

1
, 𝑤
1
, 0) and is

not in the immediate exit set.
(v) 𝑤 < 𝑤

1
; then 𝑢

󸀠
> 0, 𝑧󸀠󸀠 < 0, and 𝑧 < 0, which

implies that the trajectory enters 𝑄.

(8) 𝑢 > 𝑢
1
, 𝑤 < 𝑤

0
, and 𝑧 = 0.

Since 𝑧
󸀠

= 𝑤(1 − 𝛽𝑢/(1 + 𝑢
2
)), then we obtain the

following.

(i) 0 < 𝑤 < 𝑤
0
; then 𝑧

󸀠
> 0, 𝑧 > 0, and the

trajectory does not enter 𝑄.
(ii) 𝑤 = 0; the trajectory does not enter 𝑄.
(iii) 𝑤 < 0; then 𝑧

󸀠
< 0, 𝑧 < 0, and the trajectory

enters 𝑄.

In order to use Lemma 1, we construct the set Σ on a
sphere surrounding (𝑏, 0, 0) in the two-dimensional unstable
manifold Ω

2
by Lemma 3 to Lemma 7. The specification

of the arc requires the identification of the endpoints on
the circle. One endpoint is the intersection of the circle
with the strongly unstable manifold Ω

1
and the other is the

intersection of the circle with the plane defined by 𝑧 = 0.
Lemmas 3–6 are simple comparison arguments showing that
the first endpoint on the strongly unstable manifold is carried
by the flow into 𝑃 and the other is carried into 𝑄. We use the
notation Λ

1
= {(𝑢, 𝑤, 𝑧) | 𝑢 ≤ 𝑏, 𝑤 ≥ 0, 𝑧 ≥ 0}.

Lemma 3. Let 𝑐 > √2𝛽 − 4. A solution of the system (10)
having a point, corresponding to 𝑠 = 0without loss of generality,
such that 𝑢(0) < 𝑏, 𝑤(0) > 0, and 𝑧(0) > (𝑐/2)𝑤(0), will have
𝑤(𝑠) > 0 and 𝑧(𝑠) > (𝑐/2)𝑤(𝑠) for all 𝑠 > 0. In particular, it is
true for trajectories on the branch of strongly unstable manifold
Ω
1
in the octant Λ

1
.
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Proof. Suppose, to the contrary, that there exists an 𝑠 > 0

such that 𝑢(𝑠) < 𝑏, but 𝑧(𝑠) ≤ (𝑐/2)𝑤(𝑠). Let 𝑠
1

= inf{𝑠 |

𝑧(𝑠) ≤ (𝑐/2)𝑤(𝑠), 𝑢(𝑠) < 𝑏}. Since 𝑤(0) > 0 and for 𝑠 ∈ [0, 𝑠
1
),

𝑤
󸀠
(𝑠) = 𝑧(𝑠) > (𝑐/2)𝑤(𝑠), we have 𝑤(𝑠

1
) > 0 and 𝑧

󸀠
(𝑠
1
) −

(𝑐/2)𝑤
󸀠
(𝑠
1
) ≤ 0. Using that 𝑧(𝑠

1
) = (𝑐/2)𝑤(𝑠

1
), we obtain

(𝑐
2
/4)+1−𝛽𝑢(𝑠

1
)/(1+𝑢

2
(𝑠
1
)) ≤ 0. Since 𝑢(𝑠

1
)/(1+𝑢

2
(𝑠
1
)) ≤

1/2, it follows that 𝑐2/4 + 1 − 𝛽/2 ≤ 0; that is, 𝑐2 ≤ 2𝛽 − 4; it is
a contradiction with 𝑐

2
> 2𝛽 − 4. It completes the proof.

Lemma 4. A trajectory on the portion of strongly unstable
manifold Ω

1
in the octant Λ

1
must satisfy

𝑤 (𝑠) ≥ −𝑐
2
(𝑢 (𝑠) − 𝑏) (23)

for all 𝑠.

