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The local fractional decompositionmethod is applied to approximate the solutions for Fokker-Planck equations onCantor sets with
local fractional derivative. The obtained results give the present method that is very effective and simple for solving the differential
equations on Cantor set.

1. Introduction

TheFokker-Planck equation [1–16] plays an important role in
describing the system dynamics. For example, the Langevin
approach for microscopic dynamics [1], the dynamics of
energy cascade in turbulence [2], the population dynamics
[3], the chaotic universe dynamics [4], the fatigue crack
growth dynamics [5], the fission dynamics [6], the dynamics
of distributions of heavy quarks [7] and financial returns
[8], the spin relaxation dynamics [9], the electron dynamics
of plasmas and semiconductors [10], the critical dynamics
[11], and the fiber dynamics [12] had been investigated by
using the Fokker-Planck equation (see [13, 14] and the cited
references therein) and its 3 solution was presented by
the different methods. There are some methods for solving
the differential equations, such as Adomian decomposition,
Homotopy perturbation, Variational iteration, Metropolis
Monte Carlo, multiscale finite element and finite difference
methods (see, e.g., [15–20]), and others [21–25].

In recent years, fractional calculus was applied to model
many fractal dynamical systems [26–30]. The fractional
Fokker-Planck equation [26–38], as one of dynamical equa-
tions, has interested many researchers. Its solution was
also investigated in [39–41]. However, the above fractional

Fokker-Planck equation did not describe the nondifferen-
tiable behaviors of dynamical systems because of the limit
of the fractional operators. In order to overcome the above
problems, the local fractional calculus was developed and
applied to the fractal phenomenon in science and engineering
[42–53]. Local fractional Fokker-Planck equation [45], which
was an analog of a diffusion equation with local fractional
derivative, was suggested as follows:

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) =

Γ (1 + 𝛼)

4
𝜒
𝐶
(𝑡)
𝜕
2

𝜕𝑥2
𝑢 (𝑥, 𝑡) , (1)

where the local fractional operator was the Kolwankar-
Gangal local fractional differential operator. In [46], the
Fokker-Planck equation on a Cantor set with local fractional
derivative was presented as follows:

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) = −

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (𝑥, 𝑡) +

𝜕
2𝛼

𝜕𝑥2𝛼
𝑢 (𝑥, 𝑡) , (2)

where the local fractional partial differential operator of order
𝛼 (0 < 𝛼 ≤ 1) was defined as [42–44]

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥
0
, 𝑡) =

Δ
𝛼

(𝑢 (𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
))

(𝑡 − 𝑡
0
)
𝛼

(3)
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with

Δ
𝛼

(𝑢 (𝑥
0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
)) ≅ Γ (1 + 𝛼) [𝑢 (𝑥

0
, 𝑡) − 𝑢 (𝑥

0
, 𝑡
0
)] .

(4)

Analytical and approximate solutions for local fractional
differential equations were presented by different researchers
(see [43, 46–53] and the cited references therein). Applica-
tions of local fractional decomposition method were pre-
sented (see [51–53] and the cited references therein). Our
main purpose of the paper is to apply the local fractional
decomposition method to solve the Fokker-Planck equations
on a Cantor set.

In this paper, Section 2 gives the recent results for local
fractional integral operator. The local fractional decompo-
sition method is analyzed in Section 3. The approximate
solutions are presented in Section 4. Finally, conclusions are
given in Section 5.

2. The Local Fractional Integral Operator

In this section, we introduce the local fractional integral
operator and its recent results.

Definition 1 (see [42, 46–53]). Let the function 𝑓(𝑥) ∈

𝐶
𝛼
(𝑎, 𝑏), if it is valid for

𝑓 (𝑥) − 𝑓 (𝑥0)
 < 𝜀
𝛼

, (5)

where |𝑥 − 𝑥
0
| < 𝛿, for 𝜀 > 0 and 𝜀 ∈ 𝑅.

Definition 2 (see [42, 43, 46–53]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
[𝑎, 𝑏]. The

local fractional integral of𝑓(𝑥) of order𝛼 in the interval [𝑎, 𝑏]
is defined as

𝑎
𝐼
𝑏

(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(6)

where the partitions of the interval [𝑎, 𝑏] are denoted by
(𝑡
𝑗
, 𝑡
𝑗+1
), 𝑗 = 0, . . . , 𝑁−1, 𝑡

0
= 𝑎 and 𝑡

𝑁
= 𝑏withΔ𝑡

𝑗
= 𝑡
𝑗+1
−𝑡
𝑗

and Δ𝑡 = max{Δ𝑡
0
, Δ𝑡
1
, Δ𝑡
𝑗
, . . .}.

