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This paper studies the nonparametric regressive function with missing response data. Three local linear M-estimators with the
robustness of local linear regression smoothers are presented such that they have the same asymptotic normality and consistency.
Then finite-sample performance is examined via simulation studies. Simulations demonstrate that the complete-case data M-
estimator is not superior to the other two local linearM-estimators.

1. Introduction

Local polynomial regression methods, which have advan-
tages over popular kernel methods in terms of the ability
of design adaption and high asymptotic efficiency, have
been demonstrated as effective nonparametric smoothers.
In addition, the local polynomial regression smoothers can
adapt to almost all regression settings and cope very well with
the edge effects. For details, see [1] and references therein.
However, a drawback of these local regression estimators is
lack of robustness. It is well known that𝑀-type of regression
estimators have many desirable robustness properties. As a
result, 𝑀-type of regression estimators is natural candidates.

In fact, some methods such as kernel, local regression,
spline, and orthogonal series methods can estimate nonpara-
metric functions. For an introduction to this subject area,
see [1–3]. Local linear smoother, as an intuitively appealing
method, has become popular in recent years because of its
attractive statistical properties. As is shown in [4–7], local
regression provides many advantages over modified kernel
methods. Consequently, it is reasonable to expect that the
local regression based 𝑀-type estimators carry over those
advantages.

In the present paper, local 𝑀-type regression estimators
are applied to propose three 𝑀-estimators of 𝑚(𝑥) with
missing response data, including the complete-case data

𝑀-estimator, the weighted 𝑀-estimator, and the estimated
weighted 𝑀-estimator, such that these estimators have the
same asymptotic normality and consistency. Finite sample
simulations show that the complete-case data𝑀-estimator is
not superior to the other two local linear 𝑀-estimators.

In the regression analysis setup, the basic inference begins
by considering the random sample

(𝑋
𝑖
, 𝑌
𝑖
, 𝛿
𝑖
) , 𝑖 = 1, 2, . . . , 𝑛, (1)

where the design point 𝑋
𝑖
is observed and

𝛿i = {
0, 𝑌

𝑖
is missing,

1, otherwise.
(2)

Theoretically, this is actually a missing response problem.
Recently, considerable interest in the work on nonparametric
regression analysis with missing data and many methods has
been developed. Cheng (see [8]) employed a kernel regression
imputation approach to define the estimator of the mean
of 𝑌. Hirano et al. (see [9]) defined a weighted estimator
for the response mean when response variable is missing.
Then, Wang et al. (see [10]) developed estimation theory for
semiparametric regression analysis in the presence ofmissing
response. In the last year, Liang [11] and Wang and Sun
[12] discussed the generalized partially linear models with
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missing covariate data and the partially linear models with
missing responses at random, respectively.

To study themissing data (1), theMAR assumptionwould
require that there exists a chance mechanism, denoted by
𝑝(𝑋), such that

𝑃 (𝛿 = 1 | 𝑋, 𝑌) = 𝑃 (𝛿 = 1 | 𝑋) = 𝑝 (𝑋) (3)

holds almost surely. In practice, (3) might be justifiable by the
nature of the experiment when it is legitimate to assume that
the missing of 𝑌 mainly depends on 𝑋.

The paper is organized as follows. Some notations and
preliminary results about three 𝑀-estimators of 𝑚(𝑥) with
missing response data including the local 𝑀-estimator with
the complete-case data, the weighted 𝑀-estimator, and the
estimated weighted 𝑀-estimator are given in Section 2. The
asymptotic normality and consistency of three𝑀-estimators
are then presented in Section 3. In Section 4, simulation stud-
ies give some comparison results of the proposed estimators.
Sketches of the proofs are given in Section 5.

2. Model and Estimators

2.1.TheModels. Thenonparametric regressionmodel that we
will consider for the incomplete data (1) is given by

𝑌
𝑖
= 𝑚 (𝑋

𝑖
) + 𝜀
𝑖 (4)

for 𝑖 = 1, 2, . . . , 𝑛. Here 𝑚(⋅) is the regression function, 𝑋
𝑖

is design point, 𝜀
𝑖

= 𝑌
𝑖
− 𝑚(𝑋

𝑖
) is regression error, and 𝑌

𝑖

is a response variable. The regression error 𝜀
𝑖
is conveniently

assumed to be independent and identically distributed (i.i.d.)
random variable with mean 0 and variance 𝜎

2
∈ (0,∞).

Furthermore, the variance of 𝜀
𝑖
will be assumed to depend

on 𝑋
𝑖
, denoted by 𝜎

2
(𝑋
𝑖
), allowing for heteroscedasticity. To

simplify our preliminary discussion the covariate 𝑋
𝑖
will be

assumed to be real-valued.

2.2. The Local 𝑀-Estimator with the Complete-Case Data.
The local𝑀-estimator with the complete-case data is defined
as the solution of the following problems; that is, find 𝑎 and 𝑏

to minimize
𝑛

∑

𝑖=1

𝜌 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)𝛿
𝑖
, (5)

or to satisfy the local estimation system of equations

Ψ
1𝑐𝑐 (𝑎, 𝑏) =

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)𝛿
𝑖
= 0,

Ψ
2𝑐𝑐 (𝑎, 𝑏)

=

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))

𝑋
𝑖
− 𝑥

ℎ
𝑛

𝐾(
𝑋
𝑖
− 𝑥

ℎ
𝑛

)𝛿
𝑖
= 0,

(6)

where 𝜌(⋅) is a given outlier-resistant function, 𝜓(⋅) is the
derivative of 𝜌(⋅), 𝐾(⋅) is a kernel function, and ℎ

𝑛
is a

sequence of positive numbers tending to zero.

The 𝑀-estimations of 𝑚(𝑥) and 𝑚

(𝑥) are defined as 𝑎

and �̂�, which are the solution to the system of (6). We denote
them by �̂�

𝑀𝑐𝑐
(𝑥) and �̂�



𝑀𝑐𝑐
(𝑥), respectively.

2.3. The Weighted 𝑀-Estimator. If we find 𝑎 and 𝑏 to
minimize

𝑛

∑

𝑖=1

𝜌 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)
, (7)

or to satisfy the local estimation system of equations

Ψ
1𝑐𝑝 (𝑎, 𝑏)

=

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)

= 0,

Ψ
2𝑐𝑝 (𝑎, 𝑏)

=

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))

𝑋
𝑖
− 𝑥

ℎ
𝑛

𝐾(
𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)

= 0,

(8)

then the solutions 𝑎 and 𝑏 are called the weighted 𝑀-
estimator. Furthermore, the solutions of the system of (8) will
be denoted by �̂�

𝑀𝑐𝑝
(𝑥) and �̂�



𝑀𝑐𝑝
(𝑥), respectively.

