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There are two different approaches on how to formulate adjoint numerical model (ANM). Aiming at the disputes arising from the
construction methods of ANM, the differences between nonlinear shallow water equation and its adjoint equation are analyzed;
the hyperbolicity and homogeneity of the adjoint equation are discussed. Then, based on unstructured meshes and finite volume
method, a new adjoint model was advanced by getting numerical model of the adjoint equations directly. Using a gradient check, the
correctness of the adjoint model was verified. The results of twin experiments to invert the bottom friction coefficient (Manning’s
roughness coefficient) indicate that the adjoint model can extract the observation information and produce good quality inversion.

The reason of disputes about construction methods of ANM is also discussed in the paper.

1. Introduction

Numerical simulation becomes an effective tool for the analy-
sis and forecasting in hydrodynamics, hydrology, oceanic and
atmospheric. However, the uncertainties in numerical model,
for example, initial conditions, open boundary conditions,
and physical parameters (wind drag coeflicients, bottom
friction coefficient, and so on), make the underlying problem
of calibration very challenging.

Adjoint data assimilation method (shortened as “adjoint
method” hereafter), based on optimal control theory and 4-
dimensional variational theory, is one of the most effective
data assimilation approaches with extensive applications in
the studies of meteorological and oceanic numerical simula-
tion [1, 2]. It has the advantage of assimilating observations
that are distributed in time and space in the numerical model,
while maintaining dynamical and physical consistency with
the model. The adjoint method is primarily focused on reduc-
ing model errors induced by uncertainties in the model [3-6].

The derivation of adjoint numerical model (ANM) is
one of the essential issues for developing an adjoint data
assimilation system. There are two different approaches on

how to get ANM [7]. The first approach is “adjoint of model,”
that is, getting numerical solution of the forward continuous
equations and then deriving ANM from this numerical
model. The second approach is “adjoint of equation,” that
is, deriving the adjoint equations directly from the forward
continuous equations and then determining the adjoint
numerical model by modeling the adjoint equations.

It is conventionally believed that the first method should
be adopted, so most studies employed the “adjoint of model”
to construct ANM [1, 7, 8]. It has to be stressed out that using
the approach of “adjoint of model” to get ANM from forward
numerical model allows no selection of appropriate numeri-
cal methods according to specific needs, such as the problem
of discontinuous solution. In fact, some studies suggest that
“adjoint of equation” will have similar effectiveness and can
also get appropriate descend gradient [9, 10]. “Adjoint of
equation” avoids the limitations of forward numerical model
and is capable of designing numerical scheme according to
mathematical properties of adjoint equation.

Most adjoint numerical models are based on finite
difference method (FDM). FDM has good computational
performance and coding efficiency. However, the classic FDM


http://dx.doi.org/10.1155/2014/407468

based on rectangular meshes could not approximate bound-
ary accurately in bays and estuaries, which have complex
geometries [11, 12]. To improve the fitting ability of numerical
model on the boundary in bays and estuaries, finite element
method (FEM) based on adaptive meshes was introduced
into adjoint numerical model [13, 14]. However, in FEM the
established algebraic equations are nonlinear and have to be
solved by iteration process [15]. Moreover, computation of the
adjoint method is huge itself: the forward model and adjoint
model would be integrated forward and integrated backward
once, respectively, in each assimilation iteration. So, FEM will
certainly increase the computational cost of the assimilation
greatly.

In fact, the finite volume method (FVM), which has the
merits of FDM and FEM, combines the best attributes of
FDM for simple discrete coding and computational efficiency
and FEM for geometric flexibility. Furthermore, the integral
equations can be solved numerically by flux calculation; the
FVM is better suited to guarantee mass conservation [16].

To develop adjoint numerical model based on FVM,
the properties of equation will be discussed first. Although
some researches used “adjoint of equation” to develop adjoint
model [9, 10, 13], few studies deal with the properties of
adjoint equation, such as hyperbolicity and homogeneity of
the adjoint equation. In addition, What are the reasons that
FVM can be used to solve adjoint equations? If the new
adjoint model based on FVM viable? In the study we will
discuss these issues.