Proof. The solution approaches (𝑏, 0, 0) tangent to e3 and the
eigenvector e3 at (𝑏, 0, 0) has 𝑤 = 𝑝(𝜆

3
)(𝑢 − 𝑏) such that

𝑤(0) > −𝑐
2
(𝑢(0)−𝑏). Suppose to the contrary that there exists

an 𝑠 > 0 such that𝑤(𝑠) < −𝑐
2
(𝑢(𝑠)−𝑏). Let 𝑠

1
= inf{𝑠 | 𝑤(𝑠) <

−𝑐
2
(𝑢(𝑠) − 𝑏)}; then𝑤

󸀠
(𝑠
1
) < −𝑐

2
𝑢
󸀠
(𝑠
1
). Since 𝑢

󸀠
= (𝛼/𝑐)𝑢(𝑏 −

𝑢) − 𝑢𝑤/𝑐(1 + 𝑢
2
), 𝑤󸀠 = 𝑧, it follows that 𝑧(𝑠

1
) ≤ (𝑐/2)𝑤(𝑠

1
);

it is a contradiction. It completes the proof.

Lemma 5. Let 𝑑 > (𝑐 + √𝑐2 + 4)/2 be a fixed number. A
solution of the system (10) having a point, corresponding to
𝑠 = 0 without loss of generality, such that 0 < 𝑢(0) < 𝑏 and
𝑧(0) < 𝑑𝑤(0), will have 𝑧(𝑠) < 𝑑𝑤(𝑠) for all 𝑠 > 0 such that
𝑤(𝑠) > 0. In particular, this is true for trajectories on the branch
of strongly unstable manifold Ω

1
in the octant Λ

1
.

Proof. Suppose, to the contrary, that there exists an 𝑠 > 0

such that 𝑤(𝑠) > 0, but 𝑧(𝑠) ≥ 𝑑𝑤(𝑠). Let 𝑠
1

= inf{𝑠 > 0 |

𝑧(𝑠) ≥ 𝑑𝑤(𝑠)}; then 𝑧(𝑠
1
) = 𝑑𝑤(𝑠

1
) and 𝑧(𝑠) < 𝑑𝑤(𝑠) for

0 ≤ 𝑠 < 𝑠
1
𝑧
󸀠
(𝑠
1
) − 𝑑𝑤

󸀠
(𝑠
1
) ≥ 0. Substituting 𝑧

󸀠 and 𝑤
󸀠, we

obtain 𝑐𝑧(𝑠
1
) − 𝑑𝑧(𝑠

1
) +𝑤(𝑠

1
) − 𝛽𝑢(𝑠

1
)𝑤(𝑠
1
)/(1 + 𝑢

2
(𝑠
1
)) ≥ 0;

that is, [−𝑑
2

+ 𝑐𝑑 + 1 − 𝛽𝑢(𝑠
1
)/(1 + 𝑢

2
(𝑠
1
))]𝑤(𝑠

1
) ≥ 0.

However, the choice of 𝑑 implies that −𝑑
2
+ 𝑐𝑑 + 1 < 0; thus

[−𝑑
2
+𝑐𝑑+1−𝛽𝑢(𝑠

1
)/(1+𝑢

2
(𝑠
1
))]𝑤(𝑠

1
) < 0.This contradiction

shows that 𝑧(𝑠) < 𝑑𝑤(𝑠) for 𝑠 such that 𝑤(𝑠) > 0.

Lemma 6. Suppose that a solution of the system (10) has a
point such that

𝑢 (0) < 𝑏, 0 < 𝑤 (0) < −

(𝑑𝑐 + 𝛼𝑏) (1 + 𝑏
2
)

𝑢
0

(𝑢 (0) − 𝑏) ,

𝑧 (0) < 𝑑𝑤 (0) .