2.4. The Estimated Weighted 𝑀-Estimator. In practice, the
selection probabilities function 𝑝(𝑥) is usually unknown. To
estimate the selection probabilities, we apply the local linear
smoother to find 𝑎 and 𝑏 such that

𝑛

∑

𝑖=1

[𝛿
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥)]
2
𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

) (9)

is minimized. A straightforward calculation yields

𝑝 (𝑥) =
∑
𝑛

𝑖=1
V
𝑖
𝛿
𝑖

∑
𝑛

𝑗=1
V
𝑗

, (10)

where

V
𝑗
= 𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) [𝑚
𝑛,2

− (𝑋
𝑗
− 𝑥)𝑚

𝑛,1
] ,

𝑚
𝑛,𝑙

=

𝑛

∑

𝑗=1

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (𝑋
𝑗
− 𝑥)
𝑙

, 𝑙 = 0, 1, 2.

(11)

With the estimator 𝑝(𝑥) defined in (10), we can give the
estimated weighted 𝑀-estimator by finding 𝑎 and 𝑏 to
minimize

𝑛

∑

𝑖=1

𝜌 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)
, (12)
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or to satisfy the local estimation system of equations

Ψ
1𝑤𝑝 (𝑎, 𝑏)

=

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))𝐾(

𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)

= 0,

Ψ
2𝑤𝑝 (𝑎, 𝑏)

=

𝑛

∑

𝑖=1

𝜓 (𝑌
𝑖
− 𝑎 − 𝑏 (𝑋

𝑖
− 𝑥))

𝑋
𝑖
− 𝑥

ℎ
𝑛

𝐾(
𝑋
𝑖
− 𝑥

ℎ
𝑛

)
𝛿
𝑖

𝑝 (𝑋
𝑖
)

= 0.

(13)

By �̂�
∗

𝑀
(𝑥) and �̂�

∗

𝑀


(𝑥) denote the solutions 𝑎 and 𝑏 of the

system of (13), respectively.

3. Main Results

In this section, we will present the main results of this paper
to explore the asymptotic distribution and consistencies of
�̂�
𝑀𝑐𝑐

(𝑥), �̂�
𝑀𝑐𝑝

(𝑥), and �̂�
∗

𝑀
(𝑥). The following conditions will

be used in the rest of this section.

(1) The regression function𝑚(⋅) has a continuous second
derivative at the given point 𝑥 and 𝑚


(𝑥) is continu-

ous and bounded on support field 𝐷.
(2) The sequence of bandwidths ℎ

𝑛
tends to zero such that

𝑛ℎ
𝑛

→ +∞.
(3) The design density 𝑓(⋅) is continuous at the given

point 𝑥 and 𝑓(𝑥) > 0.
(4) The kernel function 𝐾(⋅) is a continuous probability

density function with bounded support field [−1, 1].
(5) 𝐸[𝜓(𝜀) | 𝑋 = 𝑥] = 0 with 𝜀 = 𝑌 − 𝑚(𝑋).
(6) The function 𝜓(⋅) is continuous and has a derivative

𝜓

(⋅). Further, assume that 𝜓

𝜀
(𝑥) = 𝐸[𝜓


(𝜀) | 𝑋 = 𝑥]

and 𝜓
2

𝜀
(𝑥) = 𝐸[𝜓

2
(𝑥) | 𝑋 = 𝑥] are positive and

continuous at the given point 𝑥 and there exists 𝑟 > 0

such that 𝐸[|𝜓
2+𝑟

(𝜀)| | 𝑋 = 𝑥] is bounded in a
neighborhood of 𝑥.

(7) The function 𝜓

(⋅) satisfies that

𝐸[sup
|𝑧|≤𝛿


𝜓

(𝜀 + 𝑧) − 𝜓


(𝜀)


| 𝑋 = 𝑥] = 𝑜 (1) ,

𝐸 [sup
|𝑧|≤𝛿


𝜓 (𝜀 + 𝑧) − 𝜓 (𝜀) − 𝜓


(𝜀) 𝑧


| 𝑋 = 𝑥] = 𝑜 (𝛿) ,

(14)

as 𝛿 → 0, uniformly in a neighborhood of 𝑥.

In addition, for the convenience of representation and
proof, �̂�

𝑀
(𝑥)will denote three estimators �̂�

𝑀𝑐𝑐
(𝑥), �̂�

𝑀𝑐𝑝
(𝑥),

and �̂�
∗

𝑀
(𝑥), and �̂�



𝑀
(𝑥) will denote the estimators �̂�



𝑀𝑐𝑐
(𝑥),

�̂�


𝑀𝑐𝑝
(𝑥), and �̂�

∗

𝑀


(𝑥). Lastly, assume 𝑠

𝑙
= ∫
+∞

−∞
𝑢
𝑙
𝐾(𝑢)𝑑𝑢 <

∞ for 𝑙 = 0, 1, 2.

The following will present the main theorems such that
the three 𝑀-estimators mentioned above have the same
consistency and asymptotic normality.

Theorem 1. Under conditions (1)–(7),𝑓(⋅), 𝑝

(⋅) are bounded;

furthermore, 𝑓(⋅) also satisfies Lipchitz’s condition; that is,
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| for 𝑐 > 0. If ℎ

𝑛
= 𝑐𝑛
−𝛽

, 0 < 𝛽 < 1,
then

�̂�
𝑀 (𝑥) − 𝑚 (𝑥)

P
→ 0, 𝑛 → ∞,

ℎ
𝑛
(�̂�


𝑀
(𝑥) − 𝑚


(𝑥))

P
→ 0, 𝑛 → ∞.

(15)

Theorem 2. Under conditions (1)–(7), 𝑓(⋅), 𝑝

(⋅) are bounded

and 𝑓(⋅) also satisfies Lipchitz’s condition; that is, |𝑓(𝑥) −

𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| for 𝑐 > 0. If ℎ
𝑛
= 𝑐𝑛
−𝛽

, 0 < 𝛽 < 1, then

√𝑛ℎ
𝑛
(�̂�
𝑀 (𝑥) − 𝑚 (𝑥) − 𝐶

𝑛
)

L
→ 𝑁(0, 𝜋 (𝑥)) , (16)

where 𝐶
𝑛

= (1/2)𝑚

(𝑥)ℎ
2

𝑛
𝑠
2
(1 + 𝑜

𝑝
(1)) and 𝜋(𝑥) =

((𝜓
2

𝜀
(𝑥)/[𝜓

𝜀
(𝑥)]
2
)(1/𝑓(𝑥)𝑝(𝑥))) ∫

+∞

−∞
𝐾
2
(𝑢)𝑑𝑢.

