
Research Article
Grid-PPPS: A Skyline Method for Efficiently Handling Top-𝑘
Queries in Internet of Things

Sun-Young Ihm,1 Aziz Nasridinov,2 and Young-Ho Park1

1 Department of Multimedia Sciences, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu,
Seoul 140-742, Republic of Korea

2 School of Computer Engineering, Dongguk University at Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk 780-714, Republic of Korea

Correspondence should be addressed to Young-Ho Park; yhpark@sm.ac.kr

Received 22 January 2014; Accepted 7 April 2014; Published 8 May 2014

Academic Editor: Young-Sik Jeong

Copyright © 2014 Sun-Young Ihm et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A rapid development in wireless communication and radio frequency technology has enabled the Internet of Things (IoT) to
enter every aspect of our life. However, as more and more sensors get connected to the Internet, they generate huge amounts
of data. Thus, widespread deployment of IoT requires development of solutions for analyzing the potentially huge amounts of
data they generate. A top-𝑘 query processing can be applied to facilitate this task. The top-𝑘 queries retrieve 𝑘 tuples with the
lowest or the highest scores among all of the tuples in the database.There are manymethods to answer top-𝑘 queries, where skyline
methods are efficient when considering all attribute values of tuples.The representative skylinemethods are soft-filter-skyline (SFS)
algorithm, angle-based space partitioning (ABSP), and plane-project-parallel-skyline (PPPS). Among them, PPPS improves ABSP
by partitioning data space into a number of spaces using hyperplane projection. However, PPPS has a high index building time
in high-dimensional databases. In this paper, we propose a new skyline method (called Grid-PPPS) for efficiently handling top-𝑘
queries in IoT applications. The proposed method first performs grid-based partitioning on data space and then partitions it once
again using hyperplane projection. Experimental results show that our method improves the index building time compared to the
existing state-of-the-art methods.

1. Introduction

A rapid development in wireless communication and radio
frequency technology has enabled the Internet of Things
(IoT) to enter every aspect of our life. The IoT is part of the
internet of the future and will comprise billions of intelligent
communicating “things” which will have sensing, actuating,
and data processing capabilities [1]. For example, the things
in IoT can be smart devices in home or home appliances such
as refrigerator, washing machine, and air conditioner, which
have controllable devices. Restaurants, hotels, and countries
can be also considered as the things in IoT, since they
are connected and communicate with each other. However,
as more and more sensors get connected to the Internet,
they generate enormous amounts of data. Thus, widespread
deployment of IoT requires development of solutions for
analyzing the potentially huge amounts of data they generate

[2–4]. A top-𝑘 query processing can be applied to facilitate
this task.

The top-𝑘 query finds 𝑘 tuples with the lowest or the
highest scores among all of the input tuples. When a database
is large, it may take long computing time to find a complete
answer to a query. Most users, however, are interested in
looking at just a few top results, which are ranked by a
small set of attribute values, and they want to see the results
immediately after they issue the query [5]. We can apply this
notion to find the top-𝑘 results in huge amounts of data in
IoT applications. Example 1 presents the scenario to find the
top-𝑘 results in IoT applications.

Example 1. Consider a user John, who wants to have a dinner
in an Italian restaurant. He defines the following criteria
for the search: the distance of restaurant from his home
should be less than 800 meters and price should be less than

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 401618, 10 pages
http://dx.doi.org/10.1155/2014/401618

http://dx.doi.org/10.1155/2014/401618

2 Journal of Applied Mathematics

Distance

Pr
ic

e

200
0

0 400 600 800

20

40

60

80

100 A

B

C

D

E
F

G

H

I
J

K

(a) Data of Example 1

Distance

Pr
ic

e

200
0

0 400 600 800

20

40

60

80

100 A

B

C

D

E
F

G

H

I
J

K

(b) Skyline of Example 1

Figure 1: Graphical representation of data and skyline.

Table 1: The list of restaurants in Example 1.