This paper is organized as follows. In Section 2, the
adjoint equation of conservative shallow water equation of
Cartesian coordinate was derived, the formula for inversing
bottom friction coeflicient is given, and the differences
between nonlinear shallow water equation and its adjoint
equation are analyzed. In Section 3, properties of adjoint
equation, such as characteristic structure, hyperbolicity, and
homogeneity of flux, are discussed. In Section 4, the forward
model and its adjoint model based on finite volume methods
and unstructured triangular meshes are described in brief.
In Section 4, the correctness of the new adjoint model and
code is verified via the gradient check. Then, in Section 5,
the effects of the adjoint model by assimilating the two
different types of observation are discussed by a series of twin
experiments. Concluding remarks are included in Section 6.

2. Water Shallow Equations and
Their Adjoint Equations

Depth-averaged, nonlinear, conservative shallow water equa-
tions with source terms are selected as the forward equations
in this study:

OH 0(Hu) 0J(Hv)
ot ax oy 0
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where H = h + ( is total water depth; h is static water depth;
{ is water level; u, v is the east and north component of water
flow, respectively; g is gravitational acceleration; f is Coriolis
force; C, = (pgn*VuZ +v*)/H*; p is water body density;
and » is Manning coeficient.

The purpose of adjoint method is to select appropriate
model parameters or initial fields to minimize the distance
between the calculated values and observed values. Thus, the
objective functional is constructed as follows:

(G = %Jjjxyt (61|C - cobsl2 + 62'” - uobs|2 @

+0;|v - vobs|2) dxdydt,

where 6,, 6,, 0; are weight coefficients; {, u, v are numerical
values; and (., Uy Vops are observed values in the assimilate
window where there are observed data; otherwise, they are
equal to numerical value. By means of Lagrange multiplier
method, A, «, f are introduced into (1), respectively, as
Lagrange multiplier. The objective functional is rewritten as
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There must be V;L = 0 while the function has extreme
value. Utilize (6¢,8u,8v) = 0 on the boundary and initial
fields of forward process {ly, = uly, = vy, = 0, and let
Mr = alp = Bl = 0be the initial field. Thus, the adjoint
equation is obtained as
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ot 0x Jy
ou ov
=A 0,
(ax a}’) + |C Cobsl



Abstract and Applied Analysis

OH« . 0 (HA + Hau) N 0(Hav)
ot Ox dy
., 0C Gy
—Aax+H ax+Hﬁ "t Ha I
+HBf +0, |u - uobs| ,
OHB 0(HPu) 0(HA+Hpv)
+ +
ot 0x dy

8{ C,
Ho— + H3— + HB—
ay ! ay St /3 ﬁH

- Haf +0, |v— vobs|.

(4)
And the formula for inversing bottom friction coeflicient is
1 Vu® +
D! :Dk—w—ﬂj (aHu + fHv) =——— AL ,
T xyt H4/3
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where D = »” is the bottom friction coefficient, w € [0,1],
and k is the times of assimilation.

The most significant difference between shallow water
equation and its adjoint equation is that shallow water
equations are forward integration, while adjoint equations
are backward integration, so shallow water equations are
often called forward equations and adjoint equations are
often called backward equations. In addition, shallow water
equations are forced by gravity term, bottom friction term,
and other external forces; the variables and terms in shallow
water equations have physical meanings. However adjoint
equations are derived from forward equations and driven by
the difference between observed values and numerical values.

3. Properties of Adjoint Equation

3.1 Characteristic Structure of Adjoint Equation. The adjoint
equations can be rewritten as

OB M 5= (6)
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f* =M+ gHa, HA + Hau, H[)’u]T,
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Jacobian matrices of f*, g* are
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Thus, if ¢ = \/gH, then the eigenvalues of A*are A 4., = u—c,
Agy =, and A gy = u +c.

Then, corresponding eigenvectors are Wy«; = p,q[1, —c/
901", Way = p[0,0,1]", and W3 = py5[1,¢/9,0]",
where ., Y,5, 4,3 are constants. And left eigenvectors are
W}Lx*l = uy[1,-¢/H, 0], W/la*z = yp[0,0,1], and W}A*3 =
ps[1,¢/H, 0], where y;, py,, py5 are constants.

Eigenvalues of B* are Ay = v—c, Ay = v,and A5 =
v + c. Thus, the eigenvalues (right) of B* can be obtained as
Wy, = v,[1,0,—¢/g]", Wgey = 9,,[0,0,1]7, and Wy, =
v,5[1,0, (c/ g)]T, where v,, 7,,, 7,5 are constants. Left eigen-
vectors of B* are Wllg*1 = v,[1,0,-c/H], Wllg,f2 = v,[0,1,0],
and Wllgf,3 = v5[1,0,c/H], where v}, v, v}; are constants.