4. Simulation Studies

In this section, we conducted some simulations to better
understand the finite-sample performance of the present
three 𝑀-estimators. Then, we will compare the biases, the
sample mean square errors (MSE), and the sample mean
average square errors (MASE) of three 𝑀-estimators. The
MASE of �̂�(𝑥) is defined by

MASE (ℎ) = 𝐸[𝑁
−1

𝑁

∑

𝑖=1

(�̂� (𝑥
𝑖
) − 𝑚 (𝑥

𝑖
))
2
𝑊(𝑥
𝑖
)] , (17)

where 𝑊(𝑥
𝑖
) = 𝐼

[ℎ,1−ℎ]
(𝑥
𝑖
) and {𝑥

𝑖
, 𝑖 = 1, . . . , 𝑁} is grid

points.
The sample size was set 𝑛 = 500 and the regression model

𝑌
𝑖
= 𝑋
3

𝑖
+ 𝜀
𝑖
was considered, where 𝑋

𝑖
is a uniform (0,1) and

𝜀
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is a random sample from 𝑁(0, 0.1) and

is independent of 𝑋
𝑖
. The kernel function was taken as the

Epanechnikov kernel: 𝐾(𝑢) = 0.75(1 − 𝑢
2
)
+
and 𝜓(𝑥) = 𝑥.

To generate the indicators 𝛿
𝑖
, the function 𝑝(𝑥) was chosen

as 𝑝(𝑥) = 0.8, for all 𝑥 ∈ [0, 1], and the pseudo i.i.d. uniform
random variables 𝑈(0, 1). As a result, each 𝑈

𝑖
∈ 𝑈(0, 1) was

generated. If𝑈
𝑖
≤ 0.8, then 𝛿

𝑖
= 1; otherwise, 𝛿

𝑖
= 0. By these,

500 independent sets of data were generated.
For �̂�

∗

𝑀
(𝑥), �̂�

𝑀𝑐𝑝
(𝑥), and �̂�

𝑀𝑐𝑐
(𝑥), the optimal band-

width ℎopt was obtained by 500 simulations. Let ℎ
𝑖

opt be
the optimal bandwidth of the MAES(ℎ

𝑛
) obtained by the

𝑖th simulation and then compute ℎopt = (1/500)∑
500

𝑖=1
ℎ
𝑖

opt.
When ℎopt = 0.2, we compare the bias, MSE, and MAES of
the present three 𝑀-estimators. The comparison results are
shown in Figures 1–3.

Figure 1 shows the biases of �̂�
∗

𝑀
(𝑥), �̂�

𝑀𝑐𝑝
(𝑥), and

�̂�
𝑀𝑐𝑐

(𝑥). It is easy to see that �̂�
𝑀𝑐𝑐

(𝑥) has considerable bias
while �̂�

𝑀𝑐𝑝
(𝑥) and �̂�

∗

𝑀
(𝑥) are very close in most points.
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Figure 1: Comparison on the biases of three 𝑀-estimators, where
the solid curve, the dashed curve, and the dot curve denote the biases
of �̂�
𝑀𝑐𝑐

(𝑥), �̂�∗
𝑀
(𝑥), and �̂�

∗

𝑀𝑐𝑝
(𝑥), respectively.

Figure 2 demonstrates the MSE of �̂�
∗

𝑀
(𝑥), �̂�

𝑀𝑐𝑝
(𝑥),

and �̂�
𝑀𝑐𝑐

(𝑥). It follows from Figure 2 that �̂�
𝑀𝑐𝑐

(𝑥) has
considerable MSE while �̂�

𝑀𝑐𝑝
(𝑥) and �̂�

∗

𝑀
(𝑥) are very close

in most points.
Figure 3 shows the MASE of �̂�

∗

𝑀
(𝑥), �̂�

𝑀𝑐𝑝
(𝑥), and

�̂�
𝑀𝑐𝑐

(𝑥). We can see that �̂�
𝑀𝑐𝑐

(𝑥) has considerable MMSE
while �̂�

𝑀𝑐𝑝
(𝑥) and �̂�

∗

𝑀
(𝑥) are very close in most points.

The comparison results on the biases, the MSE, and
the MASE of three 𝑀-estimators obtained by Figures 1, 2,
and 3 show that the weighted 𝑀-estimator and the esti-
mated weighted 𝑀-estimator are obviously superior to the
complete-case data𝑀-estimator while there is no appreciable
distinction on the superiority betweenweighted𝑀-estimator
and the estimated weighted 𝑀-estimator.

5. The Proofs of Theorems

The proofs of Theorems 1 and 2 will be given in this section,
respectively. The following lemmas will be needed for our
technical proofs.

Lemma 3. Under conditions (1)–(7) and for any random
sequence {𝜂

𝑗
}
𝑛

𝑗=1
, if max

1≤𝑗≤𝑛
|𝜂
𝑗
| = 𝑜
𝑝
(1) and 𝐾

𝑗
= 𝐾((𝑋

𝑗
−

𝑥)/ℎ
𝑛
), then

1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

= 𝜓
𝜀 (𝑥) ℎ

𝑙+1

𝑛
𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙 (1 + 𝑜

𝑝 (1)) ,

1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) 𝑅 (𝑋

𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)

l

=
1

2
𝜓
𝜀 (𝑥) ℎ

𝑙+3

𝑛
𝑚

(𝑥) 𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙+2 (1 + 𝑜

𝑝 (1)) ,

(18)

where 𝑅(𝑋
𝑗
) = 𝑚(𝑋

𝑗
) − 𝑚(𝑥) − 𝑚


(𝑥)(𝑋

𝑗
− 𝑥).
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Figure 2: Comparison on theMSE of three𝑀-estimators, where the
solid curve, the dashed curve, and the dot curve denote the MSE of
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𝑀
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Figure 3: Comparison on the MASE of three 𝑀-estimators, where
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Proof. Since the second equality can be obtained from the
first one, we only prove the first equality. It is obvious that

1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

=
1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙
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+
1

𝑛

𝑛

∑

𝑗=1

[𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) − 𝜓

(𝜀
𝑗
)] 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

= 𝑇
𝑛,1

+ 𝑇
𝑛,2

,

(19)

where

𝑇
𝑛,1

=
1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

,

𝑇
𝑛,2

=
1

𝑛

𝑛

∑

𝑗=1

[𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) − 𝜓

(𝜀
𝑗
)] 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

.

(20)

Similar to the proof of Lemma 4 in [13], we have

𝐸𝑇
𝑛,1

= 𝐸[

[

1

𝑛

𝑛

∑

𝑗=1

𝐸 (𝜓

(𝜀
𝑗
) | 𝑋
𝑗
) 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙
]

]

= 𝜓
𝜀 (𝑥) ℎ

𝑙+1

𝑛
𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙 (1 + 𝑜

𝑝 (1)) ,

𝑇
𝑛,1

= 𝜓
𝜀 (𝑥) ℎ

𝑙+1

𝑛
𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙 (1 + 𝑜

𝑝 (1)) .

(21)

The following only proves 𝑇
𝑛,2

= 𝑜
𝑝
(ℎ
𝑙+1

𝑛
). Let Δ

𝑛
=

(𝜉
1
, . . . , 𝜉

𝑛
)
𝑇
, 𝐷
𝜂
= {Δ
𝑛
: |𝜉
𝑗
| ≤ 𝜂, ∀𝑗 ≤ 𝑛} for any given 𝜂 > 0

and

𝑉 (Δ
𝑛
) =

1

ℎ𝑙+1
𝑛

𝑛

∑

𝑗=1

[𝜓

(𝜀
𝑗
+ 𝜉
𝑗
) − 𝜓

(𝜀
𝑗
)] 𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

.