Number Name Distance (100m) Price ($10) Score
A Mago 1.0 11.0 No score
B Little Pasta 2.0 8.0 5.6
C La Tavola 3.5 7.0 5.6
D Olive Garden 4.0 4.0 4.0
E Alto 5.0 2.0 3.2
F Melrose 8.8 1.0 No score
G Morton House 9.0 3.0 No score
H Applebee’s 6.0 6.0 6.0
I Boulevard 4.0 9.0 No score
J IHOP 5.3 8.5 No score
K Shadow Brook 7.6 7.0 7.24

85US Dollars. In order to find a restaurant that best suites
his interest, John makes a scoring function 𝑓 as 𝑓(𝑡) = 0.4
∗distance + 0.6 ∗price, where 𝑡 is the tuple of database. Here,
we can think of the restaurant as a thing in IoT. All restaurants
are connected to the Internet, which forms the network of
IoT. Finding the top-𝑘 results among a large amount of
restaurants could save John’s time. The query shown below
is based on the PostgreSQL syntax.

SELECT ∗
FROM Restaurant 𝑅
WHERE 𝑅.distance <8.0 AND 𝑅.price <8.5
ORDER BY 𝑓(𝑡)
The list of restaurants and their scores are shown in

Table 1. These restaurants can be represented in two-dimen-
sional space as shown in Figure 1(a). The Alto, E, is top-1
answer to the query with a score of 3.2 andOlive Garden, D, is
top-2 answer to the querywith a score of 4.0. Since restaurants

A, F, G, I, and J have higher values for distance and price, they
do not satisfy the requirements provided by John. Thus, the
scores for these restaurants are not calculated.

To answer the top-𝑘 queries efficiently, building an index
by accessing the subset of database is needed. The skyline
methods are representative methods for answering the top-𝑘
queries by constructing skyline as an index. These methods
express data tuples as objects in a 𝑑-dimensional space
and then construct a skyline. Here, 𝑑 is the number of
attributes of a database. The skyline methods are efficient for
queries in a database with a large number of attributes and
data. In Figure 1(b), the rectangular black line, composed
of black points, represents the skyline. The skyline points
do not dominate each other. We can answer top-𝑘 queries
only by reading the skyline points, since the skyline can be
considered as an index.The soft-filter-skyline (SFS) algorithm
[6], which is the state-of-the-art method, presorts the objects
by calculating entropy value of object. The angle-based space
partitioning (ABSP) [7] and plane-project-parallel-skyline
(PPPS) [8] partition data space into a number of subregions
in order to reduce the computing time. PPPS improves ABSP
by partitioning data space into a number of spaces using
hyperplane projection. However, PPPS has a high index
building time in high-dimensional databases.

In this paper, we propose a new skyline method for
efficiently handling top-𝑘 queries in IoT applications. This
paper focuses on the effectiveness of grid-based partitioning.
More precisely, the contributions we make in this paper are
as follows.

(i) We propose a new skylinemethod (calledGrid-PPPS)
for efficiently handling top-𝑘 queries in IoT applica-
tions.The proposedmethod first performs grid-based
partitioning on data space and then partitions it once

Journal of Applied Mathematics 3

again using hyperplane projection. This reduces the
time complexity of the PPPS.

(ii) We show the performance advantages of the Grid-
PPPS through the comparison of the index building
time and number of dominating objects compared to
PPPS.

The rest of this paper is organized as follows. Section 2
describes existing work related to this paper. Section 3
presents the proposedmethod for computing Grid-PPPS and
Section 4 demonstrates the results of performance evaluation.
Section 5 summarizes and concludes the paper.

2. Related Work

In this section, we discuss the existing literature. In Sec-
tion 2.1, we review data management solutions in IoT, and, in
Section 2.2, we explain the index building methods for top-𝑘
queries.