(24)

Then for all 𝑠 > 0, as long as 𝑢(𝑠) > 𝑢
0
,𝑤(𝑠) > 0, the trajectory

must satisfy that

𝑤 (𝑠) < −

(𝑑𝑐 + 𝛼𝑏) (1 + 𝑏
2
)

𝑢
0

(𝑢 (𝑠) − 𝑏) . (25)

In particular, it is true for trajectories on the branch of strongly
unstable manifold Ω

1
in the octant Λ

1
.

Proof. We first show that 𝑢(𝑠) < 𝑏 for all 𝑠 > 0 such that
𝑤(𝑠) > 0. If it is not true, then there is a first 𝑠

1
such that

𝑢(𝑠
1
) = 𝑏, 𝑢󸀠(𝑠

1
) ≥ 0, and 𝑤(𝑠

1
) > 0. However, we have

𝑢
󸀠
(𝑠
1
) =

𝑢

𝑐
[𝛼(𝑏 − 𝑢) −

𝑤

1 + 𝑢2
]
𝑠=𝑠1

< 0. (26)

It is a contradiction; then 𝑢(𝑠) < 𝑏 for all 𝑠 such that𝑤(𝑠) > 0.
Let 𝐴 = (𝑑𝑐 + 𝛼𝑏)(1 + 𝑏

2
)/𝑢
0
; suppose that there exists a

first time 𝑠
2
> 0 such that 𝑢(𝑠

2
) > 𝑢
0
, 𝑤(𝑠
2
) > 0, and 𝑤(𝑠

2
) =

−𝐴(𝑢(𝑠
2
)−𝑏); then𝑤

󸀠
(𝑠
2
) ≥ −𝐴𝑢

󸀠
(𝑠
2
). By Lemma 5,we obtain

𝑑𝑤 (𝑠
2
) ≥ 𝑧 (𝑠

2
) ≥ −

𝐴𝑢

𝑐
[𝛼 (𝑏 − 𝑢) −

𝑤

1 + 𝑢2
]
𝑠=𝑠2

. (27)

From 𝑤(𝑠
2
) = −𝐴(𝑢(𝑠

2
) − 𝑏) and 𝑢

0
< 𝑢(𝑠
2
) < 𝑏, we have

𝑑 ≥ −
1

𝑐
[𝛼𝑢 −

𝐴𝑢

1 + 𝑢2
]
𝑠=𝑠2

>
1

𝑐
[−𝛼𝑏 +

𝐴𝑢
0

1 + 𝑏2
] = 𝑑. (28)

It is a contradiction, which completes the proof.

Combining the results of these lemmas, we follow the
trajectory of a solution of the system (10) on the strongly
unstable manifold Ω

1
. Define

R = { (𝑢, 𝑤, 𝑧) | 𝑢
0
< 𝑢 < 𝑏,

− 𝑐
2
(𝑢 (𝑠) − 𝑏) ≤ 𝑤

≤ −

(𝑑𝑐 + 𝛼𝑏) (1 + 𝑏
2
) (𝑢 (𝑠) − 𝑏)

𝑢
0

,

𝑐

2
𝑤 < 𝑧 < 𝑑𝑤} .

(29)

Lemmas 3–6 show that the trajectory of a solution of the
system (10) on the strongly unstablemanifoldΩ

1
is contained

inR. Recall the assumption that 𝛼 < 𝑐
2
/(1 + 𝑏

2
); then

𝑤 ≥ 𝑐
2
(𝑏 − 𝑢 (𝑠)) > 𝛼 (1 + 𝑢

2
) (𝑏 − 𝑢 (𝑠)) , (30)

which implies that 𝑢󸀠 < 0 in the regionR.Thus, for a solution
of the system (10) on the strongly unstable manifold Ω

1
, 𝑢(𝑠)

decreases until 𝑢(𝑠
1
) = 𝑢
0
for some finite 𝑠

1
; the trajectory of

this solution hits 𝜕𝑃 on the face 𝑢 = 𝑢
0
, 𝑤 > 𝑤

0
, and 𝑧 >

0. The vector field on this face shows that a solution of the
system (10) on Ω

1
enters the region 𝑃 at some finite time.