(22)

Then we have

sup
𝐷
𝑛

𝑉 (Δ
𝑛
)


≤
1

ℎ𝑙+1
𝑛

𝑛

∑

𝑗=1

sup
𝐷
𝑛


𝜓

(𝜀
𝑗
+ 𝜉
𝑗
) − 𝜓

(𝜀
𝑗
)

𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

.

(23)

By condition (7) and noticing that |𝑋
𝑗
− 𝑥| ≤ ℎ

𝑛
in the above

expressions, it is not difficult to see

𝐸 sup
𝐷
𝑛

𝑉 (Δ
𝑛
)
 ≤ 𝑎
𝜂

1

ℎ𝑙+1
𝑛

𝐸

𝑛

∑

𝑗=1

𝛿
𝑗
𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

≤ 𝑏
𝜂
, (24)

where 𝑎
𝜂
and 𝑏

𝜂
are two sequences of positive numbers,

tending to zero as 𝜂 → 0. Since sup
1≤𝑗≤𝑛

|𝜂
𝑗
| = 𝑜

𝑝
(1), it

follows that 𝑉(Δ̂
𝑛
) = 𝑜

𝑝
(1) with Δ̂

𝑛
= (𝜂
1
, . . . , 𝜂

𝑛
)
𝑇. The

conclusion is obtained coming from the fact that 𝑇
𝑛,2

=

ℎ
𝑙+1

𝑛
𝑉(Δ̂
𝑛
) = 𝑜
𝑝
(ℎ
𝑙+1

𝑛
).

Lemma 4. Under conditions (1)–(7) and for any random
sequence {𝜂

𝑗
}
𝑛

𝑗=1
, if max

1≤𝑗≤𝑛
|𝜂
𝑗
| = 𝑜
𝑝
(1) and 𝐾

𝑗
= 𝐾((𝑋

𝑗
−

𝑥)/ℎ
𝑛
), then

1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
+ 𝜂
𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

= 𝜓
𝜀 (𝑥) ℎ

𝑙+1

𝑛
𝑓 (𝑥) 𝑠𝑙 (1 + 𝑜

𝑝 (1)) ,

1

𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
+ 𝜂
𝑗
) 𝑅 (𝑋

𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾
𝑗
(𝑋
𝑗
− 𝑥)
𝑙

=
1

2
𝜓
𝜀 (𝑥) ℎ

𝑙+3

𝑛
𝑚

(𝑥) 𝑓 (𝑥) 𝑠𝑙+2 (1 + 𝑜

𝑝 (1)) ,

(25)

where 𝑅(𝑋
𝑗
) = 𝑚(𝑋

𝑗
) − 𝑚(𝑥) − 𝑚


(𝑥)(𝑋

𝑗
− 𝑥).

Proof. The proof is similar to the proof of Lemma 3.

Lemma 5. Under conditions (1)–(7), 𝐽
𝑛
/√𝑛ℎ
𝑛
is asymptoti-

cally normal and

𝐽
𝑛

√𝑛ℎ
𝑛

L
→ 𝑁(0,𝐷 (𝑥)) , (26)

where 𝐽
𝑛

= ∑
𝑛

𝑗=1
𝜓(𝜀
𝑗
)𝛿
𝑗
𝐾((𝑋
𝑗

− 𝑥)/ℎ
𝑛
) and 𝐷(𝑥) =

𝜓
2

𝜀
(𝑥)𝑓(𝑥)𝑝(𝑥) ∫

+∞

−∞
𝐾
2
(𝑢)𝑑𝑢.

Proof. Let 𝐽
𝑛

= ∑
𝑛

𝑗=1
𝜓(𝜀
𝑗
)𝐾((𝑋

𝑗
− 𝑥)/ℎ

𝑛
)𝛿
𝑗
≜ ∑
𝑛

𝑗=1
𝜉
𝑗
. Then

𝐽
𝑛
is a sum of i.i.d. random variables with mean zero and

variance 𝐵
2

𝑛
with

𝐵
2

𝑛
= 𝑛𝐸{𝜓

2
(𝜀
1
)𝐾
2
(
𝑋
1
− 𝑥

ℎ
𝑛

)𝛿
2

1
} . (27)

Similar to the proof of Lemma 4 in [13], we can easily obtain
asymptotic expression of 𝐵2

𝑛
, namely,

𝐵
2

𝑛
= 𝑛ℎ
𝑛
𝜓
2

𝜀
(𝑥) 𝑓 (𝑥) 𝑝 (𝑥) ∫

+∞

−∞

𝐾
2
(𝑢) 𝑑𝑢, (28)

and easily verify Lyapunov’s condition (1/𝐵
2+𝑟

𝑛
) ∑
𝑛

𝑗=1

𝐸|𝜉
𝑗
|
2+𝑟

→ 0 via using condition (6). That is, 𝐽
𝑛
is

asymptotically normal. With (28) we have

𝐽
𝑛

√𝑛ℎ
𝑛

L
→ 𝑁(0,𝐷 (𝑥)) . (29)

This completes the proof of this lemma.

Lemma 6. Under conditions (1)–(7), √𝑛ℎ
𝑛
𝐽
𝑛
was asymptoti-

cally normal and

√𝑛ℎ
𝑛
𝐽
𝑛

L
→ 𝑁(0,𝐷

∗
(𝑥)) , (30)

where 𝐽
𝑛
= (1/𝑛ℎ

𝑛
) ∑
𝑛

𝑗=1
𝜓(𝜀
𝑗
)(𝛿
𝑗
/𝑝(𝑋
𝑗
))𝐾((𝑋

𝑗
− 𝑥)/ℎ

𝑛
) and

𝐷
∗
(𝑥) = 𝜓

2

𝜀
(𝑥)(𝑓(𝑥)/𝑝(𝑥)) ∫

+∞

−∞
𝐾
2
(𝑢)𝑑𝑢.
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Proof. The proof is similar to the proof of Lemma 5.

Lemma 7. Under conditions (1)–(7), 𝑓(⋅) and 𝑝

(⋅) are

bounded; furthermore, 𝑓(⋅) also satisfies Lipchitz’s condition;
that is, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| for 𝑐 > 0. If ℎ

𝑛
= 𝑐𝑛
−𝛽

, 0 <

𝛽 < 1, then the following equalities hold:

A 1/𝑝(𝑥) = (1/𝑝(𝑥))(1 + 𝑂
𝑟
(ℎ
𝑛
+ 1/√𝑛ℎ

𝑛
));

B 𝐵
𝑛

= (1/𝑛ℎ
𝑛
) ∑
𝑛

𝑗=1
𝐾((𝑋
𝑗
− 𝑥)/ℎ

𝑛
)𝜀
𝑗
(𝛿
𝑗
/𝑝
2
(𝑋
𝑗
)) ×

(𝑝(𝑋
𝑗
) − 𝑝(𝑋

𝑗
)) = 𝑜

𝑝
(1);

C 𝐺
𝑛
= (1/𝑛ℎ

𝑛
) ∑
𝑛

𝑗=1
𝜓(𝜀
𝑗
)𝐾((𝑋

𝑗
− 𝑥)/ℎ

𝑛
)(𝛿
𝑗
/𝑝
2
(𝑋
𝑗
)) ×

(𝑝(𝑋
𝑗
) − 𝑝(𝑋

𝑗
)) = 𝑜

𝑝
(1).