2.1. Data Management Methods in IoT. Generally speaking,
all things on the IoT may generate a huge amount of data
that contains different kinds of useful information. However,
how to handle such big data and how to retrieve the valuable
information have become hot research topic in recent years.
Several index buildingmethods for handlingmassive amount
of IoTdata are proposed.Ma et al. [9] proposed an update and
query efficient index framework (UQE-Index) based on key-
value store that can support both multidimensional query
and high insert throughput. In order to effectively reduce the
index update times and decrease the index maintenance cost,
the authors proposed a dynamic data partition strategy that
can make sure that the data is evenly distributed into each
region in HBase and the data that is close in time and space
dimension is usually stored in the same regions.

In order to address the problem of high dimensionality
in IoT data, Huang et al. [10] proposed dynamic skyline
cube (SKYCUBE) computation to efficiently balance the
computation update and costs in IoT. The authors proposed
an efficient grid-based ADSCIT (algorithm for dynamic
SKYCUBE computation in the Internet of Things) which
consists of two modules: continuous maintenance module
(CMM),which incrementally updates the nonpseudo objects,
and progressive computation module (PCM), which can
rapidly obtain the skyline cube from the updated nonpseudo
objects. In order to integrate the proposed two modules, a
grid-based evaluation method that uses regular grid index is
proposed.

Elkheir et al. [11] surveyed the datamanagement solutions
that are proposed for IoT and proposed a data management
framework that takes into consideration the drawbacks of
existing approaches.The proposed framework adapts a feder-
ated, data and sources centric approach to link diverse things
with their abundance of data to the potential applications
and services. Data mining technologies can also be used to
discover the hidden information in the data of IoT, which
can be used to improve the performance of the system or
to enhance quality of services this new environment can

provide [12]. Tsai et al. [12] surveyed research on how to
connect data mining technologies to the IoT, which include
clustering, classification, and frequent patterns mining tech-
nologies, from a different perspective. The authors also
discuss changes, potentials, open issues, and future trends of
applying data mining to the IoT.

2.2. Index Building Methods for Top-𝑘 Queries. To construct
an index efficiently, skyline and convex hull methods are
representativemethods.Thesemethods construct an index as
a list of layers and consist of objects which are not dominated
by each other. The computing cost of skyline methods is
much lower than that of convex hull methods; however, the
number of objects in each layer of skyline methods is much
larger than that of convex hull methods. Thus, the skyline
methods are mainly used in the applications where insertion,
update, and deletion operations are frequently occurring on
objects. Since such applications need to construct skyline
more frequently, they require small computing time. On the
other hand, objects in convex hull methods are not updated
often.Thus, these methods are used in the applications where
top-𝑘 query processing is performed.This is because a layer in
convex hull methods consists of small number objects, which
results in rapid processing of top-𝑘 queries. In this paper, we
focus on reducing the index construction of skyline in which
data is frequently updated.

2.2.1. Skyline Methods. The skyline methods are useful when
answering top-𝑘 queries by accessing only a subset of the
database. These methods have an advantage of low index
building cost. The skyline operation was first introduced
by Köhler et al. [8] and there have been a number of
variations of it. The data space partitioning technique is used
in many skyline methods for early pruning objects which
are not included in skyline. There are several algorithms for
constructing skyline that apply space partitioning technique.
Grid-based data space partitioning has been commonly used
in distributed and parallel skyline processing [8]. The angle-
based space partitioning approach (ABSP) [7] is proposed
by using hyperspherical coordinates of data objects and
improves grid-based space partitioning. Köhler et al. [8]
proposed a novel approach called PPPS, which reduces the
computing time of ABSP by coordinating the objects using
hyperplane projection.