Some properties of local fractional integrals operator
used in the paper are listed as follows [42, 51]:

𝑎
𝐼
𝑥

(𝛼)

𝑓 (𝑥) 𝑔
(𝛼)

(𝑥) = [𝑓 (𝑥) 𝑔 (𝑥)]


𝑥

𝑎

−
𝑎
𝐼
𝑥

(𝛼)

𝑓
(𝛼)

(𝑥) 𝑔 (𝑥) ,

𝑎
𝐼
𝑏

(𝛼)

𝑐
𝐼
𝑑

(𝛼)

𝜓 (𝑥, 𝑦) =
𝑐
𝐼
𝑑

(𝛼)

𝑎
𝐼
𝑏

(𝛼)

𝜓 (𝑥, 𝑦) ,

𝑎
𝐼
𝑥

(𝛼)

𝑎
𝐼
𝜏

(𝛼)

𝑓 (𝑡) =
𝑎
𝐼
𝑥

(𝛼)

[
(𝑥 − 𝑡)

𝛼

Γ (1 + 𝛼)
𝑓 (𝑡)] .

(7)

The formulas of local fractional integrals operator used in
the paper are listed as follows [42]:

0
𝐼
𝑥

(𝛼)

𝐸
𝛼
(𝑥
𝛼

) = 𝐸
𝛼
(𝑥
𝛼

) − 1,

0
𝐼
𝑥

(𝛼)
𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛+1)𝛼

Γ (1 + (𝑛 + 1) 𝛼)
.

(8)

Definition 3 (see [42, 43, 46–53]). Let 𝑓(𝑥) ∈ 𝐶
𝛼
[𝑎, 𝑏]. The

local fractional derivative of 𝑓(𝑥) of order 𝛼 in the interval
[𝑎, 𝑏] is defined as

𝑑
𝛼

𝑓 (𝑥
0
)

𝑑𝑥𝛼
=
Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (9)

where

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥

0
)] . (10)

The formulas of local fractional differential operator used
in the paper are listed as follows [42]:

𝑑
𝛼

𝑑𝑥𝛼
𝐸
𝛼
(𝑥
𝛼

) = 𝐸
𝛼
(𝑥
𝛼

) ,

𝑑
𝛼

𝑑𝑥𝛼
𝐸
𝛼
(−𝑥
𝛼

) = −𝐸
𝛼
(𝑥
𝛼

) ,

𝑑
𝛼

𝑑𝑥𝛼

𝑥
3𝛼

Γ (1 + 3𝛼)
=

𝑥
2𝛼

Γ (1 + 2𝛼)
.

(11)

3. Analysis of the Method

In this section, the local fractional decompositionmethod for
a class of differential equations defined on Cantor is given.

We now write (2) in the following form:

𝐿
(𝛼)

𝑡
𝑢 (𝑥, 𝑡) = −𝐿

(𝛼)

𝑥
𝑢 (𝑥, 𝑡) + 𝐿

(2𝛼)

𝑥𝑥
𝑢 (𝑥, 𝑡) , (12)

where 𝐿(2𝛼)
𝑥𝑥

= 𝜕
2𝛼

/𝜕𝑥
2𝛼 is a 2𝛼th local fractional differ-

ential operator with respect to 𝑥, 𝐿(𝛼)
𝑡
= 𝜕
𝛼

/𝜕𝑡
𝛼 is a 𝛼th

local fractional differential operator with respect to 𝑡, and
𝐿
(𝛼)

𝑥
= 𝜕
𝛼

/𝜕𝑥
𝛼

𝑖𝑠 𝛼th local fractional differential operator
with respect to 𝑥.

The initial condition reads as follows:

𝑢 (𝑥, 0) = 𝑓 (𝑥) (0 ≤ 𝑥 ≤ 𝑙) . (13)

We now define the 𝛼th-fold local fractional integral operator
in the form

𝐿
(−𝛼)

𝑡
𝑚(𝑡) =

0
𝐼
𝑡

(𝛼)

𝑚(𝑠) . (14)

In view of (13), we structure

𝐿
(−𝛼)

𝑡
𝐿
(𝛼)

𝑡
𝑢 (𝑥, 𝑡) = 𝐿

(−𝛼)

𝑡
{−𝐿
(𝛼)

𝑥
𝑢 (𝑥, 𝑡) + 𝐿

(2𝛼)

𝑥𝑥
𝑢 (𝑥, 𝑡)} .