3.2. Hyperbolicity of Adjoint Equation. Let C* matrix be
the linear combination of Jacobian matrices A* and B",

N uw;+vw, g, gw,
c" = [ Hw, uwi+vw, 0 , Wy, w, are real parameters,
Huw, 0 Uw, +vw,
and \/w? + w3 > 0. Thus,

oU*
)
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Let ¢ = \/gH, and the eigenvalues of C* are

Ay = uw; + vw, - clw|, A, = uw; + vw,, 10)

Ay = uw, + vw, + ¢ lwl.

According to the definition of hyperbolic equation, we
have the following.

(1) For w # 0, all eigenvalues of C* are real numbers;
that is, there are n real eigenvalues. Thus, the adjoint
equations are hyperbolic equations.

(2) When H > 0, that is, when ¢ # 0, the eigenvalues
of C* do not equal each other. Then the adjoint
equations are strict hyperbolic equations.

3.3. Homogeneity of Flux. According to the expressions of A*,
B*,U", f*,and g*, we have

A'U" = f7, B'U" =g". (11)

This means that f*(U"), g"(U") in adjoint equations
meet the requirements of homogeneity property, so that the
adjoint equation can be used to construct flux vector splitting
directly.



4. Finite Volume Scheme of Adjoint Equation

In the section, the FVM is used to solve the forward equations
and their adjoint equations, and the computational control
volumes are based on the same unstructured triangular
meshes.

As regards the forward equations, a lot of discontinuity
capture methods are used to solve the shallow water equa-
tions, including the cases with strong discontinuity, such as
tidal bore [15]. In this study, the numerical flux is evaluated by
Roe’s scheme [17, 18] and the cell variables are reconstructed
by the piecewise linear model [19]. For the sake of brevity, we
do not describe them again.

It has been proved that adjoint equations are hyperbolic
equations in Section 3.2. A significant feature of hyperbolic
equations is discontinuity of their solution. Therefore, we
used the discontinuity capture methods which are used to
solve the shallow water equations to solve adjoint equations.

Using FVM based on unstructured meshes, computa-
tional domain is performed on triangular element and the

variable is set at the center of each element. Let F = (f*, g")
be the numerical flux at interfaces of control volumes; the
finite volume scheme of adjoint equations can be formulated
as follows:

- — At 3k —x
U, =U;, - =) F, A+S At (12)

Qi j=1

where €); is the area of iy, control volume, Al; is the length of

the jy, side of the 7, control volume, and 6; , gi* is the mean
value of U;", S/ on the control volume Q.

The adjoint variables at the two sides of control volume
boundary are considered as different values (U, Uy). The
variables are set at the center of grid element, and Uz R U; are
reconstructed with piecewise constant approximation. The
numerical flux of adjoint equations based on Roe’s scheme
can be written as

% 1 % * * ¥
F* = 3 [F (Ui)L) +F (Ui,R) - 14] (Ui,R - Ui,L)] ’ (13)
where |A| = R|A| L.

According to the derivation in Section 3.1, in above
equation,

[un, +vn,  gn, gn,
A= Hn,  un,+vn, 0 ,
| Hn, 0 un, +vn,
1 0 1 L _Cn ey
eng ocny H7 Hn
R=| gun 7 97|, L=|0 2n, 2n, |,
e, L AL ]
L g7 " g7 H% HwJ
—'unx +vn, — cn| 0 0
|A| = 0 'unx + vny’ 0
L 0 0 |unx+vny+cn'

(14)
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FIGURE 1: Triangular element.
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FIGURE 2: Mesh setup of generalized estuary.

Using the Green formula, the gradient terms in the
adjoint equation source terms (S*) can be approximately
computed as

L (ua + ub) (yb B ya)
Sabc 2

n

Q)lQJ
EEES

+ (le + uc) (yc B )/b) + (uc + ua) (ya B yc)
2 2 '

(15)

where a, b, ¢ are the centers of the neighbor cells, respectively
(Figure 1), and S, is the area of triangle Aabc. For du/dy,
0v/0x, 0v/dy, 0(/ox, O(/dy, they can be approximately
computed similarly to du/0x.