There are also other algorithms for constructing skyline
and the representative methods are block nested loops (BNL)
[13], SFS [6], and linear elimination sort for skyline (LESS)
[14]. BNL sequentially reads the input relation and saves in
a window 𝑤. When an object 𝑜 is read, it is compared to
objects in 𝑤. If an object in 𝑤 dominates 𝑜, BNL eliminates
𝑜. Otherwise, 𝑜 dominates some objects in 𝑤; these are
deleted from 𝑤 and 𝑜 is added to [13]. The SFS algorithm
[6] improves BNL by presorting the input relation according
to the entropy value of object. LESS is an improvement of
SFS that essentially combines aspects of a number of the
established algorithms [14]. LESS discards some dominating
objects earlier; thus this has the advantage of reducing the
number of pairwise comparisons between the objects than

4 Journal of Applied Mathematics

(a) Approximate skylining step

f

e

a

c

d

g

b
hi

j

(b) Grid-based partitioning step

f

e

a

c

d

g

b h
i

j

(d) Local skylining step

(e) Merging step

f

e

a

c

d

g

b
hi

j

(c) Hyperplane-based partitioning step

f

e

a

c

d

gb

h

i

j

f

e

a

c

d

g
b

h

i

j

X1

X2

O

X1

X2

O
X1

X2

O

X1

X2

O

X1

X2

O

Figure 2: The overall procedure for processing Grid-PPPS in the two-dimensional data space.

Journal of Applied Mathematics 5

f

e

a

c

d

g

b h

i

j
X1

X2

O

(a) Grid-based partitioning in two-dimensional data space

f

e

a

c

d

g

b h

i

j

X1

X2

X3

(b) Grid-based partitioning in three-dimensional data
space

Figure 3: The example of grid-based partitioning.

0
5

10
15
20
25
30
35

10 100 1000

In
de

x
bu

ild
in

g
tim

e (
s)

PPPS
Grid-PPPS

Data size N (K)

(a) Computing time as𝑁 is varied (𝑑 = 8)

PPPS
Grid-PPPS

0

500000

1000000

1500000

2000000

2500000

10 100 1000
Data size N (K)

nD
C

(×
1
,0
0
0
)

(b) nDC as𝑁 is varied (𝑑 = 8)

Figure 4: The comparison of the computing time and nDC as𝑁 is varied related to Experiment 1.

SFS. However, the number of comparisons is still large.There
also has been a growing interest in distributed [15, 16] and
parallel [17, 18] skyline computation lately.

2.2.2. OtherMethods. The convex hull methods construct the
layer of edge objects in a convex hull shape and discard other
objects. The layer size of convex hull methods is smaller than
that of skyline methods; however, the index building time of
convex hull methods is higher than that of skyline methods.
The representative convex hull methods are ONION [19]
and HL-Index [5]. ONION [19] builds convex hull as an
index by constructing a boundary with the edge objects.That
is, the objects of the first layer encircle the other objects.
ONION builds a second layer in the samemanner and finally
constructs a list of layers as a result. HL-Index [5] builds a
convex hull as ONION does and sorts lists additionally for
retrieving top-𝑘 results efficiently.

In order to reduce the index building time of convex hull
methods, there are some methods that combine convex hull
and skyline methods. For example, Ihm et al. [20] proposed
the approximate convex skyline (AppCS) method that con-
structs skyline over the entire objects and then partitions it.
Further, AppCS builds an approximate convex hull in each
partitioned region with virtual objects. Another method that
focuses on reducing index building time of convex hull is
proposed in [21]. The authors proposed a method called
approximate convex hull index (aCH-Index) that computes
the skyline over the entire set of objects, partitions the region
into multiple subregions to reduce the computing time of
convex hull in all origins, and then computes the convex hull
in each subregion.