Proof. We proveA firstly.

A Since

1

𝑝 (𝑥)
=

∑
𝑛

𝑖=1
V
𝑖

∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗

, (31)

equality (31) is changed into

1

𝑝 (𝑥)
=

∑
𝑛

𝑖=1
V
𝑖

(∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗
+ 𝑛−2)

+
𝑛
−2

∑
𝑛

𝑖=1
V
𝑖

{∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗
(∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗
+ 𝑛−2)}

.

(32)

Now, we denote 𝑍
𝑛

= 𝑂
𝑟
(𝑎
𝑛
) if 𝐸|𝑍

𝑛
|
𝑟
= 𝑂(𝑎

𝑟

𝑛
). It is easy to

see that

(i) 𝑂
𝑟
(𝑎
𝑛
) 𝑂
𝑟
(𝑏
𝑛
) = 𝑂
𝑟/2

(𝑎
𝑛
𝑏
𝑛
) ,

(ii) 𝑍
𝑛
= 𝐸 (𝑍

𝑛
) + 𝑂
𝑟
((𝐸

𝑍𝑛 − 𝐸𝑍
𝑛



𝑟
)
1/𝑟

) .

(33)

Then we have with the method of the kernel density estimate
that

𝐸𝑚
𝑛,𝑙

= 𝑛ℎ
𝑙+1

𝑛
𝑓 (𝑥) 𝑠𝑙 (1 + 𝑂 (ℎ

𝑛
)) ,

𝐸𝑠
𝑛,𝑙

= 𝑛ℎ
𝑙+1

𝑛
𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙 (1 + 𝑂 (ℎ

𝑛
)) ,

(34)

where

𝑠
𝑛,𝑙

=

𝑛

∑

𝑗=1

𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (𝑋
𝑗
− 𝑥)
𝑙

, 𝑙 = 0, 1, 2. (35)

By the operations property of (2) for an integer 𝑟 > 1,

1

𝑛ℎ𝑙+1
𝑛

𝑚
𝑛,𝑙

=
1

𝑛ℎ𝑙+1
𝑛

𝐸𝑚
𝑛,𝑙

+ 𝑂
𝑟
(

1

√𝑛ℎ
𝑛

)

= 𝑓 (𝑥) 𝑠𝑙 + 𝑂
𝑟
(ℎ
𝑛
+

1

√𝑛ℎ
𝑛

) ,

(36)

1

𝑛ℎ𝑙+1
𝑛

𝑠
𝑛,𝑙

=
1

𝑛ℎ𝑙+1
𝑛

𝐸𝑠
𝑛,𝑙

+ 𝑂
𝑟
(

1

√𝑛ℎ
𝑛

)

= 𝑓 (𝑥) 𝑝 (𝑥) 𝑠𝑙 + 𝑂
𝑟
(ℎ
𝑛
+

1

√𝑛ℎ
𝑛

) .

(37)

Since 𝑠
0
= 1 and 𝑠

1
= 0,

𝑛

∑

𝑖=1

V
𝑖
= 𝑚
𝑛,0

𝑚
𝑛,2

− 𝑚
2

𝑛,1

= 𝑛
2
ℎ
4

𝑛
𝑓
2
(𝑥) 𝑠2 (1 + 𝑂

𝑟
(ℎ
𝑛
+

1

√𝑛ℎ
𝑛

)) ,

(38)

𝑛

∑

𝑗=1

V
𝑗
𝛿
𝑗
= 𝑠
𝑛,0

𝑚
𝑛,2

− 𝑠
𝑛,1

𝑚
𝑛,1

= 𝑛
2
ℎ
4

𝑛
𝑓
2
(𝑥) 𝑝 (𝑥) 𝑠2 (1 + 𝑂

𝑟
(ℎ
𝑛
+

1

√𝑛ℎ
𝑛

)) .

(39)

Let 𝑊
𝑛

= (∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗
+ 𝑛
−2

)/𝑛
2
ℎ
4

𝑛
, 𝑊 = 𝑝(𝑥)𝑓

2
(𝑥)𝑠
2
. The

following will prove

1

𝑊
𝑛

=
1

𝑊
+ 𝑜
4 (1) . (40)

In fact, (40) holds only if𝐸((𝑊/𝑊
𝑛
) − 1)
4
= 𝑜(1) holds.Then,

𝐸(
𝑊

𝑊
𝑛

− 1)

4

= 𝐸
(𝑊
𝑛
− 𝑊)
4

𝑊4
𝑛

𝐼 (
𝑊𝑛 − 𝑊

 ≤
𝑊

2
)

+ 𝐸
(𝑊
𝑛
− 𝑊)
4

𝑊4
𝑛

𝐼 (
𝑊𝑛 − 𝑊

 >
𝑊

2
)

≤ (
𝑊

2
)

−4

𝐸(𝑊
𝑛
− 𝑊)
4

+ 𝑛
16
𝐸(𝑊
𝑛
− 𝑊)
4
𝐼 (

𝑊𝑛 − 𝑊
 >

𝑊

2
)

≜ 𝐴
𝑛
+ 𝐵
𝑛
,

(41)

where 𝐴
𝑛

= (𝑊/2)
−4

𝐸(𝑊
𝑛

− 𝑊)
4 and 𝐵

𝑛
= 𝑛
16
𝐸(𝑊
𝑛

−

𝑊)
4
𝐼(|𝑊
𝑛

− 𝑊| > 𝑊/2). It follows from (39) and the
definition of 𝑊

𝑛
and 𝑊 that

𝑊
𝑛
− 𝑊 =

∑
𝑛

𝑗=1
V
𝑗
𝛿
𝑗
+ 𝑛
−2

𝑛2ℎ4
𝑛

− 𝑝 (𝑥) 𝑓
2
(𝑥) 𝑠2

= 𝑝 (𝑥) 𝑓
2
(𝑥) 𝑠2𝑂𝑟 (ℎ

𝑛
+

1

√𝑛ℎ
𝑛

) .