5. Verification of the Adjoint Model
Based on FVM

In this section, we perform data assimilation experiments to
verify the correctness and to discuss the calculation efficiency
of the adjoint model in tidal bore estuary. The domain is
a generalized estuary, the length is 20km, the width at
upstream is 2km, the width of estuary is 10 km, and the
water depth is 10 meters. The flow is calculated on a mesh of
unstructured triangle total of 588 nodes and 1064 cells. The
minimum side of the grid is about 100 meters (Figure 2).

In the numerical experiments, the gravitation constant
is taken as 9.8 m/s; the initial velocity and the free surface
elevation above the still water level are set to be zero as
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TaBLE I: ®(«) and Log,,|®(«) — 1| corresponding to different disturbance a.
o 107" 1072 107 107 107 107°° 1077 107° 107° 107" 107" 1072
DO(a) 0.7981  0.9776  0.9977  0.9997 0.9999  0.9999 0.9999 0.9999 0.9999 0.9997 0.9968  0.9913
Log,, |®(a) —1] -0.695 -1.650 —2.645 —3.634 —-4.546 5218 -5238 5189 -4.701 -3.575 -2.504 -2.061

the initial conditions. The time steps of the forward model
and the adjoint model are both 40 seconds. Tidal component
M, at the east open boundary of estuary is given with
amplitude of 2 meters. The absorbing extrapolation boundary
condition for upstream is used, and the reflection boundary
condition is used for solid wall boundary.

The forward model is integrated five period. When flow
propagates to the straight channel, the tidal bore is formed.
As discussed in [20], the tidal height reaches 3 meters within
ashort period (tidal bore) 9 kilometers away from the estuary.

For adjoint data assimilation, descent gradient of cost
function is obtained by the calculation of ANM. Thus, the
correctness of the adjoint model and code should be verified,
which can be performed via a gradient check [14, 21]; that is,
the quantity

L(X+ah)-L(X)
@ = = VLX)

(16)

is considered and it is verified that it is of order 1 +O(«). L(X)
is the cost function at a general point X (in the study, it is
bottom friction coefficient), VL(X) is the computed gradient,
« is a disturbance quantity, and 4 is an arbitrary unit vector
(such as h = VL|VL|™).

Table 1 shows typical values of ®(«) and Log, ,|®(«) - 1|
for a sequence of decreasing values of «. Clearly, ®(«) is
1 + O(«). Figure 3 is the curve of ®(«) and Log,,|®(«x) - 1|
varying with disturbance a. It can be seen that ®(«) has I-
order accuracy and the curve of Log, ,|®(«) — 1| varying with
a also shows an obvious V-shape, also as expected in literature
[14]. Thus, it can thus be concluded, at least for this model

problem setup, that the new ANM based on FVM and Roe’s
scheme is correct and feasible.

6. Assimilation Effect in Generalized Tidal
Bore Estuary

In this section, In order to discuss and display the perfor-
mance of assimilation of the adjoint model in generalized
tidal bore estuary, we perform “twin experiments” to invert
Manning’s roughness coeflicient by assimilating the observa-
tion of water level or velocity; the observed values are four
kinds: water level or velocity at all the cells, at cells with odd
numbers (half of the grids), at cells with the number ending
with 3 (1/10 of the grids), and at the four cells (3 km, 0), (8 km,
0), (13km, 0), and (18 km, 0). The domain and experiment
setup are the same as in Section 5.
Process for the twin experiments is as follows.

(1) Given true bottom friction coefficient (0.02), calculate
forward model 5 periods and then save water level and
current velocity of last periods as “observed value.”

(2) Given the initial or calibrated bottom friction coeffi-
cient, calculate forward model 5 periodic and calcu-
late cost function based on the calculated value of the
last periodic and “observed value”” If the cost function
satisfies the specified termination conditions, then the
assimilation process ends; otherwise, proceed to the
next procedure.

(3) Calculate the ANM and calibrate bottom friction
coefficient. Then go back to procedure (2) to continue
assimilation.



TABLE 2: Manning’s roughness coefficient (n) inverse results of
assimilating different quantities of water level data.

Test Data Initial Inversed Ite.ration
values value times

1 All cells 0.010000 0.020001 21

2 One-half of all cells 0.010000 0.019998 32

3 One-tenth ofall cells  0.010000  0.019995 39

4 Four cells 0.015000 0.019991 51

TaBLE 3: Different case of Manning’s roughness coeflicient inver-
sion.