3. Grid-PPPS

In this section, we explain the proposed methods, Grid-
PPPS. As explained in Section 2.1, the PPPS [8] improves

6 Journal of Applied Mathematics

0.001

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8 9

In
de

x
bu

ild
in

g
tim

e (
s)

SFS
PPPS
Grid-PPPS

Dimension d

(a) Computing time as 𝑑 is varied (𝑁 = 10K)

SFS
PPPS
Grid-PPPS

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8 9

In
de

x
bu

ild
in

g
tim

e (
s)

Dimension d

(b) Computing time as 𝑑 is varied (𝑁 = 100K)

SFS
PPPS
Grid-PPPS

In
de

x
bu

ild
in

g
tim

e (
s)

0.05

1

20

400

8000

2 3 4 5 6 7 8 9
Dimension d

(c) Computing time as 𝑑 is varied (𝑁 = 1000K)

Figure 5: The comparison of the computing time of Grid-PPPS and SFS as 𝑑 and𝑁 are varied related to Experiment 2.

the indexing building time of ABSP [7]. However, PPPS has
a high index building time in high-dimensional databases.
The Grid-PPPS reduces the time complexity of the PPPS.The
Grid-PPPS is constructed by five steps as shown in Figure 2:
(a) approximate skylining step, (b) grid-based partitioning
step, (c) hyperplane-based partitioning step, (d) local skylin-
ing step, and (e) merging step. For the convenience of the
explanation, Figure 2 shows the procedure of processing
Grid-PPPS in two-dimensional region. We explain each step
in detail from Sections 3.1 to 3.5.

3.1. Approximate Skylining Step. In the first step, Grid-PPPS
constructs approximate skyline. This step is shown in Fig-
ure 2(a). Computing the exact skyline of all tuples set 𝑇 can
be expensive, since each tuple should be compared to many
other tuples. However, we can prune several tuples with the
few comparisons. We prune the objects by calculating the
entropy value of each object. We select several tuples, which
have low entropy value, and then make a small set 𝑆 ⊂ 𝑇
with those tuples. By the small set 𝑆, some tuples in 𝑇 are
dominated by 𝑆, and those tuples can be eliminated safely.
Since we pick the tuples according to entropy value, we can

discard more tuples. Finally, we can get approximate skyline.
Importantly, for fixed size 𝑆, computing the approximate
skyline can be performed in a linear time with a single pass
over the dataset [8].

3.2. Grid-Based Partitioning Step. In the major step that
is grid-based partitioning step, Grid-PPPS partitions the
data space into 𝑏 subspaces using grid-based partitioning
technique. A grid is something which is in a pattern of
straight lines that cross over each other, forming squares.
Many applications are using grid-base technique, since it is
simple and has low computing cost [22–24]. The grid-based
partitioning scheme is based on recursively dividing some
dimension of the data space into two parts [7].The computing
time of grid-based partitioning is lower than other parti-
tioning techniques, because grid-based partitioning is simple
and cheap to compute. Thus, we partition objects, which
are obtained from approximate skylining step into 𝑏 spaces
with grid-based partitioning technique. Figure 3(a) shows
the example of grid-based partitioning in two-dimensional
data space, and three-dimensional example is shown in
Figure 3(b).

Journal of Applied Mathematics 7

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

2 3 4 5 6 7 8 9

In
de

x
bu

ild
in

g
tim

e (
s)

PPPS
Grid-PPPS

Dimension d

(a) Computing time as 𝑑 is varied (𝑁 = 10K)

0
1
2
3
4
5
6
7
8

2 3 4 5 6 7 8 9

In
de

x
bu

ild
in

g
tim

e (
s)

PPPS
Grid-PPPS

Dimension d

(b) Computing time as 𝑑 is varied (𝑁 = 100K)

PPPS
Grid-PPPS

0
20
40
60
80

100
120
140
160
180

2 3 4 5 6 7 8 9

In
de

x
bu

ild
in

g
tim

e (
s)

Dimension d

(c) Computing time as 𝑑 is varied (𝑁 = 1000K)

Figure 6: The comparison of the computing time of the Grid-PPPS and PPPS as 𝑑 and𝑁 are varied related to Experiment 2.