(42)

Further, (41) and (42) yield𝐴
𝑛
= 𝑜(1). Again, since𝑊

𝑛
≥ 𝑛
−4,

𝐵
𝑛
≤ 𝑛
16
(
𝑊

2
)

−𝑟

𝐸(𝑊
𝑛
− 𝑊)
𝑟+4

= 𝑂(𝑛
16
(ℎ
𝑛
+

1

√𝑛ℎ
𝑛

)

𝑟+4

) ,

(43)

which indicates 𝐵
𝑛
= 𝑜(1) if 𝑟 is sufficiently large. As a result,

equality (40) holds. We conclude from (38) and (39) that this
completes the proof ofA.
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B Similar to the proof ofTheorem 1 in [4], one can easily
obtain

𝐸 {(𝑝 (𝑋
𝑖
) − 𝑝 (𝑋

𝑖
)) | 𝑋

𝑖
}

=
1

2
ℎ
2

𝑛
𝑝

(𝑋
𝑖
) ∫

+∞

−∞

𝑢
2
𝐾 (𝑢) 𝑑𝑢 {1 + 𝑜

𝑝 (1)}

=
1

2
ℎ
2

𝑛
𝐶
1
(𝑋
𝑖
) {1 + 𝑜

𝑝 (1)} ,

Var {(𝑝 (𝑋
𝑖
) − 𝑝 (𝑋

𝑖
)) | 𝑋

𝑖
}

=
1

𝑛ℎ
𝑛

𝑝 (𝑋
𝑖
) (1 − 𝑝 (𝑋

𝑖
))

𝑓 (𝑋
𝑖
)

∫

+∞

−∞

𝐾
2
(𝑢) 𝑑𝑢 {1 + 𝑜

𝑝 (1)}

=
1

𝑛ℎ
𝑛

𝐶
2
(𝑋
𝑖
) {1 + 𝑜

𝑝 (1)} .

(44)

As a consequence, we have with (44) that

Var𝐵
𝑛

=
1

𝑛2ℎ2
𝑛

Var

×

{

{

{

𝑛

∑

𝑗=1

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
𝑗

𝛿
𝑗

𝑝2 (𝑋
𝑗
)

(𝑝 (𝑋
𝑗
) − 𝑝 (𝑋

𝑗
))

}

}

}

=
1

𝑛2ℎ2
𝑛

𝐸

×

{

{

{

𝑛

∑

𝑗=1

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
𝑗

𝛿
𝑗

𝑝2 (𝑋
𝑗
)

(𝑝 (𝑋
𝑗
) − 𝑝 (𝑋

𝑗
))

}

}

}

2

+ 𝑜
𝑝 (1)

≤
1

𝑛2ℎ2
𝑛

𝐸

{

{

{

𝑛

∑

𝑗=1

𝐾
2
(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
2

𝑗

1

𝑝4 (𝑋
𝑗
)

× 𝐸 [(𝑝 (𝑋
𝑗
) − 𝑝 (𝑋

𝑗
))
2

| 𝑋
𝑗
]

}

}

}

+ 𝑜
𝑝 (1)

=
1

𝑛2ℎ2
𝑛

𝐸

{

{

{

𝑛

∑

𝑗=1

𝐾
2
(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
2

𝑗

1

𝑝4 (𝑋
𝑗
)

× Var (𝑝 (𝑋
1
) − 𝑝 (𝑋

1
) | 𝑋
𝑗
)

}

}

}

+
1

𝑛2ℎ2
𝑛

𝐸

{

{

{

𝑛

∑

𝑗=1

𝐾
2
(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
2

𝑗

1

𝑝4 (𝑋
𝑗
)

× 𝐸
2
((𝑝 (𝑋

𝑗
) − 𝑝 (𝑋j)) | 𝑋

𝑗
)

}

}

}

+ 𝑜
𝑝 (1)

=
1

𝑛3ℎ3
𝑛

𝐸

{

{

{

𝑛

∑

𝑗=1

𝐾
2
(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
2

𝑗

1

𝑝4 (𝑋
𝑗
)

𝐶
2
(𝑋
𝑗
)

}

}

}

× (1 + 𝑜
𝑝 (1))

+
ℎ
2

𝑛

4𝑛2
𝐸

{

{

{

𝑛

∑

𝑗=1

𝐾
2
(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) 𝜀
2

𝑗

1

𝑝4 (𝑋
𝑗
)

𝐶
1
(𝑋
𝑗
)

}

}

}

× (1 + 𝑜
𝑝 (1))

=
1

𝑛2ℎ3
𝑛

𝐸{𝐾
2
(
𝑋
1
− 𝑥

ℎ
𝑛

) 𝜀
2

1

1

𝑝4 (𝑋
1
)
𝐶
2
(𝑋
1
)} (1 + 𝑜

𝑝 (1))

+
ℎ
2

𝑛

4𝑛
𝐸{𝐾
2
(
𝑋
1
− 𝑥

ℎ
𝑛

) 𝜀
2

1

1

𝑝4 (𝑋
1
)
𝐶
1
(𝑋
1
)} (1 + 𝑜

𝑝 (1))

= 𝑜
𝑝 (1) .

(45)

This completes the proof of B.

C The proof is similar to the proof of B.

Lemma 8. Under conditions (1)–(7), if 𝑛ℎ
4

𝑛
→ 0 and 𝑛ℎ

2

𝑛
/

log(ℎ−1
𝑛

) → ∞ when 𝑛 → ∞, then

sup
𝑥∈𝐷



𝑝 (𝑥) − 𝑝 (𝑥) −
1

𝑛ℎ
𝑛
𝑓 (𝑥)

𝑛

∑

𝑗=1

𝜀
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)



= 𝑂
𝑝
{𝑐
𝑛
ℎ
2

𝑛
+ 𝑐
2

𝑛
log1/2 ( 1

ℎ
𝑛

)} ,

(46)

where 𝐷 ⊆ 𝑅 is a compact set, 𝑐
𝑛

= (𝑛ℎ
𝑛
)
−1/2, and 𝑝(𝑥) is the

estimate value of 𝑝(𝑥).

Proof. The same arguments as those ofTheorem 2 in [14] can
yield the proof of this lemma.

Lemma 9. Under conditions (1)–(7), 𝑓(⋅) and 𝑝

(⋅) are

bounded; furthermore, 𝑓(⋅) also satisfies Lipchitz’s condition;
that is, |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| for 𝑐 > 0. If ℎ

𝑛

= 𝑐𝑛
−𝛽

, 0 < 𝛽 < 1, then √𝑛ℎ
𝑛
𝐽
𝑛
was asymptoti-

cally normal and √𝑛ℎ
𝑛
𝐽
𝑛

L
→ 𝑁(0,𝐷

∗
(𝑥)), where 𝐽

𝑛
=

(1/𝑛ℎ
𝑛
) ∑
𝑛

𝑗=1
𝜓(𝜀
𝑗
)𝐾((𝑋

𝑗
− 𝑥)/ℎ

𝑛
)(𝛿
𝑗
/𝑝(𝑋
𝑗
)) and 𝐷

∗
(𝑥) =

𝜓
2

𝜀
(𝑥)(𝑓(𝑥)/𝑝(𝑥)) ∫

+∞

−∞
𝐾
2
(𝑢)𝑑𝑢.