Lemma 7. In a sufficiently small neighborhood of (𝑏, 0, 0),
the two-dimensional unstable manifoldΩ

2
intersects the plane

defined by 𝑧 = 0 in a 𝐶
1 curve Γ, given by 𝑤 = 𝐽(𝑢) and 𝑧 = 0.

Proof. The proof, which is similar to that of Lemma 5 in [13],
is therefore omitted.

We are interested in the portion of the curve Γ in the
region 𝑢 < 𝑏. The function 𝐽(𝑢) can be approximated to the
first order by

𝑤 = 𝐽 (𝑢) =
𝑝 (𝜆
2
) 𝑝 (𝜆

3
) (𝜆
3
− 𝜆
2
)

𝜆
3
𝑝 (𝜆
3
) − 𝜆
2
𝑝 (𝜆
2
)

(𝑢 − 𝑏) . (31)
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Thus the𝑤-coordinate of points along the curve Γwill satisfy
𝑤 > 0. From the direction of the vector field on the plane
defined by 𝑢

0
< 𝑢 < 𝑏, 𝑤 > 0, and 𝑧 = 0, any trajectory

passing through a point of Γ near (𝑏, 0, 0) will immediately
enter the region 𝑄.

Now, we place a sufficiently small circle surrounding (𝑏,
0, 0) on the two-dimensional unstable manifoldΩ

2
such that

the circle is contained in the neighborhood of (𝑏, 0, 0) given
in Lemma 7 and the conditions of Lemmas 3–6 are satisfied.
The circle intersects the curve Γ. Define Σ to be the arc of this
circle contained in the octant Λ

1
, whose endpoints are the

intersections of the circle with Ω
1
and the curve Γ.

We now prove part (ii) of Theorem 2, which requires two
steps. Firstly, we use Lemma 1 to produce a trajectory which
remains in the region 𝑊. Secondly, we construct a Lyapunov
function to prove the trajectory approaches (𝑢

0
, 𝑤
0
, 0).

Lemma 8. There exists a point 𝑦∗ ∈ Σ such that the solution
𝑦(𝑠, 𝑦

∗
) of the system (10) remains in the region 𝑊 for all 𝑠.

Proof. The proof, which is similar to the proof of Lemma 3.7
in [15], is therefore omitted.

Lemma9. The solution𝑦(𝑠, 𝑦
∗
)must be in the bounded region

Ψ = {(𝑢, 𝑤, 𝑧) | 0 < 𝑢 < 𝑏, 0 < 𝑤 < 𝑘 (𝑢) , −
1

𝑐
𝑤 < 𝑧 < 𝑑𝑤}

(32)

for all 𝑠, where

𝑘 (𝑢) =

{{{{

{{{{

{

−

(𝑑𝑐 + 𝛼𝑏) (1 + 𝑏
2
) (𝑢 − 𝑏)

𝑢
0

, 𝑢
0
< 𝑢 < 𝑏,

−

(𝑑𝑐 + 𝛼𝑏) (1 + 𝑏
2
) (𝑢
0
− 𝑏)

𝑢
0

, 0 < 𝑢 ≤ 𝑢
0
.

(33)

Proof. Since the plane defined by 𝑢 = 0 is an invariant
manifold, the first coordinate of 𝑦