Initial Inversed Iteration
Case Data .
values value times
1 All cells 0.015000 0.019977 29
2 One-half of all cells 0.015000  0.020045 37
3 One-tenth of all cells  0.015000  0.019964 52
4 Four cells 0.017000 0.019959 73

6.1. Assimilate Different Quantities of Water Level Data. In
this part, Manning’s roughness coefficient is inverted by
assimilating different quantities of water level data.

The initial values and inverted results for the four cases
are given in Table 2. It can be seen from Table 2 that the
assimilation algorithm converges to the true value (0.02)
when initial values are given as 0.01 in the four tests.
It also can be found that when more observations were
assimilated, the assimilation algorithm conversed faster. The
closest result to the true value with minimum assimilation
times (21) is obtained, when assimilating water level at all
cells. Satisfactory results are also obtained when assimilating
water level data at only four cells, though the assimilation
times (51) are greater. When the initial values of 0.02, 0.05,
and 0.15 are given, similar results are also obtained.

It should be pointed out that the adjoint assimilation
algorithm is quite sensitive to initial values when assimilating
water level data at only four cells. In this case, the initial
values should near to the true value, or the algorithm does
not converge.

6.2. Assimilate Different Quantities of Current Velocity
Observed Data. Assimilating the observation of current
velocity, if we let the initial guesses drag coefficient equal to
the value which used in assimilating the observation of water
level, the assimilation process cannot converse. When we let
the initial guesses drag coeflicient near to the true value, it
works. By assimilating the observation of current velocity at
all cells, we let the initial guess coeflicient be 0.015; after 29
assimilations, we get the inverted result to be 0.019977. At one-
half of all cells, the initial guess is 0.015; after 37 assimilations,
the inverted result is 0.00045. At one-tenth of all cells, the
initial guess is 0.0015; after 52 assimilations, the inverted
result is 0.019964. At four cells, we let it be 0.017; after 73
assimilations, we get the inverted result to be 0.019959. The
initial values and inverted results for the four cases are given
in Table 3.
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FIGURE 4: The first fifteen iterations of the cost function.

Figure 4 shows the first fifteen iterations of the cost func-
tion with assimilating water level observed value at all cells
(real line) and with assimilating current velocity observed
value at all cells (dashed), respectively. It can be seen that
the performance with assimilating the two types of observed
value behaves differently. When assimilating current velocity,
the cost function decline fast, but its convergence speed is
slow; When water level was assimilated, the cost function
convergence to minimum value smoothly. The phenomena
may result in the fact that the observation of current velocity
is more sensitive than the water level for the coefficient.
So when current velocity was assimilated, the cost function
responded more quickly; also because of this, it is hard to
converge. The results suggest that the two types of observation
should be assimilated by a suitable balance.

7. Conclusions and Outlook

This study gives a detailed analysis and summary of the
properties of adjoint equation and analyzes the characteristic
structure of adjoint equation, hyperbolicity of equation,
equation homogeneity, and the splitting characteristic of
Jacobian matrix. It has been proven that the adjoint equation
belongs to hyperbolic equation and demonstrated that the
attention should be paid to the solution discontinuity of
hyperbolic equations when constructing adjoint numerical
model. We also demonstrate the homogeneity of the adjoint
equation and demonstrate that ANM in flux vector splitting
can be constructed directly. Based on the theoretical analysis,
we verify the accuracy and assimilation effect of ANM
constructed by finite volume scheme. Regarding the disputes
arising from two different construction methods of ANMs,
we believe that it is associated with the design and selection
of numerical algorithm, which significantly influence the
accuracy and validity of ANM. Thus, theoretical analysis on
adjoint equation should be carried out before developing
ANMs. However, this study is only a preliminary research
on adjoint equation theory. Further researches on issues
related to adjoint equation are required, including the basic
properties of adjoint equation solutions, relation of adjoint
equation, and certain mathematical and physical equations as
well as physical meaning of adjoint equation. The clarification
of these problems may provide necessary guidance for the
construction of reasonable adjoint numerical model.
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The “twin experiments” of generalized tidal bore estuary
to invert Mannings roughness coefficient show that the
spatial distribution of the bottom friction coefficient will
influence the precision of the inversion; plenty of observation
data can improve the accuracy of the inversion. The results
also indicate that the two types of observation should be
assimilated in a suitable balance
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