3.3. Hyperplane-Based Partitioning Step. In the hyperplane-
based partitioning step, Grid-PPPS partitions space into
𝑐 subspaces using hyperplane-based partitioning, which is
proposed in PPPS [8]. We first calculate the formula of the
hyperplane such as 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑑
= 1. Next, we project

tuples onto the hyperplane, and (1) shows the calculation
of projection. Finally we partition space, which consists of
projected tuples, into 𝑐 subspaces:

(𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑑
) → (𝑥

1
⋅ ⋅ ⋅ 𝑥
𝑑
) ×

1

𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑑

. (1)

3.4. Local Skylining Step. In the local skylining step, Grid-
PPPS computes the local skyline in each subspaceij. We
call local skyline in subspacei as subskylinei and use SFS
algorithm [6] for computing subskyline. For the construction
of local skyline, the dominating calculation, which deter-
mines whether the object is in the skyline or not, should
be computed between two objects. Grid-PPPS filters out the
objects by grid-based partitioning step, and, thus, the number
of dominating calculation decreases.

3.5. Merging Step. In the last step, Grid-PPPS combines the
subskylines in each subspace. We build a layer by merging
the subskylines. SinceGrid-PPPS computes subskyline points

once again, it combines the subskylines and builds a result
layer without losing tuples and overlapping.

4. Performance Evaluation

In this section, we first explain the data and environment in
Section 4.1 and then present the results of experiments in
Section 4.2.

4.1. Experimental Data and Environment. We have imple-
mented the proposed method using C++. We conduct all the
experiments on an Intel i5-760 quad core processor running
at 2.80GHz Linux PC with 16GB of main memory. We use
the uniform dataset for all of our experiment data. We use
10 K, 100K, and 1000K data size. We experiment our data in
two through nine dimensions.

4.2. Result of Experiments. We compare the computing time
and thenDC (number of domination calculation) of theGrid-
PPPS with the existingmethods PPPS [8] and SFS [6].We use
the wall clock time as the measure of the computing time.We
measure the computing time nDC on the synthetic dataset
while varying the data size𝑁 and the dimension 𝑑.

8 Journal of Applied Mathematics

0

5000

10000

15000

20000

25000

30000

35000

2 3 4 5 6 7 8 9

PPPS
Grid-PPPS

Dimension d

nD
C

(×
1
0
0
0
)

(a) nDC as 𝑑 is varied (𝑁 = 10K)

PPPS
Grid-PPPS

0

100000

200000

300000

400000

500000

600000

2 3 4 5 6 7 8 9
Dimension d

nD
C

(×
1
0
0
0
)

(b) nDC as 𝑑 is varied (𝑁 = 100K)

PPPS
Grid-PPPS

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

2 3 4 5 6 7 8 9
Dimension d

nD
C

(×
1
0
0
0
)

(c) nDC as 𝑑 is varied (𝑁 = 1000K)

Figure 7: The comparison of the nDC and 𝑑 and𝑁 are varied related to Experiment 3.

The result of the skyline constructed by Grid-PPPS is
exactly the same as PPPS. Grid-PPPS improves the index
building time of PPPS in large and high-dimensional dataset.
When data has 10 K size and under six attributes, the
index building time of Grid-PPPS is a little higher than
PPPS, because of partitioning step. The number of filtered
tuples in Grid-PPPS is similar to PPPS in the small and
low-dimensional dataset. However, Grid-PPPS constructs an
index much quickly in large and high-dimensional dataset as
shown in experiments.

Experiment 1. Computing time and nDC as data size𝑁 is var-
ied.

Figure 4(a) shows the computing time of Grid-PPPS and
PPPS as𝑁 is varied from 10K to 1000K. The result increases
in log scale as shown in Figure 4. The computing time of
the Grid-PPPS improves by 1.41–1.52 times over the PPPS.
Figure 4(b) shows the nDC of Grid-PPPS and PPPS as 𝑁 is
varied from 10K to 1000K.The nDC of Grid-PPPS improves
1.49–2.00 times over the PPPS.

Experiment 2. Computing time as dimension 𝑑 and data size
𝑁 are varied.