1
is strictly positive, and

thus 𝑢
1

> 0 for all 𝑠. Suppose 𝑦(𝑠, 𝑦
∗
) enters the region

𝑁
1
= {(𝑢, 𝑤, 𝑧) | 𝑤 ≤ 0}; let 𝑠

1
= inf{𝑠 | 𝑦(𝑠, 𝑦

∗
) ∈ 𝑁

1
}; then

we have𝑤
1
(𝑠
1
) = 0,𝑤󸀠

1
(𝑠
1
) ≤ 0, and 𝑧

1
(𝑠
1
) ≤ 0. We know that

the 𝑢-axis is an invariant manifold, 𝑧
1
(𝑠
1
) < 0. Since 𝑦(𝑠, 𝑦

∗
)

does not enter 𝑄 then 𝑢
1
(𝑠
1
) < 𝑢
0
. From the system (10), we

obtain 𝑢
󸀠

1
(𝑠
1
) > 0, which must enter the region

𝑁
2
= {(𝑢, 𝑤, 𝑧) | 𝑢

1
(𝑠
1
) < 𝑢 < 𝑢

0
, 𝑤 < 0, 𝑧 < 0} . (34)

In the region 𝑁
2
, 𝑧
1
(𝑠) and 𝑤

1
(𝑠) are decreasing, and thus

𝑢
󸀠

1
(𝑠) is bounded below by the positive

𝛼

𝑐
min {𝑢

1
(𝑠
1
) (𝑏 − 𝑢

1
(𝑠
1
)) , 𝑢
0
(𝑏 − 𝑢

0
)} . (35)

Then 𝑢
1
(𝑠) increases to 𝑢

0
in a finite time and 𝑦(𝑠, 𝑦

∗
) enters

𝑄. It is a contradiction, so 𝑤
1
(𝑠) > 0 for all 𝑠.

From Lemma 6, we obtain that 𝑤
1

< −(𝑑𝑐 + 𝛼𝑏)(1 +

𝑏
2
)(𝑢
1
− 𝑏)/𝑢

0
for 𝑢
0

< 𝑢
1

≤ 𝑏. Since 𝑤
1
(𝑠) > 0, we have

𝑢
1
(𝑠
1
) < 𝑏 for all 𝑠. Suppose that there is an 𝑠 such that𝑤

1
(𝑠) ≥

−𝐴
0
(𝑢
0
−𝑏) for 0 < 𝑢

1
≤ 𝑢
0
, where𝐴

0
= (𝑑𝑐+𝛼𝑏)(1+𝑏

2
)/𝑢
0
.

Let 𝑠
2
= inf{𝑠 | 𝑤

1
(𝑠) ≥ −𝐴

0
(𝑢
0
−𝑏)}, so 𝑢

1
(𝑠
2
) ≤ 𝑢
0
,𝑤
1
(𝑠
2
) >

𝑤
0
, and 𝑧

1
(𝑠
2
) = 𝑤

󸀠

1
(𝑠
2
) ≥ 0. Then either 𝑦(𝑠

2
, 𝑦
∗
) ∈ 𝑃 or

𝑦(𝑠
2
, 𝑦
∗
) immediately enters 𝑃, which is a contradiction.

Suppose that there exists an 𝑠
3
such that 𝑧

1
(𝑠
3
) <

−(1/𝑐)𝑤
1
(𝑠
3
) < 0; then 𝑧

1
(𝑠) < −(1/𝑐)𝑤

1
(𝑠) for all 𝑠 > 𝑠

3
.

If it is not true, there exists an 𝑠
4

> 𝑠
3
such that 𝑧

1
(𝑠
4
) =

−(1/𝑐)𝑤
1
(𝑠
4
), and thus 𝑧

󸀠

1
(𝑠
4
) + (1/𝑐)𝑤

󸀠

1
(𝑠
4
) ≥ 0. From the

system (10), we have

1

𝑐2
+

𝛽𝑢

1 + 𝑢2
≤ 0, (36)

which is impossible. So if 𝑧
1
(𝑠
3
) < −(1/𝑐)𝑤

1
(𝑠
3
) < 0, then

𝑧
1
(𝑠) < −(1/𝑐)𝑤

1
(𝑠) continues to hold for 𝑠 > 𝑠

3
. Thus, 𝑧󸀠

1
=

𝑐𝑧
1
+𝑤
1
−𝛽𝑢
1
𝑤
1
/(1+𝑢

2

1
) < −𝛽𝑢

1
𝑤
1
/(1+𝑢

2

1
) < 0 and 𝑧

1
(𝑠) <

𝑧
1
(𝑠
3
) for all 𝑠 > 𝑠

3
and 𝑤

󸀠

1
(𝑠) = 𝑧

1
(𝑠) is strictly negative and

bounded away from zero by 𝑧
1
(𝑠
3
). Then 𝑤

1
(𝑠) < 0 for some

finite 𝑠; it is a contradiction. Notice that a trajectory starting
on Σ tangent to e2 or e3 has 𝑧 = 𝜆