Proof. By using the first equality of Lemmas 7 and 8, we get

𝐽
𝑛
− 𝐽
𝑛

=
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

[

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝜓 (𝜀
𝑗
)𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

−

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝜓 (𝜀
𝑗
)𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)]
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=
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

[𝜓 (𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

𝑝 (𝑋
𝑗
) − 𝑝 (𝑋

𝑗
)

𝑝 (𝑋
𝑗
) 𝑝 (𝑋

𝑗
)

]

=
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

[𝜓 (𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

𝑝 (𝑋
𝑗
) − 𝑝 (𝑋

𝑗
)

𝑝2 (𝑋
𝑗
)

]

× {1 + 𝑜
𝑝 (1)}

= −𝐺
𝑛
{1 + 𝑜

𝑝 (1)} .

(47)

It then follows from the third equality of Lemmas 7 and 6 that
𝐽
𝑛

= 𝐽
𝑛
+ 𝑜
𝑝
(1) and consequently √𝑛ℎ

𝑛
𝐽
𝑛

L
→ 𝑁(0,𝐷

∗
(𝑥)).

This completes the proof of this lemma.

In what follows we present the proofs of Theorems 1 and
2, respectively.

Proof of Theorem 1. The proof can be proved by the following
two cases.

(i) If either �̂�
𝑀

(𝑥) = �̂�
𝑀𝑐𝑐

(𝑥) or �̂�
𝑀

(𝑥) = �̂�
𝑀𝑐𝑝

(𝑥), the
proof of this theorem is similar to the proof of Theorem 1 in
[15].

(ii) If �̂�
𝑀

(𝑥) = �̂�
∗

𝑀
(𝑥), similar to the proof ofTheorem 1

in [15], the proof of this theorem is obtained immediately by
the first equality of Lemmas 7 and 8. It is easy to see from (i)
and (ii) that we complete the proof of this theorem.

Proof of Theorem 2. We can prove the conclusion of this
theorem by the following three cases.

(1) If �̂�
𝑀

(𝑥) = �̂�
𝑀𝑐𝑐

(𝑥), let

𝑅 (𝑋
𝑗
) = 𝑚 (𝑋

𝑗
) − 𝑚 (𝑥) − 𝑚


(𝑥) (𝑋𝑗 − 𝑥) ,

𝜂
𝑗
= 𝑅 (𝑋

𝑗
) − [�̂�

𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥)]

− [�̂�


𝑀𝑐𝑐
(𝑥) − 𝑚


(𝑥)] (𝑋

𝑗
− 𝑥)

= 𝑚 (𝑋
𝑗
) − �̂�

𝑀𝑐𝑐 (𝑥) − �̂�


𝑀𝑐𝑐
(𝑥) (𝑋𝑗 − 𝑥) ,

(48)

where �̂�


𝑀𝑐𝑐
(⋅) is the estimate of 𝑚(⋅). Then

𝜀
𝑗
+ 𝜂
𝑗
= 𝑌
𝑗
− �̂�
𝑀𝑐𝑐 (𝑥) − �̂�



𝑀𝑐𝑐
(𝑥) (𝑋𝑗 − 𝑥) . (49)

Using (6), we get

{𝜓 (𝜀
𝑗
) + 𝜓

(𝜀
𝑗
) 𝜂
𝑗
+ [𝜓 (𝜀

𝑗
+ 𝜂
𝑗
) − 𝜓 (𝜀

𝑗
) − 𝜓

(𝜀
𝑗
) 𝜂
𝑗
]}

× 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) = 0.

(50)

Again,

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝜂
𝑗
𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

=

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝑅 (𝑋

𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

−

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (�̂�
𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥))

−

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (�̂�


𝑀𝑐𝑐
(𝑥) − 𝑚


(𝑥)) (𝑋

𝑗
− 𝑥)

= 𝐼
1
− 𝐼
2
− 𝐼
3
,

(51)

where

𝐼
1
=

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝑅 (𝑋

𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) ,

𝐼
2
=

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (�̂�
𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥)) ,

𝐼
3
=

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

× (�̂�


𝑀𝑐𝑐
(𝑥) − 𝑚


(𝑥)) (𝑋

𝑗
− 𝑥) .

(52)

By Lemma 3, we have that

𝐼
1
=

𝑛ℎ
3

𝑛

2
𝑝 (𝑥) 𝑓 (𝑥) 𝜓𝜀 (𝑥)𝑚


(𝑥) 𝑠2 (1 + 𝑜

𝑝 (1)) ,

𝐼
2
= 𝑛ℎ
𝑛
𝑝 (𝑥) 𝑓 (𝑥) 𝜓𝜀 (𝑥) 𝑠0 (�̂�𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥))

× (1 + 𝑜
𝑝 (1)) ,

(53)

𝐼
3
= 𝑛ℎ
2

𝑛
𝑝 (𝑥) 𝑓 (𝑥) 𝜓𝜀 (𝑥) 𝑠1 (�̂�



𝑀𝑐𝑐
(𝑥) − 𝑚


(𝑥))

× (1 + 𝑜
𝑝 (1)) .

(54)

It follows from the consistency shown in (15) and condition
(7) that
𝑛

∑

j=1
[𝜓 (𝜀
𝑗
+ 𝜂
𝑗
) − 𝜓 (𝜀

𝑗
) − 𝜓

(𝜀
𝑗
) 𝜂
𝑗
] 𝛿
𝑗
𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

= 𝑜
𝑝
(𝐼
2
) .

(55)

Since 𝑠
0
= 1 and 𝑠

1
= 0, we have with (50) and (54) that

𝑛ℎ
𝑛
𝑝 (𝑥) 𝑓 (𝑥) 𝜓𝜀 (𝑥) (�̂�𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥)) (1 + 𝑜

𝑝 (1))

=
𝑛ℎ
3

𝑛

2
𝑝 (𝑥) 𝑓 (𝑥) 𝜓𝜀 (𝑥)𝑚


(𝑥) 𝑠2 (1 + 𝑜

𝑝 (1)) + 𝐽
𝑛
.

(56)
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Therefore,

�̂�
𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥) =

ℎ
2

𝑛
𝑚

(𝑥)

2
𝑠
2
(1 + 𝑜

𝑝 (1))

+
𝐽
𝑛

𝑛ℎ
𝑛
𝜓
𝜀 (𝑥) 𝑓 (𝑥) 𝑝 (𝑥)

(1 + 𝑜
𝑝 (1))

= 𝐶
𝑛
+

𝐽
𝑛

𝑛ℎ
𝑛
𝜓
𝜀 (𝑥) 𝑓 (𝑥) 𝑝 (𝑥)

(1 + 𝑜
𝑝 (1)) .

(57)

By Lemma 5 and Slutsky’s Theorem, we get (16); that is,

√𝑛ℎ
𝑛
(�̂�
𝑀𝑐𝑐 (𝑥) − 𝑚 (𝑥) − 𝐶

𝑛
)

L
→ 𝑁(0, 𝜋 (𝑥)) . (58)

(2) If �̂�
𝑀

(𝑥) = �̂�
𝑀𝑐𝑝

(𝑥), similar to the proof case (1), the
proof can be obtained immediately by Lemmas 4 and 6.