Figures 5(a), 5(b), and 5(c) show the computing time of
Grid-PPPS and PPPS as 𝑑 is varied from 2 to 9 and𝑁 is varied
from 10K to 1000K.The result increases in log scale as shown
in Figure 5. Figure 5(a) shows the computing time of theGrid-
PPPS improves by 0.75–1.52 times over the PPPS as 𝑑 is varied
and 𝑁 is 10 K. Figure 5(b) shows the computing time of the
Grid-PPPS improves by 0.77–1.51 times over the PPPS as 𝑑
is varied and 𝑁 is 100K. Figure 5(c) shows the computing
time of the Grid-PPPS improves by 0.73–1.43 times over the
PPPS as 𝑑 is varied and 𝑁 is 1000K. In order to show the
precise difference between Grid-PPPS and PPPS, we conduct
the experiments shown in Figure 6.

Experiment 3. The nDC as dimension 𝑑 and data size 𝑁 are
varied.

Figures 7(a), 7(b), and 7(c) show the nDC of Grid-PPPS
and PPPS as 𝑑 is varied from 2 to 9 and 𝑁 is varied from
10K to 1000K. The result increases in log scale as shown
in Figure 7. Figure 7(a) shows the nDC of the Grid-PPPS
improves by 1.00–2.01 times over the PPPS as 𝑑 is varied
and 𝑁 is 10 K. Figure 7(b) shows the nDC of the Grid-PPPS
improves by 0.68–1.89 times over the PPPS as 𝑑 is varied
and𝑁 is 100K. Figure 7(c) shows the nDC of the Grid-PPPS

Journal of Applied Mathematics 9

improves by 0.65–1.49 times over the PPPS as 𝑑 is varied and
𝑁 is 1000K.

5. Conclusion

As more and more sensors get connected to the Internet,
the IoT applications generate enormous amounts of data. In
order to solve this problem, in this paper, we have proposed
to use a top-𝑘 query processing to find the best results among
vast amount of data. In order to efficiently handle top-𝑘
queries, we have proposed a new skylinemethod called Grid-
PPPS, which performs grid-based partitioning first on data
space and then partitions it once again using hyperplane
projection.We have compared the proposedmethodwith the
state-of-the-artmethods, such as PPPS and SFS.The results of
experiments demonstrate several times improvement inmost
cases.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by the Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2012003797).

References

[1] C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen,
and D. Georgakopoulos, “Sensor search techniques for sensing
as a service architecture for the internet of things,” IEEE Sensors
Journal, vol. 14, no. 2, pp. 406–420, 2014.

[2] C. Zhu, Q. Zhu, C. Zuzarte, andW.Ma, “Developing a dynamic
materialized view index for efficiently discovering usable views
for progressive queries,” Journal of Information Processing Sys-
tems, vol. 9, no. 4, pp. 511–537, 2013.

[3] Y. Park, K. Whang, B. S. Lee, and W. Han, “Efficient evaluation
of partial match queries for XML documents using information
retrieval techniques,” in Proceedings of the Database Systems for
Advanced Applications (DASFAA ’05), pp. 95–112, April 2005.

[4] R. M. Hwang, S. K. Kim, S. An, and D. W. Park, “The architec-
tural pattern of a highly extensible system for the asynchronous
processing of a large amount of data,” Journal of Information
Processing Systems, vol. 9, no. 4, pp. 511–537, 2013.

[5] J. Heo, J. Cho, and K. Whang, “The hybrid-layer index: a
synergic approach to answering Top-k queries in arbitrary
subspaces,” in Proceedings of the 26th international Conference
on Data Engineering, pp. 445–448, March 2010.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
presorting,” in Proceedings of the 19th International Conference
on Data Engineering, pp. 717–719, March 2003.

[7] A. Vlachou, C. Doulkeridis, and Y. Kotidis, “Angle-based
space partitioning for efficient parallel skyline computation,” in

Proceedings of the 2008 ACMSIGMOD International Conference
on Management of Data, pp. 227–238, June 2008.

[8] H. Köhler, J. Yang, and X. Zhou, “Efficient parallel skyline
processing using hyperplane projections,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management
of data, pp. 85–94, June 2011.