2
𝑤 or 𝑧 = 𝜆

3
𝑤. Since 𝜆

2

and 𝜆
3
< 𝑑, we have 𝑧

1
(𝑠) < 𝑑𝑤

1
(𝑠) for all 𝑠, which completes

the proof of this lemma.

Lemma 10. The trajectory 𝑦(𝑠, 𝑦
∗
) → (𝑢

0
, 𝑤
0
, 0) as 𝑠 →

+∞.

Proof. In order to show the trajectory will approach the point
(𝑢
0
, 𝑤
0
, 0), we construct a Lyapunov function as follows:

𝑉 (𝑢, 𝑤, 𝑧) = 𝑐 [(1 + 𝑢
2

0
) 𝑢 − 𝑢

0
ln 𝑢 −

𝑢
0

2
𝑢
2
]

+ 𝑢
0
[𝑐 (𝑤 − 𝑤

0
) − 𝑧] + 𝑤

0
𝑢
0
(

𝑧

𝑤
− 𝑐 ln 𝑤

𝑤
0

) .

(37)

We obtain that 𝑉(𝑢, 𝑤, 𝑧) is continuous and bounded below
on Ψ,

𝑑𝑉

𝑑𝑠
=

𝜕𝑉

𝜕𝑢
𝑢
𝑡
+

𝜕𝑉

𝜕𝑤
𝑤
𝑡
+

𝜕𝑉

𝜕𝑧
𝑧
𝑡

= 𝛼 (𝑢 − 𝑢
0
) (1 − 𝑢

0
𝑢) (𝑏 − 𝑢) +

(𝑢 − 𝑢
0
) (𝑢
0
𝑢 − 1)

1 + 𝑢2
𝑤

+ (𝑤
0
− 𝑤)

(𝑢 − 𝑢
0
) (𝑢
0
𝑢 − 1)

1 + 𝑢2
−

𝑤
0
𝑢
0

𝑤2
𝑧
2

= (𝑢 − 𝑢
0
) (𝑢
0
𝑢 − 1) [

𝑤
0

1 + 𝑢2
− 𝛼 (𝑏 − 𝑢)] −

𝑤
0
𝑢
0

𝑤2
𝑧
2

= (𝑢 − 𝑢
0
) (𝑢
0
𝑢 − 1) 𝑓 (𝑢) −

𝑤
0
𝑢
0

𝑤2
𝑧
2
.

(38)

Here 𝑓(𝑢) = 𝑤
0
/(1 + 𝑢

2
) − 𝛼(𝑏 − 𝑢). Recall the assumption

that 𝑏 < 2√1 + 𝑢
2

0
− 𝑢
0
; then

(𝑢 − 𝑢
0
) (𝑢
0
𝑢 − 1) 𝑓 (𝑢) ≤ 0. (39)

Therefore, 𝑑𝑉/𝑑𝑠 is always nonpositive in Ψ. Moreover,
𝑑𝑉/𝑑𝑠 = 0 if and only if 𝑧 = 0, 𝑢 = 𝑢

0
, and the

largest invariant subset of this segment is the single point
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(𝑢
0
, 𝑤
0
, 0). By LaSalle’s invariance principle, it follows that

𝑦(𝑠) → (𝑢
0
, 𝑤
0
, 0) as 𝑠 → +∞, which completes the proof

of Theorem 2.
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