(15)

Hence, from (15), we have

𝑢 (𝑥, 𝑡) = 𝑟 (𝑥) − 𝐿
(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢 (𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢 (𝑥, 𝑡) ,

(16)

where the nondifferentiable term 𝑟(𝑥) is obtained from the
initial condition.

Making use of (16), for 𝑛 ≥ 0, we give the recurrence
relationship in the following form:

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐿

(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢
𝑛
(𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢
𝑛
(𝑥, 𝑡) , (17)
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Figure 1: Graph of 𝑢(𝑥, 𝑡) with the parameter 𝛼 = ln 2/ ln 3.

subject to the initial value

𝑢
0
(𝑥, 𝑡) = 𝑟 (𝑥) . (18)

Finally, the approximation form of the solution reads as

𝑢 (𝑥, 𝑡) = lim
𝑛→∞

𝜙
𝑛
(𝑥, 𝑡) = lim

𝑛→∞

∞

∑

𝑖=0

𝑢
𝑖
(𝑥, 𝑡) . (19)

4. The Approximate Solutions

In this section, we investigate the approximate solutions
for Fokker-Planck equations on Cantor sets with local frac-
tional derivative by using the local fractional decomposition
method.

Example 1. Let us consider the following Fokker-Planck
equation on a Cantor set with local fractional derivative in
the form

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) = −

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (𝑥, 𝑡) +

𝜕
2𝛼

𝜕𝑥2𝛼
𝑢 (𝑥, 𝑡) , (20)

subject to the initial value

𝑢 (𝑥, 0) =
𝑥
2𝛼

Γ (1 + 2𝛼)
. (21)

In view of (17), we have the recurrence formulas in the form

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐿

(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢
𝑛
(𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢
𝑛
(𝑥, 𝑡) ,

(22)

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) =

𝑥
2𝛼

Γ (1 + 2𝛼)
. (23)
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Figure 2: Graph of 𝑢(𝑥, 𝑡) with the parameter 𝛼 = ln 2/ ln 3.

From (23), we obtain the following approximate formulas:

𝑢
1
(𝑥, 𝑡) = −

𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
.

𝑢
2
(𝑥, 𝑡) =

𝑡
2𝛼

Γ (1 + 2𝛼)
,

𝑢
3
(𝑥, 𝑡) = 0,

...

𝑢
𝑛
(𝑥, 𝑡) = 0.

(24)

Hence, the nondifferentiable solution for (20) with the initial
value (21) is

𝑢 (𝑥, 𝑡) =
𝑥
2𝛼

Γ (1 + 2𝛼)
+

𝑡
2𝛼

Γ (1 + 2𝛼)

−
𝑥
𝛼

Γ (1 + 𝛼)

𝑡
𝛼

Γ (1 + 𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)
,

(25)

and its graph is shown in Figure 1.

Example 2. We consider the Fokker-Planck equation on a
Cantor set with local fractional derivative

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) = −

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (𝑥, 𝑡) +

𝜕
2𝛼

𝜕𝑥2𝛼
𝑢 (𝑥, 𝑡) , (26)

together with initial condition

𝑢 (𝑥, 0) = 𝐸
𝛼
(𝑥
𝛼

) . (27)

From (17), we get the recurrence formulas in the form

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐿

(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢
𝑛
(𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢
𝑛
(𝑥, 𝑡) ,

(28)

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝐸

𝛼
(𝑥
𝛼

) . (29)
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Figure 3: Graph of 𝑢(𝑥, 𝑡) with the parameter 𝛼 = ln 2/ ln 3.

Making use of (29), we reach the following formulas:

𝑢
1
(𝑥, 𝑡) = 0,

𝑢
2
(𝑥, 𝑡) = 0,

...

𝑢
𝑛
(𝑥, 𝑡) = 0.

(30)

Therefore, the nondifferentiable solution of (26) with the
initial value (27) reads as follows:

𝑢 (𝑥, 𝑡) = 𝐸
𝛼
(𝑥
𝛼

) (31)

with plot shown in Figure 2.