[9] Y. Ma, J. Rao, W. Hu et al., “An efficient index for massive
IOT data in cloud environment,” in Proceedings of the 21st
ACM international conference on Information and knowledge
management (CIKM ’12), pp. 2129–2133, 2012.

[10] Z. Huang, Y. Xiang, D. Wang, and B. Zhang, “Efficient dynamic
SKYCUBEcomputation in the internet of things,” inProceedings
of the International Conference on Computer and Communica-
tion Technologies in Agriculture Engineering (CCTAE ’10), pp.
308–311, June 2010.

[11] M. A. Elkheir, M. Hayajneh, and N. A. Ali, “Data management
for the internet of things: design primitives and solution,”
Sensors, vol. 13, no. 11, pp. 15582–15612, 2013.

[12] C.W. Tsai, C. F. Lai, M. C. Chiang, and L. T. Yang, “Data mining
for internet of things: a survey ,” IEEE Communications Surveys
and Tutorials, vol. 16, no. 1, pp. 77–97, 2014.

[13] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline
operator,” in Proceedings of the 17th International Conference on
Data Engineering, pp. 421–430, April 2001.

[14] P. Godfrey, R. Shipley, and J. Gryz, “Maximal vector computa-
tion in large data sets,” in Proceedings of the 31st International
Conference on Very Large Data Bases, pp. 229–240, September
2005.

[15] K. Hose, C. Lemke, and K.-U. Sattler, “Processing relaxed
skylines in PDMS using distributed data summaries,” in Pro-
ceedings of the 2006 Conference on Information and Knowledge
Management, pp. 425–434, November 2006.

[16] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu, “Efficient skyline
query processing on peer-to-peer networks,” in Proceedings of
the 2007 International Conference on Data Engineering, pp.
1126–1135, April 2007.

[17] A. Cosgaya-Lozano, A. Rau-Chaplin, and N. Zeh, “Parallel
computation of skyline queries,” in Proceedings of the 21st Inter-
national Symposium on High Performance Computing Systems
and Applications, pp. 1–7, May 2007.

[18] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal, and A. E.
Abbadi, “Parallelizing skyline queries for scalable distribution,”
in Proceedings of the 2006 Conference on Extending Database
Technology, pp. 112–130, 2006.

[19] Y. C. Chang, L. Bergman, V. Castelli, C. S. Li, M. L. Lo, and J. R.
Smith, “The onion technique: indexing for linear optimization
queries,” inProceedings of the 2000ACMSIGMOD International
Conference on Management of data, pp. 391–402, 2000.

[20] S. Y. Ihm, K. E. Lee, A. Nasridinov, J. S. Heo, and Y. H.
Park, “Approximate convex skyline: a partitioned layer-based
index for efficient processing top-k queries,” Knowledge-Based
Systems, vol. 61, pp. 13–28, 2014.

[21] S. Y. Ihm, A. Nasridinov, and Y. H. Park, “An efficient index
building algorithm for selection of aggregator node in wireless
sensor networks,” International Journal of Distributed Sensor
Networks, vol. 2014, Article ID 520428, 8 pages, 2014.

[22] J.W. K. Gnanaraj, K. Ezra, and E. B. Rajsingh, “Smart card based
time efficient authentication scheme for global grid computing,”
Human-Centric Computing and Information Sciences, vol. 3, no.
16, pp. 1–14, 2013.

10 Journal of Applied Mathematics

[23] S. Hong and J. Chang, “A new k-NNquery processing algorithm
based on multicasting-based cell expansion in location-based
services,” Journal of Convergence, vol. 4, no. 4, pp. 1–6, 2013.

[24] H. I. Kim, Y. K. Kim, and J. W. Chang, “A grid-based cloaking
area creation scheme for continuous LBS queries in distributed
systems,” Journal of Convergence, vol. 4, no. 1, pp. 23–30, 2013.