(3) The following will prove the case when �̂�
𝑀

(𝑥) =

�̂�
∗

𝑀
(𝑥). Let

𝑅 (𝑋
𝑗
) = 𝑚 (𝑋

𝑗
) − 𝑚 (𝑥) − 𝑚


(𝑥) (𝑋𝑗 − 𝑥) ,

𝜂
∗

𝑗
= 𝑅 (𝑋

𝑗
) − [�̂�

∗

𝑀
(𝑥) − 𝑚 (𝑥)]

− [�̂�
∗

𝑀


(𝑥) − 𝑚


(𝑥)] (𝑋

𝑗
− 𝑥)

= 𝑚 (𝑋
𝑗
) − �̂�

∗

𝑀
(𝑥) − �̂�

∗

𝑀


(𝑥) (𝑋𝑗 − 𝑥) ,

(59)

where �̂�
∗

𝑀


(⋅) is the estimate of 𝑚(⋅). Then we have

𝜀
𝑗
+ 𝜂
∗

𝑗
= 𝑌
𝑗
− �̂�
∗

𝑀
(𝑥) − �̂�

∗

𝑀


(𝑥) (𝑋𝑗 − 𝑥) . (60)

By (13), one can get

{𝜓 (𝜀
𝑗
) + 𝜓

(𝜀
𝑗
) 𝜂
∗

𝑗
+ [𝜓 (𝜀

𝑗
+ 𝜂
∗

𝑗
) − 𝜓 (𝜀

𝑗
) − 𝜓

(𝜀
𝑗
) 𝜂
∗

𝑗
]}

×

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) = 0.

(61)

It then follows from the first equality of Lemma 7, Lemma 8,
and (61) that

1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝜂
∗

𝑗

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

=
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
) 𝑅 (𝑋

𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

−
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) (�̂�
∗

𝑀
(𝑥) − 𝑚 (𝑥))

−
1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

× (�̂�
∗

𝑀


(𝑥) − 𝑚


(𝑥)) (𝑋

𝑗
− 𝑥) + 𝑜

𝑝 (1)

= 𝐼
1
− 𝐼
2
− 𝐼
3
+ 𝑜
𝑝 (1) ,

(62)

where

𝐼
1
=

1
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𝑛
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𝑗
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𝛿
𝑗
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)

𝐾(

𝑋
𝑗
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𝑛

) ,

𝐼
2
=

1

𝑛ℎ
𝑛

𝑛

∑
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𝜓

(𝜀
𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

× (�̂�
∗

𝑀
(𝑥) − 𝑚 (𝑥)) ,

𝐼
3
=

1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

𝜓

(𝜀
𝑗
)

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

)

× (�̂�
∗

𝑀


(𝑥) − 𝑚


(𝑥)) (𝑋

𝑗
− 𝑥) .

(63)

By Lemma 4, it is easy to see

𝐼
1
=

ℎ
2

𝑛

2
𝑓 (𝑥) 𝜓𝜀 (𝑥)𝑚


(𝑥
0
) 𝑠
2
(1 + 𝑜

𝑝 (1)) , (64)

𝐼
2
= 𝑓 (𝑥) 𝜓𝜀 (𝑥) 𝑠0 (�̂�

∗

𝑀
(𝑥) − 𝑚 (𝑥)) (1 + 𝑜

𝑝 (1)) , (65)

𝐼
3
= ℎ
𝑛
𝑓 (𝑥) 𝜓𝜀 (𝑥) 𝑠1 (�̂�

∗

𝑀


(𝑥) − 𝑚


(𝑥)) (1 + 𝑜

𝑝 (1)) .

(66)

According to the first equality of Lemmas 7 and 8, the
consistency shown in (15), and the condition (7), we have

1

𝑛ℎ
𝑛

𝑛

∑

𝑗=1

[𝜓 (𝜀
𝑗
+ 𝜂
∗

𝑗
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𝑗
) − 𝜓

(𝜀
𝑗
) 𝜂
∗

𝑗
]

×

𝛿
𝑗

𝑝 (𝑋
𝑗
)

𝐾(

𝑋
𝑗
− 𝑥

ℎ
𝑛

) = 𝑜
𝑝
(𝐼
2
) .

(67)

Since 𝑠
0
= 1 and 𝑠

1
= 0, we have with (61) and (65) that

𝑓 (𝑥) 𝜓𝜀 (𝑥) (�̂�
∗

𝑀
(𝑥) − 𝑚 (𝑥)) (1 + 𝑜

𝑝 (1))

=
ℎ
2

𝑛

2
𝑓 (𝑥) 𝜓𝜀 (𝑥)𝑚


(𝑥) 𝑠2 (1 + 𝑜

𝑝 (1)) + 𝐽
𝑛
.

(68)

Therefore,

�̂�
∗

𝑀
(𝑥) − 𝑚 (𝑥) =

ℎ
2

𝑛
𝑚

(𝑥)

2
𝑠
2
(1 + o

𝑝 (1))

+
𝐽
𝑛

𝜓
𝜀 (𝑥) 𝑓 (𝑥) 𝑝 (𝑥)

(1 + 𝑜
𝑝 (1))

= 𝐶
𝑛
+

𝐽
𝑛

𝜓
𝜀 (𝑥) 𝑓 (𝑥) 𝑝 (𝑥)

(1 + 𝑜
𝑝 (1)) .

(69)

By Lemma 9 and Slutsky’s Theorem, we get (16); that is,

√𝑛ℎ
𝑛
(�̂�
∗

𝑀
(𝑥) − 𝑚 (𝑥) − 𝐶

𝑛
)

L
→ 𝑁(0, 𝜋 (𝑥)) . (70)

It is easy to see from cases (1), (2), and (3) that we complete
the proof.
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[10] Q.Wang,O. Linton, andW.Härdle, “Semiparametric regression
analysis with missing response at random,” Journal of the
American Statistical Association, vol. 99, no. 466, pp. 334–345,
2004.

[11] H. Liang, “Generalized partially linear models with missing
covariates,” Journal of Multivariate Analysis, vol. 99, no. 5, pp.
880–895, 2008.

[12] Q.Wang and Z. Sun, “Estimation in partially linearmodels with
missing responses at random,” Journal of Multivariate Analysis,
vol. 98, no. 7, pp. 1470–1493, 2007.

[13] J. Fan and I. Gijbels, “Variable bandwidth and local linear
regression smoothers,”TheAnnals of Statistics, vol. 20, no. 4, pp.
2008–2036, 1992.

[14] R. J. Carroll, J. Fan, J. Gijbels, and M. P. Wand, “Generalized
partially linear single-index models,” Journal of the American
Statistical Association, vol. 92, no. 438, pp. 477–489, 1997.

[15] J. Fan and J. Jiang, “Variable bandwidth and one-step local M-
estimator,” Science in China A, vol. 29, no. 1, pp. 688–702, 1999.