Example 3. We present the Fokker-Planck equation on a
Cantor set with local fractional derivative

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) = −

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (𝑥, 𝑡) +

𝜕
2𝛼

𝜕𝑥2𝛼
𝑢 (𝑥, 𝑡) (32)

and suggest the initial condition

𝑢 (𝑥, 0) = 𝐸
𝛼
(−𝑥
𝛼

) . (33)

In view of (17), the recurrence formulas can be written as

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐿

(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢
𝑛
(𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢
𝑛
(𝑥, 𝑡) ,

(34)

𝑢
0
(𝑥, 0) = 𝑢 (𝑥, 0) = 𝐸

𝛼
(−𝑥
𝛼

) . (35)
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Figure 4: Graph of 𝑢(𝑥, 𝑡) with the parameter 𝛼 = ln 2/ ln 3.

From (35), we get the following approximate equalities:

𝑢
1
(𝑥, 0) =

2𝑡
𝛼

Γ (1 + 𝛼)
𝐸
𝛼
(−𝑥
𝛼

) ,

𝑢
2
(𝑥, 0) =

4𝑡
2𝛼

Γ (1 + 2𝛼)
𝐸
𝛼
(−𝑥
𝛼

) ,

𝑢
3
(𝑥, 0) =

8𝑡
3𝛼

Γ (1 + 3𝛼)
𝐸
𝛼
(−𝑥
𝛼

)

...

𝑢
𝑛
(𝑥, 𝑡) =

2
𝑛

𝑡
𝑛𝛼

Γ (1 + 𝑛𝛼)
𝐸
𝛼
(−𝑥
𝛼

) .

(36)

Therefore, the nondifferentiable solution of (32) with the
initial value (33) reads as follows:

𝑢 (𝑥, 𝑡) = 𝐸
𝛼
(2𝑡
𝛼

) 𝐸
𝛼
(−𝑥
𝛼

) , (37)

together with plot shown in Figure 3.

Example 4. We suggest the Fokker-Planck equation on a
Cantor set with local fractional derivative

𝜕
𝛼

𝜕𝑡𝛼
𝑢 (𝑥, 𝑡) = −

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (𝑥, 𝑡) +

𝜕
2𝛼

𝜕𝑥2𝛼
𝑢 (𝑥, 𝑡) , (38)

and the initial condition is

𝑢 (𝑥, 0) = −
𝑥
3𝛼

Γ (1 + 3𝛼)
. (39)

From (17), the recurrence formulas read as follows:

𝑢
𝑛+1
(𝑥, 𝑡) = −𝐿

(−𝛼)

𝑡
𝐿
(𝛼)

𝑥
𝑢
𝑛
(𝑥, 𝑡) + 𝐿

(−𝛼)

𝑡
𝐿
(2𝛼)

𝑥𝑥
𝑢
𝑛
(𝑥, 𝑡) , (40)

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = −

𝑥
3𝛼

Γ (1 + 3𝛼)
. (41)
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Hereby, from (41), we have the following formulas:

𝑢
1
(𝑥, 𝑡) =

𝑡
𝛼

Γ (1 + 𝛼)

𝑥
2𝛼

Γ (1 + 2𝛼)
−

𝑡
𝛼

Γ (1 + 𝛼)

𝑥
𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡) = −

𝑡
2𝛼

Γ (1 + 2𝛼)

𝑥
𝛼

Γ (1 + 𝛼)
+

2𝑡
2𝛼

Γ (1 + 2𝛼)
,

𝑢
3
(𝑥, 𝑡) =

𝑡
3𝛼

Γ (1 + 3𝛼)
,

𝑢
3
(𝑥, 𝑡) = 0,

...

𝑢
𝑛
(𝑥, 𝑡) = 0.

(42)

So the nondifferentiable solution of (32) with the initial value
(33) is

𝑢 (𝑥, 𝑡) =
𝑡
3𝛼

Γ (1 + 3𝛼)
+

𝑡
𝛼

Γ (1 + 𝛼)

𝑥
2𝛼

Γ (1 + 2𝛼)
+

2𝑡
2𝛼

Γ (1 + 2𝛼)

−
𝑥
3𝛼

Γ (1 + 3𝛼)
−

𝑡
𝛼

Γ (1 + 𝛼)

𝑥
𝛼

Γ (1 + 𝛼)

−
𝑡
2𝛼

Γ (1 + 2𝛼)

𝑥
𝛼

Γ (1 + 𝛼)
,

(43)

together with plot illustrated in Figure 4.

5. Conclusions

In this work, we had used the local fractional decomposition
method to solve the Fokker-Planck equations on Cantor
sets which were described by the local fractional differential
operator. The nondifferentiable solutions were obtained. The
obtained results show that the present method is a very
effective and powerful mathematical tool for finding the
nondifferentiable solutions for the local fractional differential
equations.
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